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Learning and selecting important points on a point cloud is crucial for point cloud 
understanding in various applications. Most of early methods selected the important points 
on 3D shapes by analyzing the intrinsic geometric properties of every single shape, which 
fails to capture the importance of points that distinguishes a shape from objects of 
other classes, i.e., the distinction of points. To address this problem, we propose D-Net 
(Distinctive Network) to learn for distinctive point clouds based on a self-attentive point 
searching and a learnable feature fusion. Specifically, in the self-attentive point searching, 
we first learn the distinction score for each point to reveal the distinction distribution of 
the point cloud. After ranking the learned distinction scores, we group a point cloud into a 
high distinctive point set and a low distinctive one to enrich the fine-grained point cloud 
structure. To generate a compact feature representation for each distinctive point set, a 
stacked self-gated convolution is proposed to extract the distinctive features. Finally, we 
further introduce a learnable feature fusion mechanism to aggregate multiple distinctive 
features into a global point cloud representation in a channel-wise aggregation manner. 
The results also show that the learned distinction distribution of a point cloud is highly 
consistent with objects of the same class and different from objects of other classes. 
Extensive experiments on public datasets, including ModelNet and ShapeNet part dataset, 
demonstrate the ability to learn for distinctive point clouds, which helps to achieve the 
state-of-the-art performance in some shape understanding applications.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Point cloud captured by 3D scanners has attracted extensive research interest in various point cloud understanding ap-
plications, such as 3D object classification Qi et al. (2017a,b); Wang et al. (2019b); Liu et al. (2019c), detection Shi et al. 
(2019); Chen et al. (2019); Lang et al. (2019) and segmentation Hu et al. (2020); Yang et al. (2019); Wang et al. (2019a). 
Unlike regular 2D images and 3D voxels with fixed local spatial distribution, the point cloud is irregular and unordered, 
consisting of 3D coordinates and some additional attributes, e.g., color, normal, reflectance, etc. To avoid processing unstruc-
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Fig. 1. The learning for distinctive point clouds. Specifically, for a raw point cloud, we first build the distinctive point cloud by learning a distinction score 
for each point, where the red points with a large radius indicate a high distinction and the blue points with a small radius indicate a low distinction. By 
ranking the distinction scores, we respectively select the high distinctive point set and low distinctive point set to enrich fine-grained details. Then, we 
extract the corresponding feature representation of each distinctive point set, as well as the raw point cloud. The extracted features of three point sets are 
aggregated into a global point cloud representation, which distinguishes a 3D shape from others of different classes.

tured point sets, it is intuitive to first convert point clouds into regular views Chen et al. (2017); Roveri et al. (2018) or 
voxels Zhou and Tuzel (2018); Meng et al. (2019) and then apply traditional convolutional neural networks to complete the 
recognition process. However, due to lacking depth information, 2D view-based methods are limited in multiple applications 
like semantic segmentation, and 3D voxel-based methods require high memory and computational cost.

Many subsequent improvements Li et al. (2018b); Wang et al. (2019b); Liu et al. (2020, 2019c) mainly focus on capturing 
local or global structures within point clouds and have achieved better performances. They usually treat all points of a point 
cloud equally. However, the important regional points on point clouds and their correlation are not well measured and 
detected for learning the global shape representation for distinguishing shapes from others in recognition tasks. In this 
paper, we found that learning and selecting distinctive points from point clouds are important to distinguish each shape 
from shapes of other classes. We follow the definition of the distinction of points on a 3D object, as proposed by Shilane 
and Funkhouser Shilane and Funkhouser (2007), for learning and selecting the important points, where the distinction of 
every point in an object is defined as how useful it is for distinguishing the object from others of different classes. Most 
prior methods Lee et al. (2005); Shilane and Funkhouser (2006) have selected the important points on shapes by analyzing 
the intrinsic geometric properties of every single shape, which lacks to capture the importance of points that distinguish 
each shape from objects of other types. This common strategy is first to extract the hand-crafted shape features from the 
local neighborhood and then obtain the distinctiveness of regional points based on the difference between their features 
to others. To alleviate the limitation of hand-crafted shape features, a few approaches Shu et al. (2018); Nezhadarya et 
al. (2020); Zheng et al. (2019) have been proposed to learn to detect the points of interest or salient points, which often 
consider how unique and visible a point is relative to other points within the same object.

In contrast, the distinction of a point considers how common and unique the point is relative to objects of other types in 
a dataset. In addition, the above-mentioned methods also lack to explore the spatial correlation among multiple distinctive 
point sets of a point cloud. To address this problem, we propose D-Net (Distinctive Network) to explore both the local 
structures within points and the spatial correlation among multiple distinctive point sets of a point cloud. As shown in 
Fig. 1, we first learn the distinction score for each point to reveal the point distinction distribution. By ranking the learned 
distinction scores, we group each point cloud into a high distinctive point sets and a low distinctive point sets. Then, to 
extract the feature representation of each distinctive point set, a stacked self-gated convolution is proposed for extracting 
the distinctive features. Finally, a feature aggregation operation is designed for fusing multiple distinctive point set features. 
In feature fusion, the pooling operation has been widely adopted by existing works to combine multiple features with deep 
neural networks, but simply pooling disregards a lot of content information and the spatial correlation among different 
distinctive point set features, which limits the discriminability of learned global shape representation. To address this issue, 
we further introduce a learnable feature fusion mechanism to aggregate the distinctive point set features into a global point 
cloud representation in a channel-wise aggregation manner. Our main contributions are summarized as follows.

• We design a self-attentive point searching module to capturing a distinction score for each point, which provides a 
primary basis of the ranking of points though the back-propagation of gradients.

• To effectively capture the features of point sets, we propose a self-gated convolution module, which enables the infor-
mation forgetting in different abstraction layers by introducing the gate structure.
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• To aggregate the multiple features of distinctive point sets in a channel-wise way, we introduce a learnable gate fusion 
strategy to adaptively aggregate multiple distinctive features.

2. Related work

Learning on Point Clouds. Recently, deep networks have achieved promising performances in point cloud analysis. However, 
due to the irregular and unordered data representation, there are still some challenges learning from raw point clouds. 
PointNet Qi et al. (2017a) is the prior work that applies deep model directly on point clouds. Specifically, a point-wise 
feature is first extracted for each point independently, and all features are then aggregated into the global representation 
with a max-pooling operation. However, PointNet missed the important local region structures of point clouds. PointNet++ 
Qi et al. (2017b) employed a hierarchical strategy to capture the local structures inside small point clusters. To mitigate 
the impact of point cloud irregularities, some studies utilize scalable indexing techniques to build regular structures on 
points. OctNet Riegler et al. (2017) hierarchically divided points into regular grids with unbalanced octrees, and extracted 
the corresponding feature for each leaf node. Kd-Net Klokov and Lempitsky (2017) performed multiplicative transformations 
according to the subdivisions of point clouds based on kd-trees.

Influenced by traditional convolutional neural networks, some other methods focus on building graphs in local regions 
and applying CNN-like operations to capture local structures. PointCNN Li et al. (2018b) used the canonical order of local 
region points and applied a typical convolution operator on transformed features. SPGraph Landrieu and Simonovsky (2018)
partitioned large scale points into geometrically homogeneous elements with building a super-point graph. RS-CNN Liu et 
al. (2019c) also extended typical CNN to irregular configuration, which encoded the geometric relation of points to achieve 
contextual shape-aware learning of point cloud. DGCNN Wang et al. (2019b) applied an EdgeConv operation to capture the 
local region structures with dynamic graph updating. These approaches mainly focus on capturing local or global structures 
of point clouds, which ignores the difference of point importance in distinguishing shape classes. To address this problem, 
we propose a self-attentive point searching module to capture the point importance and explore fine-grained structures 
within multiple distinctive point sets.

Distinction Detection on Point Clouds. The distinction, or distinctiveness, was first introduced by Shilane and Funkhouser 
Shilane and Funkhouser (2006, 2007). These methods rely on extracting local shape descriptors and obtaining the distinc-
tiveness of each local region by comparing the difference between pairs of shape descriptors. One hand-crafted descriptor is 
usually designed for a specific task, which cannot generalize well to another tasks. And it is difficult to find the best combi-
nation of existing hand-crafted descriptors for the current task. To alleviate the limitation of hand-crafted shape descriptors, 
several methods Shu et al. (2018); Li et al. (2020); Song et al. (2018) employed learning-based strategies to capture shape 
distinction by back-propagation optimization. Besides 3D shapes, several approaches have been developed to extract the 
discriminative regions from images. Similar to distinction, saliency has also been explored by Gal and Cohen-Or (2006); 
Wang et al. (2018b), which considered how unique and visible of regions within the same object. More recently, CP-Net 
Nezhadarya et al. (2020) performed adaptive down-sampling with considering point importance by making channel-wise 
statistics on point features. In Zheng et al. (2019), a way of characterizing critical points and segments to build point-
cloud saliency maps was proposed. However, existing approaches only focus on extracting high distinctive points, which 
ignores the spatial correlation information among different distinctive regions. The distinctive regions and their spatial cor-
relations usually provide high-level information for distinguishing every object from others of different classes Shilane and 
Funkhouser (2007).

Inspired by the region distinction Shilane and Funkhouser (2007), we propose an end-to-end network, called D-Net, to 
learn point distinction directly from raw point clouds. However, different from the original distinction region, we conduct 
the distinction detection in a learning-based manner. So, the learned distinctive or important points are relative to the 
training task, such as shape classification and shape part segmentation. In D-Net, we pay attention to different distinctive 
regional point sets that contain fine-grained detail information of point clouds and distinguish a shape from objects of a 
different class. We rely on self-attentive point searching to learn different distinctive point sets and capture the correspond-
ing feature representations with stacked self-gated convolution. Moreover, the final global representation of the point cloud 
is aggregated with a learnable feature fusion mechanism by leveraging the correlation of distinctive point sets.

3. The D-Net method

The architecture of our D-Net is illustrated in Fig. 2, which consists of three components: the point importance capturing, 
the distinctive feature extracting, and distinctive feature aggregating. We will illustrate the network details of our D-Net as 
follows.

Point Importance Capturing. Each point in a point cloud has different importance. To capture structures within the irregular 
point cloud, we should consider not only the raw point cloud itself but also some fine-grained details within distinctive point 
sets. We propose a novel self-attentive point searching layer to enrich point cloud information by taking point distinction 
into consideration. The high distinctive point set and the low distinctive point set are selected out to enhance the point 
3
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Fig. 2. Our D-Net architecture. Our D-Net has three components, including the point importance capturing, the distinctive feature extracting, and the 
distinctive feature aggregating. Specifically, the point importance capturing relies on self-attentive point searching to learn a distinction score for each 
point. By ranking the distinction scores of points, we select out the high distinctive point set P H and the low distinctive point set P L to enrich the fine-
grained structures of point clouds. With stacked self-gated convolution, we extract the feature representation for each distinctive point set. We resort to a 
learnable gate for feature aggregation to effectively aggregate point set features f R , f H , and f L into a compact global point cloud representation f g . The 
final global representation can be applied to point cloud analysis tasks, including shape classification and shape part segmentation.

cloud representation learning. The enriched details from distinctive point sets can help to boost point cloud analysis tasks, 
such as shape classification performances.

Distinctive Feature Extracting. With multiple distinctive point sets, we resort to a CNN-like operation with gated aggre-
gation to capture the local region contexts within each distinctive point set. To further exploit the local structures of the 
point set, the SGC (Self-Gated Convolution) is employed in the point set representation learning, which relies on building 
graphs that dynamically compose and update the feature representation of each point within a local region. The feature 
representation of each distinctive point set is extracted by aggregating the different point features with stacked self-gated 
convolution.

Distinctive Feature Aggregating. Based on the obtained feature representations of distinctive point sets, we introduce a 
learnable feature fusion mechanism to integrate these features into a compact global point cloud representation. We calcu-
late channel-wise gate weights for each corresponding feature to utilize the spatial correlation among different distinctive 
features. Afterward, the multiple distinctive set features are aggregated into the final global point cloud representation.

3.1. Self-attentive point searching

The existing point cloud based learning approaches usually treat all points of a point cloud equally, without distinguish-
ing the point distinction that plays an essential role in distinguishing a shape from objects of a different class Shilane and 
Funkhouser (2006, 2007); Li et al. (2020). As shown in Fig. 1, the point sets in the point cloud can be roughly divided 
into the high distinctive and the low distinctive point sets. In this paper, besides the raw point cloud, we incorporate the 
high distinctive point set and the low distinctive point set to enrich the discriminative context of point clouds. With such 
incorporated contextual information, D-Net can capture the detailed point cloud structure information.

As illustrated in Fig. 3 (a), given a point cloud P = {pN
i=1} with N points, where pi ∈ R3 denotes the 3D coordinates 

(xi, yi, zi) of the i-th point. To obtain the distinction score of points, we first transform the point cloud P into two feature 
space g, h ∈RD to calculate the bilinear similarity between points, where g(P ) = W g P , h(P ) = W h P ,

β j,i = exp(si j)∑D
i=1 si j

, where si j = g(pi)
T h(p j), αi =

N∑

j=1

β j,i,

idxhigh = top
N1

(sort({αi})),

idxlow = bottom(sort({αi}))

(1)
N1

4



X. Liu, Z. Han, S. Lee et al. Computer Aided Geometric Design 104 (2023) 102206
Fig. 3. The proposed modules, including (a) self-attentive point searching module and (b) stacked self-gated convolution module.

Specifically, W g and W h are learnable parameters of Multi-Layer Perceptrons (MLPs). β j,i evaluates the bilinear simi-
larity between the i-th point pi and the j-th point p j in the feature space and αi denotes the self-attentive score of the 
i-th point pi . According to the ranking of self-attentive scores, we search out the index idxhigh of top N1 points as the 
high distinctive point set and idxlow of bottom N1 points as the low distinctive point set, respectively. With the point index 
idxhigh and idxlow , we pick out the corresponding points to establish the high distinctive point set P H and low distinctive 
point set P L . As such, the contextual information of the raw point cloud is enriched with two selected distinctive point sets. 
Note that selecting the low distinctive point set P L in this step aims to make up for the neglecting structural information 
of point clouds.

3.2. Stacked self-gated convolution

Based on the enriched distinctive point sets, we rely on a distinctive feature extracting (DFE) module with the self-gated 
CNN to extract the feature representation for each distinctive point set. The architecture of DFE module is illustrated in 
Fig. 3 (b). Following previous approaches Qi et al. (2017a); Wang et al. (2019b), we first employ a transform layer to align 
an input point set to a canonical space by applying an estimated 3 × 3 matrix. The k neighboring points are used in the 
estimation of 3 ×3 matrix. We will extract the local structures based on the transformed point set with CNN-like operations.

Self-gated Convolution. Local structure information has been proven to be important in learning the point cloud represen-
tation. In order to capture local structures, we propose one novel self-gated CNN to capture the local region context around 
each point. Similar to Qi et al. (2017b); Wang et al. (2019b), we first use k-nearest neighbor (k-NN) to build a local region 
Pr ⊂R3, with k surrounding points as its neighbors p j ∈ N (pi) of pi . Our goal is to learn an inductive representation f Pr

of this local region, which should discriminatively encode the underlying shape information.
To this end, we formulate a general convolutional operation as

f Pr
= σ(A({T (hi j),∀p j})),∀p j ∈ N (pi),

hi j = f pi
⊕ ( f p j

− f pi
),

(2)

where f is a feature vector, ⊕ is the concatenation operation and hi j is the relation description of feature vectors between 
two points. Here f Pr

is obtained by first transforming the features of all the points in N (pi) with function T , and then 
aggregating them with function A followed by a nonlinear activator σ . In this formulation, the two functions A and T
are the key to f Pr

. That is, the permutation invariance of point set can be achieved only when A is symmetric (e.g., 
max-pooling) and T is shared over each point in N (pi). As illustrated in Fig. 4, T is a MLP function, A is a max-pooling 
operation and σ is a ReLU layer. Through this convolution operation, we update the point feature f Pi

with the regional 
feature f Pr

, which contains structural information of local regions.
By stacking T self-gated convolution modules, we can obtain multiple point features { f 1

pi
, · · · , f t

pi
, · · · , f T

pi
} of pi in 

different depth of network as shown in Fig. 3 (b). In particular, we also dynamically update the graph of local regions as in 
Wang et al. (2019b). To obtain the feature representation of each distinctive point set, we first integrate these features into 
one consistent point representation. A novel self-gate is proposed to integrate these multiple point features. We formulate 
the self-gated aggregation process as
5
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Fig. 4. Self-gated convolution.

θ t
P i

= sigmoid(ML P ( f t
pi

)),

f̂
t
pi

= θ t
P i

⊗ f t
pi

,

f̂ pi
= f̂

1
pi

⊕ · · · ⊕ f̂
t
pi

⊕ · · · ⊕ f̂
T
pi

,

f = max({ f̂ pi
}),

(3)

where θ t
pi

is the product factor of the self-gate and f t
pi

is the gated point feature at t-th depth of the network. ⊗ denotes 
multiply operation and ⊕ denotes the concatenation operation. f̂ pi

is the aggregated point feature from multiple depth 
features. With a max-pooling, the corresponding feature of each distinctive point set is obtained, including the point cloud 
feature f P , the high distinctive point set feature f P H

and the low distinctive point set feature f P L
.

3.3. Learnable feature fusion

Our goal is to aggregate the obtained point cloud feature f P , the high distinctive point set feature f P H
and the low 

distinctive point set feature f P L
into a global point cloud representation. To fuse information of different distinctive point 

sets, we propose a non-linear and data-adaptive mechanism to explore the correlation among distinctive point sets. By 
applying a softmax on newly mapped descriptors, we formulate the fusion process as

ω1 = ML P ( f P ),ω2 = ML P ( f P H
),ω3 = ML P ( f P L

),

ψ1,c = exp(ω1,c)

exp(ω1,c) + exp(ω2,c) + exp(ω3,c)
,

ψ2,c = exp(ω2,c)

exp(ω1,c) + exp(ω2,c) + exp(ω3,c)
,

ψ3,c = exp(ω3,c)

exp(ω1,c) + exp(ω2,c) + exp(ω3,c)
,

(4)

where ω1, ω2, ω3 ∈ R1024 are new mapped descriptors that are transformed from channel-wise descriptors f P , f P H
and 

f P L
with different MLPs. ψ1,c , ψ2,c and ψ3,c are the fusion weights of point set features, where ψ1,c + ψ2,c + ψ3,c =

1. In particular, the symbol c indicates that the learnable feature fusion is a channel-wise operation, which enables the 
exploration of general patterns between channels.

The ultimate global point cloud feature f g can be fused by a weighted sum operation as

f g:c = ψ1,c · f P :1,c + ψ2,c · f P H :2,c + ψ1,c · f P L :1,c, (5)

where f g:c denotes the c-th channel value of f g . The learned global shape representation f g can be applied to various 
point cloud analysis applications, such as shape classification and shape part segmentation.

3.4. Training loss

In the representation learning of point clouds, we focus on capturing the discriminative point cloud features, which 
can be applied to multiple point analysis applications, including point cloud classification and shape part segmentation. 
Following the strategy of previous point cloud recognition methods, we train our approach in an end-to-end manner with 
the cross-entropy loss. For example, in the point cloud classification task, we classify the extract global feature f g into 
one of C shape classes by a softmax function layer. The softmax function outputs the classification probabilities p, such 
that each value {p(c), c ∈ [1, C]} indicates the probability under the current class. The objective function of Lce is the cross 
entropy between p and the ground-truth probability p′ ,
6
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Lce(p, p′) = −
∑

c∈[1,C]
p′(c)log p(c). (6)

Similar to point cloud classification, the shape part segmentation can be regarded as a low-level point-wise classification 
task. Therefore, we also employ the cross entropy loss in the shape part segmentation task.

4. Experiments

In this section, we arrange comprehensive experiments to validate the proposed D-Net. First, we investigate how some 
key parameters affect the performance of D-Net. And then, we evaluate D-Net in shape classification and shape part seg-
mentation, respectively. We also conducted an ablation study to evaluate the effectiveness of each proposed module under 
the shape classification benchmark. In addition, we visualize some experimental results to show the performance of our 
approach intuitively. Finally, we do a model complexity analysis to show the effectiveness of our D-Net.

Implementation Details. The number of neighboring points k in each local region is set as 20. And the number of high 
distinctive points and low distinctive points N1 is set as 320. For feature extraction, a stacked self-gated CNN at depth four 
is used, where the output of each self-gated CNN is set as 64, 64, 64, and 128, respectively. During the training, we use an 
ADAM optimizer with an initial learning rate of 0.001, a batch size of 16, and a batch normalization rate of 0.5. In addition, 
ReLU is used after each fully connected layer followed by a dropout layer with a drop ratio 0.5 in the fully connected layers.

Parameters. All the experiments in this section were evaluated on ModelNet40, which contains 40 categories and 12,311 
CAD shapes with 9,843 shapes for training and 2,468 shapes for testing, respectively. For each 3D shape, we adopt the point 
cloud with 1,024 points Qi et al. (2017a,b); Wang et al. (2019b) which are uniformly sampled from the corresponding mesh 
as input.

In the module of distinctive feature extracting, the number of neighbors k in each local region is an important parameter, 
which influences the capturing of local structures around each point. The results of several settings of k are shown in Table 3. 
The best instance accuracy 93.15% is reached at k = 20, which can better cover the context information inside local regions. 
From the results, we can see that capturing local structures plays an important role in enhancing the global representation 
learning of point clouds.

Finally, we explore the effect of the distinctive point set size N1 under ModelNet40. N1 is also an important parameter 
that influences the capturing of the structure information within distinctive point sets. Due to the variance of point clouds, 
the frequency of distinctive points and non-distinctive points are likely to be class-dependent or even shape-dependent. 
To simplify the parameter setting, we set the number of distinctive and non-distinctive points as a same value N1 . And in 
order to further explore the influence of N1, we have conducted parameter comparison in Table 4. As shown in Table 4, the 
best install accuracy is achieved at N1 = 320, which better covers the entire training data.

Shape Classification. We evaluate D-Net on ModelNet40 classification benchmark Wu et al. (2015), which is composed of 
9,843 train models and 2,468 test models in 40 classes. Same as Qi et al. (2017a,b), we sample 1,024 points and normalize 
them to a unit sphere for each point cloud.

The quantitative comparisons with the state-of-the-art point-based methods are summarized in Table 1, where D-Net 
outperforms all the xyz-input methods. On the ModelNet40 dataset, our approach performs best among the compared 
methods, reaching 93.2% in instance accuracy. We further test our method with point normals. For a fair comparison, we 
report the results of RS-CNN without voting strategy according to their paper Liu et al. (2019c). In addition, we also show 
the results of D-Net in unsupervised shape classification under the ModelNet40 benchmark. Following PointNet++ Qi et 
al. (2017b) and LGAN Achlioptas et al. (2017), we integrate feature interpolation for point upsampling and earth mover’s 
distance (EMD) as the training loss to formulate D-Net++. And we employ multi-class SVM to be the classifier as in Liu et 
al. (2019b). D-Net also achieves state-of-the-art performances in the unsupervised shape classification application.

To compare the point distinction detection performances, we revisit the public distinction detection methods and cor-
responding source code. We compare our D-Net with existing methods, including Farthest point sampling (FPS), ISS Zhong 
(2009) and UDDR Li et al. (2020) as shown in Fig. 6. Specifically, FPS is a widely applied algorithm for uniform sampling of 
point clouds, which selects points according to the point-to-point distance and ignores the point distinction. Here, we select 
32 points from each raw point cloud (1024 points). The ISS algorithm is a traditional key point detection method, which 
calculates the point distinction via the geometry distribution of points. Due to the predefined threshold value, the number 
of selected key points in ISS algorithm is unstable. And the UDDR is a learning-based distinctive region detection method, 
which learns the point distinction with a clustering-based nonparametric softmax classifier in an iterative re-clustering 
manner. Similarly, both UDDR and D-Net predict a distinction score for each point, where the warmth of the point color 
indicates the magnitude of the distinction score. From the visualization results, we can see that both UDDR and D-Net tend 
to assign higher distinction scores to edge points or sharp points. And the distribution of the distinction point is largely 
determined by the design of different strategies, such as the distinction metric and the task optimization. Overall, different 
from existing methods, our D-Net focuses more on extracting high-frequency information, such as corners or edges, to learn 
7
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Table 1
Shape classification results (%) under ModelNet40.

Methods Supervised Input #Points Acc.

PointNet Qi et al. (2017a) yes xyz 1k 89.2
PointNet++ Qi et al. (2017b) yes xyz 1k 90.7
Kd-Net(depth=10) Klokov and Lempitsky (2017) yes xyz 1k 90.6
KC-Net Shen et al. (2018) yes xyz 1k 91.0
ShapeContextNet Xie et al. (2018) yes xyz 1k 90.0
LRC-Net Liu et al. (2020) yes xyz 1k 93.1
PointCNN Li et al. (2018b) yes xyz 1k 91.7
PCNN Atzmon et al. (2018) yes xyz 1k 92.3
DGCNN Wang et al. (2019b) yes xyz 1k 92.9
Point2Sequence Liu et al. (2019a) yes xyz 1k 92.6
A-CNN Komarichev et al. (2019) yes xyz 1k 92.6
RS-CNN Liu et al. (2019c) yes xyz 1k 92.9
SO-Net Li et al. (2018a) yes xyz 2k 90.9
Kd-Net(depth=15) Klokov and Lempitsky (2017) yes xyz 32k 91.8
CP-Net Nezhadarya et al. (2020) yes xyz 1k 92.4
Grid-GCN Xu et al. (2020) yes xyz 16k 93.1
PACov Xu et al. (2021) yes xyz 1k 93.6
PointASNL Yan et al. (2020) yes xyz 1k 93.2
PointTransformer Zhao et al. (2021) yes xyz 1k 93.7
O-CNN Wang et al. (2017) yes xyz+nor. - 90.6
Spec-GCN Wang et al. (2018a) yes xyz+nor. 10k 91.8
PointNet++ Qi et al. (2017b) yes xyz+nor. 5k 91.9
SpiderCNN Xu et al. (2018) yes xyz+nor. 5k 92.4
D-Net(Ours) yes xyz 1k 93.2
D-Net(Ours) yes xyz+nor. 1k 93.3

LGAN Achlioptas et al. (2017) no xyz 2k 85.7
FoldingNet Yang et al. (2018) no xyz 2k 88.4
MAP-VAE Han et al. (2019) no xyz 2k 90.2
UDDR Li et al. (2020) no xyz 1k 88.1
L2G-AE Liu et al. (2019b) no xyz 1k 90.6
D-Net++(Ours) no xyz 1k 90.9

discriminative point cloud representations. And the experimental results have proved the effectiveness of our strategy to 
explore the point distinction in the feature space.

Shape Part Segmentation. Part segmentation is a challenging point cloud analysis task, which predicts a semantic part label 
for each input point. We evaluate D-Net in shape part segmentation on ShapeNet part benchmark Yi et al. (2016). This 
dataset consists of 16,881 models from 16 shape categories and is labeled in 50 part classes in total. We follow Qi et al. 
(2017a) to split shapes into the training set and test set with 2,048 points for each point cloud. For comparison, we report 
the mean instance IoU (Intersection-over-Union) that is averaged across all instance point clouds.

Table 2 shows the quantitative comparisons with the state-of-the-art approaches, where D-Net achieves the best per-
formance with an instance mIoU of 86.2%. We resort to FPS to select points from the raw point cloud, where Farthest 
Point Sampling (FPS) can better capture the underlying shape for point clouds in part segmentation. The results of different 
settings are shown in Table 2, including input with xyz only (xyz), with xyz and normal (xyz,nor.), and using self-attentive 
point searching (sps). To qualitatively show the performance of D-Net, we also visualize some examples of prediction results, 
where our results are high consistency with the ground-truth as shown in Fig. 5.

Ablation Study. To quantitatively evaluate the effect of proposed modules, we show the performances of D-Net under three 
settings: without self-attentive point searching module (NoSPS), without self-gate in the convolution module (NoSG), and 
without learnable feature fusion module (NoLFF). Specifically, in NoSPS, we utilize FPS (FPS) and random sampling (RS) to 
replace the self-attentive point searching. And in the NoLFF, we replace the learnable gate with max-pooling (Max), mean 
pooling (Mean), or simple concatenation (SC). In addition, we also show the result of D-Net with all proposed modules 
(ALL). As shown in Table 5, we report the results of D-Net with the above settings. Each module effectively learns the 
discriminative point cloud representation, which distinguishes a shape from other classes. And to explore the geodesic 
distance in searching the distinctive points, we also show the results of extracting local features with geodesic distances 
(Geo). To calculate the geodesic distance between points, we directly apply the Isomap Tenenbaum et al. (2000) with the 
Python implementation for approximating the geodesic distance between points. Thus, we adopt point geodesic distances to 
search neighbor points for extracting point features from local regions. Due to the limitation of approximation accuracy and 
large computational complexity, the geodesic distance is not performing well in the point cloud classification. In addition, 
we also report the distinction detection results under the usage of point geodesic distance.

To explore the effect of the distinctive point set, we adjust the used distinctive point set as shown in Table 6. Specifically, 
we report several results, including raw point cloud only (P R ), raw point cloud and high distinctive point set (P R + P H ), 
8
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mot. mug pis. roc. ska. tab.

202 184 283 66 152 5271

65.2 93.0 81.2 57.9 72.8 80.6

57.4 86.7 78.1 51.8 69.9 80.3

69.2 93.8 82.5 62.9 74.4 80.8

69.2 94.4 81.6 60.1 75.2 81.3

67.8 93.3 82.6 59.7 75.5 82.0

69.1 94.2 80.9 53.1 72.9 83.0

75.3 94.9 82.5 67.8 77.5 83.3

73.7 94.1 83.4 60.5 77.7 83.6

71.6 94.1 81.3 58.7 76.4 82.6

77.2 95.3 84.2 64.2 80.0 83.0

70.8 94.6 79.3 58.1 75.2 82.8

71.4 93.8 79.4 51.7 75.5 82.6

71.6 95.1 80.9 58.9 75.3 83.4

72.7 95.9 82.4 58.2 76.6 83.4

74.9 95.7 83.5 59.4 78.8 83.2

9

Table 2
The shape segmentation results (%) on ShapeNet part segmentation dataset.

Methods Mean IoU Intersection over Union (IoU)

air. bag cap car cha. ear. gui. kni. lam. lap.

# SHAPES 2690 76 55 898 3758 69 787 392 1547 451

PointNet Qi et al. (2017a) 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3

Kd-Net Klokov and Lempitsky (2017) 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9

ShapeContextNet Xie et al. (2018) 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0

KCNet Shen et al. (2018) 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5

DGCNN Wang et al. (2019b) 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0

SO-Net Li et al. (2018a) 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8

A-CNN Komarichev et al. (2019) 86.1 84.2 84.0 88.0 79.6 91.3 75.2 91.6 87.1 85.5 95.4

RS-CNN Liu et al. (2019c) 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0

PointNet++ Qi et al. (2017b) 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3

PointCNN Li et al. (2018b) 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1

Point2Sequence Liu et al. (2019a) 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7

LRC-Net Liu et al. (2020) 85.3 82.6 85.2 87.4 79.0 90.7 80.2 91.3 86.9 84.5 95.5

D-Net(sps) 85.7 83.8 81.0 86.9 78.4 91.1 74.7 91.6 87.1 84.4 95.7

D-Net(xyz) 86.0 84.5 83.1 85.2 78.9 91.0 81.9 91.5 86.7 85.0 95.9

D-Net(xyz+nor.) 86.2 84.4 83.7 90.4 79.4 91.3 80.5 91.8 86.9 85.6 96.0
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Table 3
The effect of the number of neighbors k under ModelNet40.

k 5 10 15 20 25 30

Instance acc. (%) 91.94 92.54 92.75 93.15 93.07 92.75

Table 4
The effect of distinctive point set size N1 under ModelNet40.

N1 384 320 256 192 128

Instance acc. (%) 92.83 93.15 92.63 92.79 92.34

Table 5
The ablation study under ModelNet40.

Metric Geo FPS RS NoSG Max Mean SC ALL

Acc. 92.78 92.71 92.79 91.08 92.34 92.63 92.63 93.15

Fig. 5. The visualization of shape part segmentation. For each pair of 3D shapes, the left one indicates the ground-truth shape segmentation, and the right 
one is the predicted shape segmentation. In each shape, each color denotes a specific semantic part label.

Table 6
The effect of used point sets under ModelNet40.

Metric P R P R + P H P H P H + P L ALL

Instance acc. (%) 92.34 92.54 90.7 92.1 93.15

high distinctive point set only (P H ), high distinctive point set, low distinctive point set (P H + P L ), and all distinctive point 
sets (P R + P H + P L, ALL).

Visualization Analysis. In D-Net, there are some important visualization results that should be shown, including distinctive 
point clouds and learnable feature fusion weights. In Fig. 7, we show some examples of the distinctive point clouds, where 
the self-attentive point searching captures a distinction score for each point. In addition, we also show the learnable feature 
fusion weights in Fig. 8, where the first row is the raw point cloud and corresponding fusion weights. In particular, we 
resize each 1024-dimensional weight vector into 32 × 32 matrix for visualization. Similar to the first row, the second row 
represents the high distinctive point sets, and the third row represents low distinctive point sets. And we have marked 
several similar areas with red boxes in the weight matrixes. For two airplanes from the same class in ModelNet40, the 
weight matrix shows the consistency between the same class and the difference between different classes.

To further evaluate our D-Net in terms of effectively learning distinctive points, we show the visualization of some 
distinctive point clouds from ISDB Gal et al. (2007). ISDB is a database of different articulated models of animals and 
humans containing about 104 models. We sample 1,024 points from each mesh shape with Poisson Disk Sampling Corsini et 
al. (2012) and directly process these points with a network trained under ModelNet40. In Fig. 9, we visualize the distinctive 
point clouds of horses, dogs, and lions. The visualization results suggest that our method can learn shapes with different 
poses with high consistency within the same class, such as horse and dog. In addition, the distinction distribution of shapes 
under ModelNet40 also shows high consistency, as shown in Fig. 10.
10
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Fig. 6. The comparisons with existing methods on distinction detection.

Fig. 7. The visualization of point distinction under ModelNet40.

In D-Net, we propose a self-attentive point searching module to capture an important score for each point. As shown in 
the experiments, the distinction distribution of points tends to be consistent within a class. To further reveal the consistency 
of the learned features, we draw the feature distribution as shown in Fig. 11. The horizontal axis represents the feature 
channel (1,024-dimensional), and the vertical axis represents the feature value of each channel, such as airplanes and beds. 
From the visualization, we can know that the learned features from the same class have a close feature distribution and 
high feature consistency. Otherwise, the learned features from different classes have low feature consistency.
11
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Fig. 8. The visualization of feature fusion weights.

Fig. 9. Consistent distinction distribution under ISDB Gal et al. (2007).

5. Model complexity

In addition, to show the network complexity of D-Net intuitively, we make statistics of model size and computational cost 
of some point cloud based methods. We follow PointNet++ to evaluate the time and space cost of several point cloud based 
methods as shown in Table 7. We record forward time under the same conditions with a batch size 8 using TensorFlow 
1.0 using a single GTX 1080 Ti. Table 7 shows D-Net can achieve a trade-off between the model complexity (number of 
parameters) and computational complexity (forward pass time). For a fair comparison, we report the model complexity of 
PointNet++ Qi et al. (2017b) and DGCNN Wang et al. (2019b), which are the basis of our D-Net. In addition, we also show 
the complexity of some recent works including PointCNN Li et al. (2018b) and LRC-Net Liu et al. (2020).

6. Conclusion

In this paper, D-Net (Distinctive Network) is proposed to capture the distinction of points for global feature learning in 
point cloud analysis tasks. The core of D-Net is point importance capturing, which successfully learns a distinction score 
12
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Fig. 10. Shape consistency under ModelNet40.

Fig. 11. The visualization of feature consistency. The first row contains four 3D point clouds, including two airplanes and two beds. And the second row 
indicates the corresponding learned feature distribution of corresponding point clouds, where each feature is extracted by D-Net under ModelNet40. To 
show the consistency between the learned features, we show the overlapping of different feature distributions in the last row, where different features are 
mixed as shown by arrows.

for each point with self-attentive point searching. With multiple distinctive point sets, the proposed stacked self-gated 
convolution module can effectively extract distinctive set features. In addition, our learnable feature fusion mechanism 
effectively aggregates distinctive point set features into a global point cloud representation. Our superior over other methods 
in experiments demonstrates that D-Net is effective in the learning of distinction for points, which can be further leveraged 
for better point cloud analysis.
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Table 7
Complexity, forward time, and accuracy of different models under ModelNet40.

Method Model size (MB) Time (ms) Accuracy (%)

PointNet (vanilla) Qi et al. (2017a) 9.4 6.8 87.1

PointNet Qi et al. (2017a) 40 16.6 89.2

PointNet++ (SSG) Qi et al. (2017b) 8.7 82.4 -

PointNet++ (MSG) Qi et al. (2017b) 12 163.2 90.7

LRC-Net Liu et al. (2020) 18 115.8 93.1

DGCNN Wang et al. (2019b) 21 27.2 92.9

PointCNN Li et al. (2018b) 94 117.0 92.3

D-Net (ours) 28.8 85.8 93.2
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