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Abstract
Learning global features by aggregating informa-
tion over multiple views has been shown to be ef-
fective for 3D shape analysis. For view aggregation
in deep learning models, pooling has been applied
extensively. However, pooling leads to a loss of the
content within views, and the spatial relationship
among views, which limits the discriminability of
learned features. We propose 3DViewGraph to re-
solve this issue, which learns 3D global features
by more effectively aggregating unordered views
with attention. Specifically, unordered views tak-
en around a shape are regarded as view nodes on
a view graph. 3DViewGraph first learns a novel
latent semantic mapping to project low-level view
features into meaningful latent semantic embed-
dings in a lower dimensional space, which is s-
panned by latent semantic patterns. Then, the con-
tent and spatial information of each pair of view
nodes are encoded by a novel spatial pattern cor-
relation, where the correlation is computed among
latent semantic patterns. Finally, all spatial pattern
correlations are integrated with attention weights
learned by a novel attention mechanism. This fur-
ther increases the discriminability of learned fea-
tures by highlighting the unordered view nodes
with distinctive characteristics and depressing the
ones with appearance ambiguity. We show that
3DViewGraph outperforms state-of-the-art meth-
ods under three large-scale benchmarks.

1 Introduction
Global features of 3D shapes can be learned from raw 3D rep-
resentations, such as meshes, voxels, and point clouds. As an
alternative, a number of works in 3D shape analysis employed
multiple views [Su and others, 2015; Han et al., 2019b] as
raw 3D representation, exploiting the advantage that multiple
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views can facilitate understanding of both manifold and non-
manifold 3D shapes via computer vision techniques. There-
fore, effectively and efficiently aggregating comprehensive
information over multiple views, is critical for the discrim-
inability of learned features, especially in deep learning mod-
els.

Pooling was designed as a procedure for information ab-
straction in deep learning models. In order to describe a
3D shape by considering features from multiple views, view
aggregation is usually performed by max or mean pooling,
where pooling only employs the max or mean value of each
dimension across all view features [Su and others, 2015]. Al-
though pooling is able to eliminate the rotation effect of 3D
shapes, both the content information within views and the s-
patial relationship among views cannot be fully preserved.
As a consequence, this limits the discriminability of learned
features. In this work, we address the challenge to learn 3D
features in a deep learning model by more effectively aggre-
gating the content information within individual views, and
the spatial relationship among multiple unordered views.

To tackle this issue, we propose a novel deep learning mod-
el called 3D View Graph (3DViewGraph), which learns 3D
global features from multiple unordered views. By taking
multiple views around a 3D shape on a unit sphere, we rep-
resent the shape as a view graph formed by the views, where
each view denotes a node, and the nodes are fully connected
with each other by edges. 3DViewGraph learns highly dis-
criminative global 3D shape features by simultaneously en-
coding both the content information within the view nodes,
and the spatial relationship among the view nodes.

i) We propose a novel deep learning model called 3DView-
Graph for 3D global feature learning by effectively ag-
gregating multiple unordered views. It not only encodes
the content information within all views, but also pre-
serves the spatial relationship among the views.

ii) We propose an approach to learn a low-dimensional la-
tent semantic embedding of the views by directly cap-
turing the similarities between each view and a set of la-
tent semantic patterns. As an advantage, 3DViewGraph



avoids mining the latent semantic patterns across the w-
hole training set explicitly.

iii) We perform view aggregation by integrating a novel spa-
tial pattern correlation, which encodes the content infor-
mation and the spatial relationship in each pair of views.

iv) We propose a novel attention mechanism to increase
the discriminability of learned features by highlighting
the unordered view nodes with distinctive characteristics
and depressing the ones with appearance ambiguities.

2 Related Work
Deep learning models have made a big progress on
learning 3D shape features from different raw represen-
tations, such as meshes [Han and others, 2018], voxel-
s [Wu and others, 2016], point clouds [Qi and others, 2017]
and views [Su and others, 2015]. Because of page limit, we
focus on reviewing view-based deep learning models to high-
light the novelty of our view aggregation.

2.1 View-based methods
View-based methods represent a 3D shape as a set
of rendered views [Kanezaki et al., 2018] or panorama
views [Sfikas and others, 2017]. Besides direct set-to-set
comparison [Bai and others, 2017], pooling is the widely
used way of aggregating multiple views in deep learning
models [Su and others, 2015]. In addition to global fea-
ture learning, pooling can also be used to learn local fea-
tures [Huang et al., 2017; Yu et al., 2018] for segmentation
or correspondence by aggregating local patches.

Although pooling can aggregate views on the fly in the
models, it can not encode all the content information with-
in views and the spatial relationship among views. Thus, the
strategies of concatenation [Savva and others, 2016], view
pair weighting [Johns et al., 2016], cluster specified pool-
ing [Wang and others, 2017], RNN [Han and others, 2019],
were employed to resolve this issue. However, these meth-
ods can not learn from unordered views or fully capture the
spatial information among unordered views.

To resolve the aforementioned issues, 3DViewGraph ag-
gregates unordered views more effectively by simultaneously
encoding their content information and spatial relationship.

2.2 Graph-based methods
To handle the irregular structure of graphs, various methods
have been proposed [Hamilton and others, 2017]. Although
we formulate the multiple views from a 3D shape as a view
graph, existing methods proposed for graphs cannot be di-
rectly used for learning the 3D feature in our scenario. The
reasons are two-fold. First, these methods mainly focus on
how to locally learn meaningful representation for each node
in a graph from its raw attributes rather than globally learn-
ing the feature of the whole graph. Second, these methods
mainly learns how to process the nodes in a graph with firm
order, while the order of views involved in 3DViewGraph are
always ambiguous because of the rotation of 3D shapes.

Moreover, some methods have employed graphs to re-
trieve 3D shapes from multiple views [Anan et al., 2015;

An-An et al., 2016]. Different from these methods, 3DView-
Graph employs a more efficient way of view aggregation in
deep learning models, which makes the learned features use-
ful for both classification and retrieval.

3 3DViewGraph
3.1 Overview
Fig. 1 shows an overview of 3DViewGraph, where the glob-
al feature F i ∈ R1×F of a 3D shape mi is learned from its
corresponding view graph Gi. Here, mi is the i-th shape in a
training set of M 3D shapes, where i ∈ [1,M ]. Based on the
F -dimensional feature F i, 3DViewGraph classifies mi into
one of L shape classes according to the probability P i =
[P i(li = 1|F i), ..., P i(li = a|F i), ..., P i(li = L|F i)],
which is provided by a final softmax classifier (Fig. 1(f)),
where li is the class label of mi.

We first take a set of unordered views vi = {vij |j ∈ [1, V ]}
on a unit sphere centered at mi, as shown in Fig. 1(a). Here,
we use “unordered views” to indicate that the views cannot be
organized in a sequential way. The views vij are regarded as
view nodes Di

j (briefly shown by symbols) of an undirected
graph Gi, where each Di

j is fully connected with other view
nodes Di

j′ by edges Ei
j,j′ , such that Gi = ({Di

j}, {Ei
j,j′}).

Next, we extract low-level features f i
j of

each view vij using a fine-tuned VGG19 net-
work [Simonyan and Zisserman, 2014], as shown in
Fig. 1(b), where f i

j ∈ R1×4096 is extracted from the last fully
connected layer. To obtain lower-dimensional, semantically
more meaningful view features, we subsequently learn a
latent semantic mapping Φ (Fig. 1(c)) to project a low-level
view feature f i

j into its latent semantic embedding di
j .

To resolve the effect of rotation, 3DViewGraph encodes the
content and spatial information of Gi by exhaustively com-
puting our novel spatial pattern correlation between each pair
of view nodes. As illustrated in Fig. 1(d), we compute the
pattern correlation cij,j′ between Di

j and each other node Di
j′ ,

and we weight it with their spatial similarity sij,j′ . In addition,
for each node Di

j , we compute its cumulative correlation Ci
j

to summarize all spatial pattern correlations as the character-
istics of the 3D shape from the j-th view node Di

j .
Finally, we obtain the global feature F i of shape mi by

integrating all cumulative correlations Ci
j with our novel at-

tention weights αi, as shown in Fig. 1(e) and (f). αi aims to
highlight the view nodes with distinctive characteristics while
depressing the ones with appearance ambiguity.

3.2 Latent semantic mapping learning
To learn global features from unordered views, 3DViewGraph
encodes the content information within all views and the spa-
tial relationship among views in a pairwise way. 3DView-
Graph relies on the intuition that correlations between pairs
of views can effectively represent discriminative characteris-
tics of a 3D shape, especially considering the relative spa-
tial position of the views. To implement this intuition, each
view should be encoded in terms of a small set of common
elements across all views in the training set. Unfortunately,
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Figure 1: The demonstration of 3DViewGraph framework.

the low-level features f i
j are too high dimensional and not

suitable as a representation of the views in terms of a set of
common elements.

VxNRow-wise convolution with 
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Figure 2: The demonstration of latent semantic mapping Φ.

To resolve this issue, 3DViewGraph introduces a latent se-
mantic mapping Φ by learning a kernel function K to directly
capture the similarities between V views vij and N latent se-
mantic patterns {ϕn}. Our approach avoids additionally and
explicitly mining {ϕn} across the whole training set as the
common elements. Φ projects low-level view features f i

j in-
to latent semantic space spanned by {ϕn} as latent semantic
emdeddings di

j . di
j represents view nodes Di

j with more se-
mantic meaning but lower dimension than f i

j . Specifically,
predicted by kernel K, the n-th dimension of di

j characterizes
the similarity between f i

j and the n-th semantic pattern ϕn,
such that di

j = [K(f i
j ,ϕ1), ...,K(f i

j ,ϕn), ...,K(f i
j ,ϕN )] ∈

R1×N . We define the kernel K as

K(f i
j ,ϕn) =

exp(−β∥f i
j − ϕn∥22)∑N

n′=1 exp(−β∥f i
j − ϕn′∥22)

, (1)

where the similarity K(f i
j ,ϕn) is inversely proportional to

the distance between f i
j and ϕn through exp(), and gets nor-

malized across the similarities between f i
j and all ϕn. Param-

eter β controls the decay of the response with the distance.
This equation can be further simplified by cancelling the nor-

m of f i
j from the numerator and the denominator as follows,

K(f i
j ,ϕn) =

exp(−β∥f i
j∥22 + 2βf i

jϕ
T
n − β∥ϕn∥22)∑N

n′=1 exp(−β∥f i
j∥22 + 2βf i

jϕ
T
n′ − β∥ϕn′∥22)

K(f i
j ,ϕn) =

exp(2βf i
jϕ

T
n − β∥ϕn∥22)∑N

n′=1 exp(2βf
i
jϕ

T
n′ − β∥ϕn′∥22)

K(f i
j ,ϕn) =

exp(f i
jωn + εn)∑N

n′=1 exp(f
i
jωn′ + εn′)

,

(2)

where in the last step, we substituted 2βϕT
n and−β∥ϕn∥22 by

ωn and εn, respectively. Here, {ωn}, {εn} and {ϕn} are sets
of learnable parameters, in addition, both {ωn} and {εn} de-
pend on {ϕn}. However, to obtain more flexible training by
following the viewpoint in [Arandjelovic and others, 2016],
we employ two independent sets of {ωn}, {εn}, decoupling
{ωn} and {εn} from {ϕn}. This decoupling enables 3D-
ViewGraph to directly predict the similarity between f i

j and
ϕn by the kernel K without explicitly mining ϕn across all
low-level view features in the training set.

Based on the last line in Eq. 2, we implement the latent
semantic mapping Φ as a row-wise convolution with each pair
of {ωn} and {εn} corresponding to a filter and a row-wise
softmax normalization, as shown in Fig. 2.

3.3 Spatial pattern correlation
The pattern correlation cij,j′ aims to encode the content of
view nodes Di

j and Di
j′ . cij,j′ makes the semantic patterns

that co-occur in both views more prominent while the non-
co-occurring ones more subtle. More precisely, we use the
latent semantic embeddings di

j and di
j′ to compute cij,j′ as

follows,

cij,j′ = (di
j)

T × di
j′ , (3)

where cij,j′ is a N × N dimensional matrix whose entry
cij,j′(n, n

′) measures the correlation between the semantic
pattern ϕn contributing to di

j and ϕn′ contributing to di
j′ .

We further enhance the pattern correlation cij,j′ between
the view nodes Di

j and Di
j′ by their spatial similarity sij,j′ ,

which forms the spatial pattern correlation sij,j′c
i
j,j′ .



......

(a) Edges on the unit sphere (b) The length of  edge (c) The spatial similarities

i
j,j'E i

j,j'
s

i
jD

i
j''D

i
j,j''E

i
jD

i
j'D

i
j,j'E

θ

θ'

Figure 3: The illustration of spatial similarity sij,j′ .

Fig. 3 visualizes how we compute the spatial similarity
sij,j′ . In Fig. 3(a), we show all edges Ei

j,j′ connecting Di
j

to all other view nodes Di
j′ in different colors, where Di

j

is briefly shown by symbols. The length of Ei
j,j′ is mea-

sured by the length of the shortest arc connecting the two
view nodes Di

j and Di
j′ on the unit sphere. Thus, Ei

j,j′ =

2π × 1 × (θ/2π) = θ as illustrated in Fig. 3(b), where θ
is the central angle of the arc and the factor 1 correspond-
s to the radius of the unit sphere. To reduce the high vari-
ance of {Ei

j,j′}, we employ Ei
j,j′ = 0.5(1 − cos θ) instead

of Ei
j,j′ = θ, which normalizes Ei

j,j′ into the range of [0, 1].
Finally, sij,j′ is inversely proportional to Ei

j,j′ as follows,

sij,j′ = exp(−σEi
j,j′), (4)

where σ is a parameter to control the decay of the response
with the edge length. In Fig. 3(c), we visualize sij,j′ by map-
ping the value of sij,j′ to the width of edges Ei

j,j′ .
To represent the characteristics of 3D shape mi from the j-

th view node Di
j on Gi, we finally introduce the cumulative

correlation Ci
j , which encodes all spatial pattern correlations

starting from Di
j as follows,

Ci
j =

V∑
j′=1

sij,j′c
i
j,j′ . (5)

3.4 Attentioned correlation aggregation
Intuitively, more views will provide more information to any
deep learning model, which should allow it to produce more
discriminative 3D features. However, additional views may
also introduce appearance ambiguities that negatively affect
the discriminability of learned features, as shown in Fig. 4.
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Figure 4: The ambiguous views and distinctive views.

To resolve this issue, 3DViewGraph employs a novel at-
tention mechanism in the aggregation of the 3D shape char-
acteristics from all unordered view nodes of a shape, as il-
lustrated in Fig. 1(e). 3DViewGraph learns attention weights
αi = {αi

j |j ∈ [1, V ]} for all view nodes Di
j on Gi, where αi

j
would be a large value (the second row in Fig. 4) if the view
vij has distinctive characteristics, while αi

j would be a small
value (the first row in Fig. 4) if vij exhibits appearance ambi-
guity with views from other shapes. Note that

∑V
j=1 α

i
j = 1.

Our novel attention mechanism evaluates how distinctive
each view is to the views that 3DViewGraph has processed.
To comprehensively represent the characteristics of the views
that 3DViewGraph has processed, the attention mechanism
employs the fully connected weights WF in the final softmax
classifier which accumulates the information of all views, as
shown in Fig. 1(f). The attention mechanism projects the
characteristics Ci

j of 3D shape mi from the j-th view node
Di

j and the characteristics WF of the views that 3DView-
Graph has processed into a common space to calculate the
distinctiveness of view vij , as defined below,

αi
j = ω(WCC

i
jωC +WFωF + b),

αi = softmax(αi),
(6)

where WC , ωC , ωF , b and ω are learnable parameters in the
attention mechanism, WF ∈ RL×F , where F is the dimen-
sion of the learned global feature F i, and L is the number of
shape classes. With WC ∈ RL×V and ωC ∈ RV×1, Ci

j is
projected into a L × 1 dimensional space, where b ∈ RL×1

is a bias in that space. In addition, WF is projected into the
same space by ωF ∈ RK×1 to compute the similarities be-
tween Ci

j and WF along all L dimensions. Subsequently, the
attention weight αi

j is calculated by comprehensively summa-
rizing all similarities along all the L dimensions with a linear
mapping ω ∈ R1×L. Finally, the αi

j in αi for all views of
i-th shape are normalized by softmax normalization.

Based on αi, the characteristics Ci
j of 3D shape mi from

all view nodes are aggregated with weighting αi into atten-
tioned correlation aggregation Ci, as defined below,

Ci =
V∑

j=1

αi
jC

i
j , (7)

where Ci represents 3D shape mi as a N × N matrix, as
shown in Fig. 1(e). Finally, the global feature F i of 3D shape
mi is learned by a fully connected layer with attentioned cor-
relation aggregation Ci as input, as shown in Fig. 1(f), where
the fully connected layer is followed by a sigmoid function.

Using F i, the final softmax classifier computes the prob-
abilities P i to classify the 3D shape mi into one of L shape
classes as

P i = softmax(WFF
i + bF ), (8)

where WF ∈ RL×K and bF ∈ RK×1 are learnable param-
eters for the computation of P i. WF is used to represent all
the characteristics of views that 3DViewGraph has processed,
as employed to calculate αi in Eq. 6.



3.5 Learning inference
The parameters involved in 3DViewGraph are optimized by
minimizing the log-likelihood O over M 3D shapes in the
training set, where Qi is the truth label,

O = − 1

M

M∑
i=1

L∑
a=1

Qi(li = a) logP i(li = a). (9)

The parameter optimization is conducted by back propaga-
tion of classification errors of 3D shapes. Noteworthy, WF is
updated by two elements with the learning rate ε as follows,

WF ←WF − ε(
∂O

∂WF
+

V∑
j=1

∂αi
j

∂WF
). (10)

The advantage of Eq. (10) is that WF can be learned more
flexibly for optimization convergence. WF also enables αi to
simultaneously observe the characteristics of shape mi from
each view node Di

j and take all views that have been pro-
cessed from different shapes as reference.

4 Results and Analysis
We evaluate 3DViewGraph by comparing it with the state-
of-the-art methods in shape classification and retrieval un-
der ModelNet40 [Wu and others, 2015], ModelNet10 and
ShapeNetCore55 [Savva and others, 2017]. We also show ab-
lation studies to justify the effectiveness of novel elements.

F 64 128 256 512 1024
Acc % 93.44 93.03 93.80 93.07 93.19

Table 1: F comparison, ε = 0.009, σ = 10, N = 128.

4.1 Parameters
We first explore how the important parameters F , N and σ
affect the performance of 3DViewGraph under ModelNet40.
The comparison in Table. 1, 2, and 3 shows that their effects
are slight in a proper range.

N 32 64 128 256 512
Acc % 90.84 92.91 93.80 93.44 93.40

Table 2: N comparison, ε = 0.009, σ = 10, F = 256.

4.2 Classification
As compared under ModelNet in Table 4, 3DViewGraph out-
performs all the other methods under the same condition1. In
addition, we show the single view classification accuracy in
VGG fine-tuning (“VGG(ModelNet)”). To highlight the con-
tribution of VGG fine-tuning, spatial similarity, and attention,
we remove fine-tuning (“Ours(No finetune)”) or set all spatial

1We use the same modality of views from the same camera sys-
tem for the comparison, where the results of RotationNet are from
Fig.4 (d) and (e) in https://arxiv.org/pdf/1603.06208.pdf. Moreover,
the benchmarks are with the standard training and test split.

similarity (“Ours(No spatiality)”) and attention (“Ours(No at-
tention)”) to 1. The degenerated results indicate these ele-
ments are important for 3DViewGraph to achieve high ac-
curacy. Similar phenomena is observed when we justify the
effect of Ci

j and WF in Eq. 6 by setting them to 1 (“Ours(No
attention-)”), respectively. We also justify the latent semantic
embedding and spatial pattern correlation by replacing them
by single view features (“Ours(No latent)”) and summation
(“Ours(No correlation)”), the degenerated results also show
that they are important elements. Finally, we compare our
proposed view aggregation with mean (“Ours(MeanPool)”)
and max pooling (“Ours(MaxPool)”) by directly pooling all
single view features together. Due to the loss of content infor-
mation in each view and spatial information among multiple
views, pooling performs worse.

σ 0 1 5 10 11
Acc % 92.91 93.48 93.72 93.80 93.48

Table 3: σ comparison, ε = 0.009, N = 128, F = 256.

Methods MN40(%) MN10(%)
3DGAN[Wu and others, 2016] 83.3 91.0

PointNet++[Qi and others, 2017] 91.9 -
FoldingNet[Yang et al., 2018] 88.4 94.4

PANO[Sfikas and others, 2017] 90.7 91.1
Pairwise[Johns et al., 2016] 90.7 92.8
GIFT[Bai and others, 2017] 89.5 91.5

Domi[Wang and others, 2017] 92.2 -
MVCNN[Su and others, 2015] 90.1 -

Spherical[Cao et al., 2017] 93.31 -
Rotation[Kanezaki et al., 2018] 92.37 94.39

SO-Net[Li and others, 2018] 90.9 94.1
SVSL[Han and others, 2019] 93.31 94.82
VIPGAN[Han et al., 2019a] 91.98 94.05

VGG(ModelNet40) 87.27 -
VGG(ModelNet10) - 88.63

Ours 93.80 94.82
Ours(σ = 5) 93.72 95.04

Ours(No finetune) 90.40 -
Ours(No spatiality) 92.91 94.16
Ours(No attention) 93.07 93.72

Ours(No attention-Ci
j) 91.82 93.39

Ours(No attention-WF ) 91.57 93.28
Ours(No latent) 92.34 92.95

Ours(No correlation) 89.30 93.83
Ours(MeanPool) 92.38 93.06
Ours(MaxPool) 91.89 92.84

Table 4: Classification comparison under ModelNet with ε = 0.009,
σ = 10, F = 256, N = 128, unless noted otherwise.

3DViewGraph also achieves the best under the more chal-
lenging benchmark ShapeNetCore55, based on the fine-tuned
VGG (“VGG(ShapeNetCore55)”), as shown in Table 5. We
also find that different parameters do not significantly affect
the performance, such as N and σ.



Methods Views Accuracy(%)
VIPGAN[Han et al., 2019a] 12 82.97
SVSL[Han and others, 2019] 12 85.47

VGG(ShapeNetCore55) 1 81.33
Ours 20 86.87

Ours(N = 256) 20 86.36
Ours(σ = 5) 20 86.56

Ours(σ = 5,N = 256) 20 86.71

Table 5: Classification comparison under ShapeNetCore55 with ε =
0.009, σ = 10, F = 256, N = 128, unless noted otherwise.

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

10 12 14 16 18 202 4 6 80

10 12 14 16 18 20
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 4 6 80

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 12 14 16 18 202 4 6 80

(b)

(c)

Figure 5: The visualization of attention weights (black nodes)
learned for views of (a) a toilet, (b) a table, and (c) a cone. The
highest and lowest attention weights are indicated by red upward
arrow and blue downward arrow, respectively.

4.3 Attention visualization
We visualize the attention learned by 3DViewGraph under
ModelNet40, which demonstrates how 3DViewGraph under-
stands 3D shapes by analyzing views on a view graph. In
Fig. 5, attention weights αi on view nodes Di

j of Gi are vi-
sualized as a vector which is represented by scattered black
nodes, where the corresponding views are also shown nearby,
such as the views of a toilet in Fig. 5(a), a table in Fig. 5(b)
and a cone in Fig. 5(c). The coordinates of black nodes along
the y-axis indicate how much attention 3DViewGraph pays to
the corresponding view nodes. In addition, the views that is
paid the most and least attention to are highlighted by the red
upward and blue downward arrow, respectively.

Fig. 5 demonstrates that 3DViewGraph is able to under-
stand each view, since the view with the most ambiguous ap-
pearance in a view graph is depressed while the view with the
most distinctive appearance is highlighted. For example, the
most ambiguous views of toilet, table and cone merely show
some basic shapes that provide little useful information for
classification, such as the rectangles of the toilet and table,
and the circle of the cone. In contrast, the most distinctive
views of toilet, table and cone exhibit more unique and dis-
tinctive characteristics.

Methods Range MN40 MN10
SHD Test-Test 33.26 44.05
LFD Test-Test 40.91 49.82

3DNets[Wu and others, 2015] Test-Test 49.23 68.26
GImage[Sinha et al., 2016] Test-Test 51.30 74.90

DPano[Shi and others, 2015] Test-Test 76.81 84.18
MVCNN[Su and others, 2015] Test-Test 79.50 -
PANO[Sfikas and others, 2017] Test-Test 83.45 87.39

GIFT[Bai and others, 2017] Random 81.94 91.12
Triplet[He et al., 2018] Test-Test 88.0 -

Ours Test-Test 90.54 92.40
Ours Test-Train 93.49 95.17
Ours Train-Train 98.75 99.79
Ours All-All 96.95 98.52

Table 7: Retrieval comparison (mAP) under ModelNet, ε = 0.009,
σ = 10, F = 256, N = 128.
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Figure 6: The precision and recall comparison with graph-based
multi-view learning methods under PSB.

4.4 Retrieval
We evaluate the retrieval performance of 3DViewGraph un-
der ModelNet in Table 7. We outperform the state-of-the-art
methods, where the retrieval range is also shown. We further
detail the precision and recall curves of these results in Fig. 7.
In addition, 3DViewGraph also achieve the best results under
ShapeNetCore55 in Table 6. We compare 10 state-of-the-art
methods under testing set in the SHREC2017 retrieval con-
test [Savva and others, 2017] and Taco [Cohen et al., 2018],
where we summarize all the 10 methods (“All”) by present-
ing the best result of each metric due to page limit. Finally,
we demonstrate that 3DViewGraph is also superior to other
graph-based multi-view learning methods [Anan et al., 2015;
An-An et al., 2016] under Princeton Shape Benchmark (PS-
B) in Fig. 6.

5 Conclusion
In view-based deep learning models for 3D shape analysis,
view aggregation via widely used pooling, leads to informa-
tion loss about content and spatial relationship of views. We
propose 3DViewGraph to address this issue for 3D global
feature learning by more effectively aggregating unordered



micro macro
Methods P@N R@N F1@N mAP@N NDCG@N P@N R@N F1@N mAP@N NDCG@N

All 0.818 0.803 0.798 0.772 0.865 0.618 0.667 0.590 0.583 0.657
Taco 0.701 0.711 0.699 0.676 0.756 - - - - -
Ours 0.6090 0.8034 0.6164 0.8492 0.9054 0.1929 0.8301 0.2446 0.7019 0.8461

Table 6: Retrieval comparison under ShapeNetCore55, ε = 0.009, σ = 10, F = 256, N = 128.
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Figure 7: The precision and recall cure comparison among different
methods under (a) ModelNet40 and (b) ModelNet10.

views with attention. By organizing unordered views taken
around a 3D shape into a view graph, 3DViewGraph learns
global features of the 3D shape by simultaneously encoding
both the content information within view nodes and the spa-
tial relationship among the view nodes. Through a novel la-
tent semantic mapping, low-level view features are projected
into a meaningful, lower-dimensional latent semantic embed-
ding using a learned kernel function, which directly captures
the similarities between low-level view features and latent se-
mantic patterns. The latent semantic mapping successfully
facilitates 3DViewGraph to encode the content information
and the spatial relationship in each pair of view nodes us-
ing a novel spatial pattern correlation. Further, our novel at-
tention mechanism effectively increases the discriminability
of learned features by efficiently highlighting the unordered
view nodes with distinctive characteristics and depressing the
ones with appearance ambiguity. Our results in classification
and retrieval under three large-scale benchmarks show that
3DViewGraph can learn better global features than the state-
of-the-art methods due to its more effective view aggregation.
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