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Abstract

Surface reconstruction from point clouds is vital for 3D
computer vision. State-of-the-art methods leverage large
datasets to first learn local context priors that are repre-
sented as neural network-based signed distance functions
(SDFs) with some parameters encoding the local contexts.
To reconstruct a surface at a specific query location at in-
ference time, these methods then match the local recon-
struction target by searching for the best match in the lo-
cal prior space (by optimizing the parameters encoding the
local context) at the given query location. However, this re-
quires the local context prior to generalize to a wide variety
of unseen target regions, which is hard to achieve. To re-
solve this issue, we introduce Predictive Context Priors by
learning Predictive Queries for each specific point cloud at
inference time. Specifically, we first train a local context
prior using a large point cloud dataset similar to previous
techniques. For surface reconstruction at inference time,
however, we specialize the local context prior into our Pre-
dictive Context Prior by learning Predictive Queries, which
predict adjusted spatial query locations as displacements
of the original locations. This leads to a global SDF that
fits the specific point cloud the best. Intuitively, the query
prediction enables us to flexibly search the learned local
context prior over the entire prior space, rather than being
restricted to the fixed query locations, and this improves the
generalizability. Our method does not require ground truth
signed distances, normals, or any additional procedure of
signed distance fusion across overlapping regions. Our
experimental results in surface reconstruction for single
shapes or complex scenes show significant improvements
over the state-of-the-art under widely used benchmark-

∗The corresponding author is Yu-Shen Liu. This work was sup-
ported by National Key R&D Program of China (2018YFB0505400,
2020YFF0304100), the National Natural Science Foundation of China
(62072268), the National Natural Science Foundation (1813583) and in
part by Tsinghua-Kuaishou Institute of Future Media Data.

s. Code and data are available at https://github.
com/mabaorui/PredictableContextPrior.

1. Introduction
Surface reconstruction from 3D point clouds estimates

continuous surfaces from 3D point clouds that can be cap-
tured by various 3D sensors. This is still a challenge even
with the help of state-of-the-art deep learning models. A s-
tandard strategy [1,14,19] is to first learn a Signed Distance
Function (SDF) from a point cloud [1, 19] or from ground
truth signed distances [14] using a neural network, and then
reconstruct a surface based on the learned SDF via march-
ing cubes [47]. If the SDF is trained to capture a global
shape prior from a global 3D shape, however, it is hard to
capture local geometry details.

As a remedy, state-of-the-art methods learn local SDFs
from local regions [7, 37, 73]. The global shape is usually
split into overlapping [37, 73] or non-overlapping [7] part-
s, and the local region prior is learned as a local SDF that
is represented by a neural network with some parameters
encoding the geometry of local regions. The intuition be-
hind this idea is that the local region prior will generalize
to various unseen local reconstruction targets, and for sur-
face reconstruction at inference time, its parameters can be
optimized to match the reconstruction target at specific lo-
cations. However, the matching requires the learned local
region prior to cover as many specific locations on target
regions as possible, which dramatically limits the general-
ization ability of the learned local prior.

To resolve this issue, we propose to learn SDFs as a Pre-
dictive Context Prior for highly accurate surface reconstruc-
tion from point clouds, as shown in Fig. 1. Specifically, we
first train a neural network to represent local SDFs of local
regions across a large dataset of point clouds. This aims
to capture a local context prior in a local coordinate sys-
tem, similar as in previous work. Our main contribution is
that during surface reconstruction at inference time, we spe-
cialize the pre-trained local context prior into a Predictive
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Figure 1. We reconstruct highly accurate surfaces from 300K
points. Front views of each shape are shown with normal map-
s. The comparison with Poisson is in supplemental materials.
Context Prior for a specific point cloud by learning Predic-
tive Queries. More concretely, Predictive Queries learn to
predict query locations for the pre-trained local SDF from
queries given in the global coordinate system of the specific
point cloud. This is achieved by sampling a set of queries in
the global coordinate system, and learning to predict queries
for the local SDF to minimize surface reconstruction error.

Intuitively, learning to predict query locations for the lo-
cal SDF allows us to more flexibly match the learned local
context prior to best fit the given point cloud during surface
reconstruction. This further leads to a global SDF for the
specific point cloud. Our method does not require ground
truth signed distances, normals in the training, or any addi-
tional post processing. Our contributions are as follows:

i) We introduce a neural network architecture using Pre-
dictive Context Priors to learn SDFs for surface recon-
struction from point clouds. Predictive Context Priors
are implemented by learning Predictive Queries.

ii) We demonstrate that Predictive Queries allow us to im-
prove generalizability of a pre-trained local context pri-
or, which improves reconstruction accuracy.

iii) We report state-of-the-art results in surface reconstruc-
tion for single shapes or complex scenes under widely
used benchmarks.

2. Related Work
Surface reconstruction has been studied for decades.

Classic methods [5,39,47] do not leverage any prior learned
from large scale datasets. With the development of deep
learning, data driven strategies [9, 21–28, 33, 35, 38, 41, 45,
51,53–55,58,63,64,75–78,81,87] can learn effective priors
from datasets to improve the surface reconstruction accura-
cy. We will focus on reviewing the studies of deep learning
based methods.
Deep Learning based Surface Reconstruction. The state-
of-the-art methods mainly represent the reconstruction tar-
get as an implicit function [10,13,18,24,38,51,56,58,62,67,
70,73], due to advantages of SDFs or occupancy fields over
other representations in representing high resolution shapes
with arbitrary topology. To reveal more detailed geome-
try, one strategy is to leverage more latent codes [50, 69]

to capture local shape priors as SDFs [7, 37, 46]. This re-
quires to split the point cloud into different voxels, and then
represent the points in each voxel as a latent code that is
either extracted by a neural network [37, 46] or learned in
an auto-decoding manner [7, 37]. These methods need nor-
mals for each point to produce signed distances as super-
vision in the optimization. Given the ground truth signed
distances, Points2Surf [14] encodes points sampled in a lo-
cal patch and on the whole point cloud as a shape prior,
while DeepMLS [44] learns to produce oriented points to
approximate SDFs. Similarly, PatchNet [73] learns local
SDFs to represent patches with explicit control over posi-
tions, orientations, and scales. Neural-pull [49] introduced
a new way of learning SDFs by pulling nearby space onto
the surface, which is achieved by predicting the SDFs and
its gradient using the network. This removes the require-
ment of ground truth normals or signed distances. A similar
idea is introduced to learn unsigned distances [11], but re-
quires to move dense sampling with additional directions to
form the surface. Moreover, other novel ways for surface
reconstruction have been proposed, such as a differentiable
formulation of Poisson solver [59], point convolution [6]
and part retrieval [66].

Other information is also leveraged to learn implicit
functions [52, 68, 83]. Occupancy is used to capture a prior
at a global level [36,68] or a local level [52]. Iso-points [83]
tried to impose geometry-aware sampling and regulariza-
tion in the learning. Moreover, implicit functions can al-
so be learned from point clouds with additional constraints,
such as geometric regularization [19], sign agnostic learn-
ing with a specially designed loss function [1], sign agnos-
tic learning with local surface self-similarities and post sign
processing [71, 85], constraints on gradients [2] or a diver-
gence penalty [4].

From a meshing perspective, surfaces can also be re-
constructed by generating local connectivity with intrinsic-
extrinsic metrics [43], Delaunay triangulation of point
clouds [48] or inheriting connectivity from an initial
mesh [30]. With local chart parameterizations in neural net-
works, a local point cloud is reconstructed via fitting us-
ing the Wasserstein distance as a measure of approxima-
tion [79].
Deep Shape Prior. Beside the priors reviewed above, shape
priors can also be captured by parameters in neural network-
s in shape reconstruction [3,16,20,21,25,28,34,65,74,82],
segmentation [45,60,61], and completion [32,33,76,80,84].
Deep manifold prior [17] was introduced to reconstruct 3D
shapes starting from random initializations.

3. Method
Overview. We provide an overview of our method in Fig. 2.
We aim to reconstruct a surface mesh for a 3D point cloud
G. Our method consists of the following three stages.
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Figure 2. Overview of our method.
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Figure 3. We learn local context prior from each local region ti
as a local SDF F in (a). We learn a predictive context prior to
reconstruct G by predicting queries q′l associated with conditions
f ′l for F in (b).

1. During training, we start by learning a local context prior
as a local SDF F by training a neural implicit network under
a local region set T = {ti, i ∈ [1, I]}. As shown in Fig. 3
(a), the neural implicit network learns F as a mapping from
a query point ql with its corresponding condition fl to a
signed distance s in a local coordinate system.
2. For surface reconstruction at test time, we specialize the
local context prior into a predictive context prior for a spe-
cific point cloudG by learning predictive queries. The pre-
dictive context prior leads to a global SDF Fg to fit the point
cloudG. Specifically, the learned local context prior is rep-
resented by the fixed parameters in the neural implicit net-
work, as shown in Fig. 3 (b). We train an additional neural
query network to predict queries q′l and their conditions f ′l
to explore the learned local context prior, which significant-
ly improves the generalization ability of the learned local
prior by enabling us to flexibly search the whole learned
prior space.
3. Finally, we leverage the global SDF Fg to reconstruct the
surface ofG using the marching cubes algorithm [47].
Local Context Prior. During training shown in Fig. 3 (a),
we learn a local context prior from local point clouds ti ∈ T
as a local SDF F in a local coordinate system. We learn the
context around each point of ti using a neural implicit net-
work. For a local point cloud ti, we normalize all points of
ti by centering them to the origin, and then linearly scaling
them to fit the longest edge of the bounding box of ti into
a range of [−0.5, 0.5]. This normalization makes the local
context on different ti comparable to each other.

We leverage PointNet [60] to extract the feature fl of
each local region ti. fl is regarded as a condition of any
query point ql sampled near ti when training the neural im-

plicit network as a local SDF F , such that the signed dis-
tance s at the location of ql is,

s = F (ql,fl). (1)

To remove the requirement of ground truth signed dis-
tance values or normals in training, we minimize a pulling
cost introduced in Neural-pull [49] to train the local SDF F .
We simultaneously optimize the parameters of θ1 in Point-
Net and θ2 in the neural implicit network. The intuition
of the pulling cost is to pull a query ql using the predicted
signed distance s to its nearest neighbor nn(ql) on region ti
along the direction of the gradient∇s = ∂F/∂ql at ql. Our
objective function during training is to minimize the pulling
cost C1

Pull, where nn(ql) ∈ ti,

min
θ1,θ2

‖nn(ql)− (ql − s×∇s/‖∇s‖2)‖2. (2)

Predictive Context Prior. For surface reconstruction at test
time, we first specialize the learned local context prior into a
predictive context prior for a specific point cloud G. Point
cloud G is located in a global coordinate system without
normalization. We train an additional neural query network
with parameters of θ3 specially for G, where we keep the
neural network parameters θ2 representing the learned lo-
cal context prior fixed. This leads to a global SDF Fg that
captures the predictive context prior which we use to recon-
struct the surface ofG.

The neural query network learns to generate predictive
queries, that is, to transform a query point qg around G in
a global coordinate system into a point q′l in the local coor-
dinate system that the learned local context prior covers. In
addition, the neural query network also predicts the condi-
tion f ′l of predictive query q′l. Here, we are inspired by the
idea of ResNet [31], and predict the shift ∆q from qg to q′l,

q′l = qg + ∆q. (3)

The intuition behind the neural query network is to train
a network specific to point cloud G that is able to manip-
ulate the queries for the learned local context prior. This
prediction is equivalent to flexibly searching for correct in-
formation from the learned local SDF F , and then combin-
ing them together to fit the point cloud G. This leads to a
global SDF Fg that predicts the signed distance s′ at a query
location of qg with a condition ofG,

s′ = Fg(qg,G) = F (q′l,f
′
l ). (4)

Similar to Eq. (2) in training, we further optimize the pa-
rameters θ3 of the neural query network to pull the query
qg in the global coordinate system to its nearest neighbor
nn(qg) on point cloud G. We leverage the learned local
SDF to produce the gradient, ∇s′ = ∂F/∂q′l. So, our ob-
jective function during testing is to minimize a pulling cost
C2

Pull below, where nn(qg) ∈ G,
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Figure 4. Current methods can merely search similar regions at a
specific location q′l in the learned prior space by optimizing con-
dition f ′l . While we can search over the whole prior space by
simultaneously optimizing q′l and f ′l .

min
θ3

‖nn(qg)− (qg − s′ ×∇s′/‖∇s′‖2)‖2. (5)

Reconstruction. After we learn parameters θ3 in the neural
query network using Eq. (5), we keep θ3 and the parameters
θ2 in the neural implicit network fixed to produce the global
SDF Fg for point cloudG, which is then used to reconstruct
the surface using marching cubes [47].
Optimization. We conduct the optimization of E-
q. (2)(training) and Eq. (5)(inference) using a similar pro-
cedure. For each point p on ti or G, we randomly sam-
ple 40 queries ql around p. Due to the difference numbers
of points on each local region ti ∈ T, we randomly se-
lect 2000 ql around ti, and regard their nearest neighbors
{nn(ql)} on ti as the input to PointNet in each training
epoch, where the randomness makes the local context pri-
or more robust to noise. We perform this optimization in
an overfitting manner, either on each single G or multiple
point clouds with one-hot vectors as the condition of each
qg .
Intuition and Advantages. The intuition of our predictive
context prior is to leverage information at different location-
s queried from the learned prior in local SDF F to form a
global SDF Fg , which significantly improves the general-
ization ability of the learned local context prior.

A widely used strategy to explore the local context prior
is to use an autodecoder [25, 37, 58], as shown in Fig. 4 (a).
The autoencoder aims to optimize a learnable condition f ′l
for a fixed location q′l to minimize the signed distance error
compared to the ground truth s. This optimization is equiv-
alent to finding a local region whose feature is f ′l with a
nearest distance to the location q′l as s in the space covered
by the learned local context prior. Since the specific loca-
tion q′l is fixed, the performance is only guaranteed when a
qualified local region represented by f ′l has been seen dur-
ing the learning of the local context prior, which is hard to
generalize for various unseen regions during test.

Differently, without requiring the ground truth signed
distances, our method aims to find a similar way of pulling

y

x

(c)(b)(a)

q
g

q
l' ∆

'
s

-s
/|
  
 |∆s 2

'

'

Figure 5. Demonstration of predicted queries q′l (c) from queries
qg (b). Optimization is visualized in our video supplementary.

a location q′l to a local region represented by f ′l , where the
pulling is implemented by a signed distance prediction s′

and its gradient ∇s′. As shown in Fig. 4 (b), rather than
searching (optimizing f ′l ) at a fixed location q′l like an au-
todecoder, our neural query network can adjust query loca-
tions, which makes it possible to search a similar pulling
way across the whole space covered by the learned local
context prior.

Obviously, our advantage is the ability of transforming
the searching at a specific location into anywhere across the
learned context prior. This advantage not only significantly
improves the generalization ability of the learned prior, but
also dramatically reduces the requirement of the local re-
gions used to learn the local context prior, since it is easy to
observe various ways of pulling points to the surface around
arbitrary local regions during training.

We further demonstrate our advantages in a 2D case. We
aim to estimate an SDF Fg of a yellow square in Fig. 5 (a)
from an SDF F learned from a black circle in Fig. 5 (a) dur-
ing training. During testing, we sample query points qg in
the space occupied by the yellow square, as shown by the
dense points in color in Fig. 5 (b). After the optimization us-
ing Eq. (5), we visualize the predicted queries q′l obtained
from Eq. (3) in Fig. 5 (c), where the color of each q′l is the
same as the corresponding qg . The color correspondence
demonstrates that the q′l appearing on the radius with an an-
gle of 45◦ to the x-axis can provide the expected s′ and∇s′
to get the corresponding qg pulled on the square, i.e., the
appropriate signed distances s′ and gradients ∇s′ with 45◦

to the x-axis (shown by black arrows in Fig. 5 (a) and yel-
low arrows in Fig. 5 (b)), since q′l gets pulled to the circle
using the same s′ and ∇s′, while the q′l appearing on the
circle correspond to qg on the square, both of which have 0
signed distances. This example shows that our method can
flexibly search over the whole learned local context prior
and easily find the correct prior information. This signifi-
cantly increases our generalization ability.

4. Experiments, Analysis, and Discussion

4.1. Setup

Implementation details. To predict a signed distance val-
ue s, we use an OccNet [51] without activation functions in
the last layer. The condition f ′l or fl is 512 dimensional.
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The neural query network is a feed-forward network with 8
layers, where each one of the first 7 layers has 512 nodes
with ReLU activation functions while the last layer has 515
nodes with linear activation functions to predict the 512 di-
mensional condition f ′l and 3 dimensional query q′l.

We separate each 3D shape or scene in the training set
under each benchmark into a 63 grid according to its bound-
ing box, where the points located in each grid form a local
region ti in T. In addition, we use the same method as
Neural-pull [49] to sample 40 queries ql or qg around each
point p on ti orG, respectively, where a Gaussian function
N (p, σ2) is used to calculate the sampling probability, and
σ2 is the 50-th nearest neighbor of p on ti orG.
Dataset. In surface reconstruction for 3D shapes, we eval-
uate our method under three datasets including ABC [40],
FAMOUS [14], and a subset of ShapeNet [8]. In surface
reconstruction for scenes, we report our results under two
datasets including 3D Scene [86] and SceneNet [29]. Un-
der ShapeNet and ABC, we leverage marching cubes on a
1283 grid to reconstruct meshes, while using a 5123 grid
under FAMOUS, 3D Scene and SceneNet.
Metrics. Under the ABC and FAMOUS datasets, we ran-
domly sample 1 × 104 points on the reconstructed mesh to
compare with the input point clouds using L2-CD which
keeps the same as the setting in Points2Surf [14]. We
also follow MeshingPoint [43] to report our results un-
der ShapeNet [8] in terms of L1-CD, Normal Consistency
(NC) [51], and F-score [72] to evaluate the reconstruction
performance, where we evaluate the distance between the
1 × 105 points sampled on the reconstructed shape and the
1 × 105 ground truth points released by OccNet [51]. The
threshold µ in F-score calculation is 0.002 which is the same
as MeshingPoint [43] and Neural-pull [49].

Under the 3D Scene [86] dataset, we follow DeepLS [7]
to report the error between reconstructed meshes and the
ground truth mesh. The error with a unit of mm is the av-
erage distance from each reconstructed vertex to its nearest
triangle on the ground truth mesh. We also produce L1-CD,
L2-CD, and normal consistency to compare with others.

Under the SceneNet [29] dataset, we follow LIG [37]
to report L1-CD, Normal Consistency (NC) [51], and F-
score [72] under different sampling densities on the recon-
structed meshes, such as 20, 100, 500 and 1000 points per
m2, where the threshold µs in F-score calculation is 0.025
m which is the same as LIG [37].

4.2. Surface Reconstruction for Single Shapes

Evaluation under ShapeNet. We first report our numer-
ical comparison under the ShapeNet subset by comparing
with the non data-driven and the latest data-driven meth-
ods in terms of L2-CD in Tab. 1, normal consistency in
Tab. 2, and F-score with a threshold of µ in Tab. 3, and
2µ in Tab. 4. The compared methods include Poisson Sur-

Class PSR DMC BPA ATLAS DMC DSDF DGP MeshP NUD SALD NP Ours
Display 0.273 0.269 0.093 1.094 0.662 0.317 0.293 0.069 0.077 - 0.039 0.0087
Lamp 0.227 0.244 0.060 1.988 3.377 0.955 0.167 0.053 0.075 0.071 0.080 0.0380

Airplane 0.217 0.171 0.059 1.011 2.205 1.043 0.200 0.049 0.076 0.054 0.008 0.0065
Cabinet 0.363 0.373 0.292 1.661 0.766 0.921 0.237 0.112 0.041 - 0.026 0.0153
Vessel 0.254 0.228 0.078 0.997 2.487 1.254 0.199 0.061 0.079 - 0.022 0.0079
Table 0.383 0.375 0.120 1.311 1.128 0.660 0.333 0.076 0.067 0.066 0.060 0.0131
Chair 0.293 0.283 0.099 1.575 1.047 0.483 0.219 0.071 0.063 0.061 0.054 0.0110
Sofa 0.276 0.266 0.124 1.307 0.763 0.496 0.174 0.080 0.071 0.058 0.012 0.0086
Mean 0.286 0.276 0.116 1.368 1.554 0.766 0.228 0.071 0.069 0.062 0.038 0.0136

Table 1. L2-CD (×100) comparison under ShapeNet.
Class PSR DMC BPA ATLAS DMC DSDF MeshP LIG IMNET NP Ours

Display 0.889 0.842 0.952 0.828 0.882 0.932 0.974 0.926 0.574 0.964 0.9775
Lamp 0.876 0.872 0.951 0.593 0.725 0.864 0.963 0.882 0.592 0.930 0.9450

Airplane 0.848 0.835 0.926 0.737 0.716 0.872 0.955 0.817 0.550 0.947 0.9490
Cabinet 0.880 0.827 0.836 0.682 0.845 0.872 0.957 0.948 0.700 0.930 0.9600
Vessel 0.861 0.831 0.917 0.671 0.706 0.841 0.953 0.847 0.574 0.941 0.9546
Table 0.833 0.809 0.919 0.783 0.831 0.901 0.962 0.936 0.702 0.908 0.9595
Chair 0.850 0.818 0.938 0.638 0.794 0.886 0.962 0.920 0.820 0.937 0.9580
Sofa 0.892 0.851 0.940 0.633 0.850 0.906 0.971 0.944 0.818 0.951 0.9680
Mean 0.866 0.836 0.923 0.695 0.794 0.884 0.962 0.903 0.666 0.939 0.9590

Table 2. Normal consistency comparison under ShapeNet.
Class PSR DMC BPA ATLAS DMC DSDF DGP MeshP NUD LIG IMNET NP Ours

Display 0.468 0.495 0.834 0.071 0.108 0.632 0.417 0.903 0.903 0.551 0.601 0.989 0.9939
Lamp 0.455 0.518 0.826 0.029 0.047 0.268 0.405 0.855 0.888 0.624 0.836 0.891 0.9382

Airplane 0.415 0.442 0.788 0.070 0.050 0.350 0.249 0.844 0.872 0.564 0.698 0.996 0.9942
Cabinet 0.392 0.392 0.553 0.077 0.154 0.573 0.513 0.860 0.950 0.733 0.343 0.980 0.9888
Vessel 0.415 0.466 0.789 0.058 0.055 0.323 0.387 0.862 0.883 0.467 0.147 0.985 0.9935
Table 0.233 0.287 0.772 0.080 0.095 0.577 0.307 0.880 0.908 0.844 0.425 0.922 0.9969
Chair 0.382 0.433 0.802 0.050 0.088 0.447 0.481 0.875 0.913 0.710 0.181 0.954 0.9970
Sofa 0.499 0.535 0.786 0.058 0.129 0.577 0.638 0.895 0.945 0.822 0.199 0.968 0.9943
Mean 0.407 0.446 0.769 0.062 0.091 0.468 0.425 0.872 0.908 0.664 0.429 0.961 0.9871

Table 3. F-score(µ) comparison under ShapeNet.
Class PSR DMC BPA ATLAS DMC DSDF DGP MeshP NUD NP Ours

Display 0.666 0.669 0.929 0.179 0.246 0.787 0.607 0.975 0.944 0.991 0.9958
Lamp 0.648 0.681 0.934 0.077 0.113 0.478 0.662 0.951 0.945 0.924 0.9402

Airplane 0.619 0.639 0.914 0.179 0.289 0.566 0.515 0.946 0.944 0.997 0.9972
Cabinet 0.598 0.591 0.706 0.195 0.128 0.694 0.738 0.946 0.980 0.989 0.9939
Vessel 0.633 0.647 0.906 0.153 0.120 0.509 0.648 0.956 0.945 0.990 0.9958
Table 0.442 0.462 0.886 0.195 0.221 0.743 0.494 0.963 0.922 0.973 0.9985
Chair 0.617 0.615 0.913 0.134 0.345 0.665 0.693 0.964 0.954 0.969 0.9991
Sofa 0.725 0.708 0.895 0.153 0.208 0.734 0.834 0.972 0.968 0.974 0.9987
Mean 0.618 0.626 0.885 0.158 0.209 0.647 0.649 0.959 0.950 0.976 0.9899

Table 4. F-score(2µ) comparison under ShapeNet.
face Reconstruction (PSR) [39], Ball-Pivoting algorithm
(BPA) [5], AtlasNet (ATLAS) [20], Deep Geometric Pri-
or (DGP) [79], Deep Marching Cube (DMC) [42], DeepS-
DF (DSDF) [58], MeshP [43], Neural Unsigned Distance
(NUD) [11], SALD [2], Local Implicit Grid (LIG) [37], IM-
NET [10], and Neural-Pull(NP) [49].

The reconstruction accuracy in Tab. 1 demonstrates that
our method reveals the most accurate surface from point
clouds even under some challenging classes, such as Lamp,
Chair, and Table. Although we achieve comparable normal
consistency to MeshP in Tab. 2, we do not require dense
and clean point clouds as MeshP. In addition, our method
outperforms all implicit function based methods including
DSDF [58], NUD [11], SALD [2], LIG [37], IMNET [10],
NP [49] in Tab. 1 and 2, which justifies our ability of lever-
aging prior information in a more effective way.

Moreover, we also compare with other methods which
reported a reconstruction accuracy over the subset under
ShapeNet in terms of L1-CD in Tab. 5. These methods in-
clude 3DR2 [12], PSGN [15], DMC [42], Occupancy Net-
work (OccNet) [51], SSRNet [52], DDT [48], and NP [49].
We also report our accuracy under each involved class at the
bottom of the Tab. 5. This comparison further demonstrates
our ability to reconstruct surfaces at high accuracy.

We visually compare with P2S and NP in Fig. 6. We
present more accurate geometry on the complete surface
while P2S fails to reconstruct the complete surface.
Evaluation under ABC and FAMOUS. Tab. 6 report-
s the comparison under ABC and FAMOUS dataset with
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MeshP Neural-pull Ours GT MeshP Neural-pull Ours GT

Figure 6. Visual comparison under ShapeNet dataset.
3DR2 PSGN DMC OccNet SSRNet DDT NP Ours
0.169 0.202 0.117 0.079 0.024 0.020 0.011 0.0077

Display Lamp Airplane Cabinet Vessel Table Chair Sofa
0.0073 0.0082 0.0057 0.0081 0.0071 0.0083 0.0080 0.0088

Table 5. Reconstruction accuracy in terms of L1-CD.
IGR Points2Surf Neural-pull Ours GT

Figure 7. Visual comparison under FAMOUS dataset.
IGR Point2Surf Neural-pull Ours GT

Figure 8. Visual comparison under ABC dataset.

DeepSDF (DSDF) [58], AtlasNet (ATLAS) [20], PSR [39],
Points2Surf (P2S) [14], IGR [19], Neural-Pull (NP) [49]
and IMLS [44]. The numerical comparison shows that our
method significantly outperforms the other methods. We
also highlight our advantage by visually comparing with I-
GR, P2S, and NP under FAMOUS in Fig. 7 and under ABC
in Fig. 8, where our reconstruction presents more geometry
details with arbitrary topology.

We also evaluate our method under some variants of

ABC and FAMOUS by adding different noise levels or
changing the point density, which is released by P2S [14].
The L2-CD comparison in Tab. 7 demonstrates that our
method is also good at resisting dramatic noise and density
changes, and still achieves the best performance compared
to the others.

Dataset DSDF ATLAS PSR P2S IGR NP Ours
ABC 8.41 4.69 2.49 1.80 0.51 0.48 0.200

FAMOUS 10.08 4.69 1.67 1.41 1.65 0.22 0.044
Mean 9.25 4.69 2.08 1.61 1.08 0.35 0.122

Table 6. Reconstruction accuracy in terms of L2-CD (×100).

Dataset DSDF ATLAS PSR P2S NP IMLS Ours
ABC var-noise 12.51 4.04 3.29 2.14 0.72 0.566 0.488
ABC max-noise 11.34 4.47 3.89 2.76 1.24 0.675 0.571

F-med-noise 9.89 4.54 1.80 1.51 0.28 0.798 0.071
F-max-noise 13.17 4.14 3.41 2.52 0.31 0.387 0.298

F-Sparse 10.41 4.91 2.17 1.93 0.84 - 0.083
F-Dense 9.49 4.35 1.60 1.33 0.22 - 0.087

Mean 11.73 4.30 3.10 2.23 0.60 - 0.266
Table 7. Noise and density in terms of L2-CD (×100).

4.3. Surface Reconstruction for Scenes

Evaluation under 3D Scene. We first evaluate our method
by comparing with MPU [57], Convolutional OccNet (Con-
vOcc) [68], Local Implicit Grid (LIG) [37], Deep Local
Shape (DeepLS) [7], and Neural-Pull (NP) [49] under five
scenes in the 3D Scene dataset in Tab. 8. We use the of-
ficial code of MPU and NP to produce their results, while
using the trained ConvOcc and LIG from the author and
normals of point clouds to report their results, where we
do not use the post processing in LIG for fair comparison.
Tab. 8 shows that our method can achieve much higher ac-
curacy than these state-of-the-art methods in terms of differ-
ent metrics, where we also do not require normals as LIG
and DeepLS. The improvement over the-state-of-the-art is
further demonstrated by the visual comparison in Fig. 9.
Evaluation under SceneNet. We compare our method with
ConvOcc [68], LIG [37], and NP [49] under 5 classes in
SceneNet. We produce the results of NP by training it using
its code, while using the trained model of LIG to produce
their results, where we do not leverage the post process-
ing in LIG for fair comparison. The results in each of five
classes in Tab. 9 show that our method achieves the best per-
formances under different input point densities. Our visual
comparison in Fig. 11 further shows that our method can
reconstruct more detailed surfaces in complex scenes.
Reconstructions for Real Scan. We also show surface
reconstruction comparison for a real scanned scene in our
video and text supplementary.

4.4. Analysis and Discussion

We justify the effectiveness of each element in our net-
work and explore the effect of some important parameters
on the performance under the ABC dataset in terms of L2-
CD and normal consistency.
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(a) ConvOcc (b) LIG (c) Neural-pull (d) Ours (e) GT

Figure 9. Visual comparison with the state-of-the-art under 3D Scene dataset.
Burghers Lounge Copyroom Stonewall Totempole

L2CD L1CD Norm Error L2CD L1CD Norm Error L2CD L1CD Norm Error L2CD L1CD Norm Error L2CD L1CD Norm Error
MPU 775.04 0.456 0.720 894.95 203.87 0.206 0.817 203.87 29.18 0.062 0.832 110.36 680.86 0.428 0.800 486.70 1652.25 0.671 0.763 1328.80

ConvOcc 26.69 0.077 0.865 354.60 8.68 0.042 0.857 73.20 10.99 0.045 0.848 79.68 19.12 0.066 0.866 120.61 1.16 0.016 0.925 21.56
LIG 0.839 0.018 0.904 28.70 0.789 0.017 0.910 28.20 0.906 0.018 0.910 30.50 1.08 0.020 0.928 33.65 1.37 0.023 0.917 38.90

DeepLS - - - 5.74 - - - 7.38 - - - 10.09 - - - 6.45 - - - 8.97
NP 1.76 0.010 0.883 11.23 39.71 0.059 0.857 98.03 0.51 0.011 0.884 8.76 0.063 0.007 0.868 6.84 0.19 0.010 0.765 10.21

Ours 0.267 0.008 0.914 9.28 0.061 0.006 0.928 6.76 0.076 0.007 0.918 7.76 0.061 0.0065 0.888 6.33 0.10 0.008 0.784 8.36

Table 8. Surface reconstruction under 3D Scene.L2-CD×1000. Norm is short for normal consistency. The unit of error is mm.

Ablation Studies. We report ablation studies in Tab. 10.
We first highlight the effectiveness of the predicted shift ∆q
by removing ∆q from the network. We first try to directly
use the query qg from the global coordinate system as q′l.
We found that the performance degenerates dramatically, as
shown by “No ∆q”. Then, we push the neural query net-
work to predict q′l directly. But the performance still goes
down, as shown by “Direct q′l”. These two results demon-
strate the importance of ∆q in the learning.
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Figure 10. Loss with the prior
learned from different regions.

Moreover, we high-
light the effectiveness
of the predicted con-
dition f ′l by removing
it from the output of
the neural query net-
work. We first leverage
autodecoding similar as
DeepSDF [58] to learn
f ′l . The result of “No
f ′l ” shows that this does
not work well with the learnable ∆q. Then, we try to use
fl from the trained PointNet to replace f ′l , but the result of
“No f ′l+fl” gets worse neither. These experiments show
that the learnable condition f ′l is only effective when it is
optimized together with its corresponding query q′l.

No ∆q Direct q′l No f ′l No f ′l+fl Ours
L2-CD 3.13 2.78 4.03 4.21 2.090
Normal 0.924 0.935 0.908 0.901 0.945

Table 10. Ablation studies under ABC. L2-CD×1000.
Specializing Context Prior. We found that specializing
the local context prior into the predictive context prior al-

so plays an important role to reconstruct surfaces in high
accuracy. We first highlight the importance of the local
context prior by removing the training procedure shown in
Fig. 3 (a). We overfit the global point cloud G by simulta-
neously optimizing the parameters θ3 in the neural query
network and θ2 in the neural implicit network shown in
Fig. 3 (b). The result of “No prior” in Tab. 11 shows that the
performance significantly drops compared to “Our special-
izing”. Moreover, even with the learned local context prior
as an initialization, if we tune θ2 and θ3 simultaneously in
Fig. 3 (b), the result of “Tune θ2+θ3” is still not satisfac-
tory. These experiments demonstrate the importance of the
specializing in leveraging the learned prior.

No Prior Tune θ2+θ3 Our specializing
L2-CD 4.04 3.60 2.09
Normal 0.9200 0.9250 0.9446
Table 11. Effect of specializing under ABC. L2-CD×1000.

Normalizing Local Regions. We found the normalization
of local regions ti in T slightly affects the learning of the
local context prior. As we mentioned before, we normalize
ti by centering and scaling it in the local coordinate sys-
tem. We report the effect of centering and scaling on the
performance in Tab. 12, which shows that both centering
and scaling contribute to the increase of performance.

No normalization Only centering Only scale Ours
L2-CD 2.83 2.13 2.67 2.09
Normal 0.9360 0.9410 0.9380 0.9446
Table 12. Effect of normalization under ABC. L2-CD×1000.

Obtaining Local Regions ti. We also explore how the size
of local regions ti affects the learning of the local context
prior. We try to split each point cloud in the training set in-
to different numbers of parts, such as {03, 43, 63, 83}, and
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Livingroom Bathroom Bedroom Kitchen Office Mean
L1CD Norm FScore L1CD Norm FScore L1CD Norm FScore L1CD Norm FScore L1CD Norm FScore L1CD Norm FScore

20
/m

2 LIG 0.032 0.719 0.790 0.030 0.737 0.807 0.029 0.735 0.818 0.029 0.727 0.817 0.033 0.737 0.805 0.030 0.730 0.808
NP 0.068 0.827 0.718 0.072 0.716 0.658 0.044 0.782 0.740 0.069 0.720 0.689 0.066 0.834 0.663 0.037 0.776 0.693

Ours 0.027 0.835 0.856 0.032 0.749 0.801 0.028 0.800 0.842 0.033 0.737 0.826 0.029 0.861 0.829 0.029 0.796 0.831

10
0/
m

2 LIG 0.019 0.922 0.919 0.018 0.930 0.915 0.017 0.918 0.920 0.016 0.920 0.936 0.020 0.910 0.936 0.018 0.920 0.925
NP 0.069 0.883 0.799 0.028 0.907 0.893 0.032 0.890 0.878 0.042 0.896 0.838 0.066 0.866 0.733 0.047 0.888 0.828

Ours 0.018 0.902 0.953 0.016 0.872 0.950 0.014 0.893 0.957 0.015 0.884 0.945 0.024 0.916 0.907 0.017 0.893 0.943

50
0/
m

2 LIG 0.019 0.910 0.919 0.017 0.924 0.914 0.017 0.915 0.926 0.017 0.916 0.937 0.020 0.907 0.937 0.018 0.914 0.925
NP 0.050 0.905 0.838 0.041 0.916 0.856 0.033 0.915 0.877 0.047 0.893 0.844 0.064 0.879 0.750 0.047 0.902 0.833

Ours 0.017 0.938 0.969 0.016 0.943 0.979 0.016 0.946 0.976 0.016 0.943 0.968 0.024 0.927 0.918 0.017 0.939 0.962

10
00

/m
2 LIG 0.020 0.910 0.920 0.017 0.927 0.910 0.017 0.919 0.924 0.017 0.920 0.936 0.020 0.910 0.936 0.018 0.917 0.925

NP 0.088 0.881 0.801 0.036 0.912 0.860 0.034 0.905 0.876 0.049 0.900 0.825 0.062 0.879 0.729 0.054 0.895 0.818
Ours 0.017 0.933 0.966 0.016 0.945 0.977 0.014 0.948 0.980 0.015 0.945 0.976 0.024 0.919 0.925 0.017 0.938 0.965

Table 9. Surface reconstruction under SceneNet.
(a) ConvOcc (b) LIG (c) Neural-pull (d) Ours (e) GT

Figure 11. Visual comparison with the state-of-the-art under SceneNet dataset, where normal maps are also shown.

then, use each set of parts to learn the local context prior
in Fig. 3 (a). The comparison shown in Tab. 13 demon-
strates that it is hard to learn the prior well if the size of ti is
too large, such as “03” and “43”, since ti is too complex to
learn. While it is also hard to learn some meaningful prior
if the size of ti is too small, such as “83”. In addition, we
found that the overlap between neighboring local region-
s does not contribute to the performance increasing under
63, such as “Lap” and “Self”. We also explore whether we
can learn a more meaningful prior by using patch-wise ti in
training. We form each ti using 1000, 2000, or 4000 neigh-
bors in terms of geodesic distance. The results of “G1”,
“G2” and “G4” show that patch-wise regions ti do not work
better than the part-wise ti that we are using.

We highlight our advantage by learning the local contex-
t prior using local regions ti merely from the reconstruc-
tion target G. Although “Self” is obtained with much few-
er training regions, it achieves almost the same result as
“63” which is obtained by learning the local context pri-
or from all local regions across different training shapes.
This advantage comes from our ability of flexibly searching
over the whole prior space, which alleviates the necessity
of learning a high quality local context prior. However, the
optimization can converge faster if more local regions ti are

used in learning as shown by the loss curve comparison in
Fig. 10.

03 43 63 83 Lap Self G1 G2 G4
L2-CD 12.06 4.43 2.09 2.58 2.09 2.09 2.9 2.3 2.5
Normal 0.904 0.922 0.945 0.940 0.944 0.942 0.939 0.941 0.940

Table 13. Effect of region size under ABC. L2-CD×1000.
Limitation. Although we achieve high reconstruction ac-
curacy, we require further optimization during testing. This
takes more time than methods [14] leveraging pretrained
models for inference.

5. Conclusion

We propose to reconstruct surfaces from point clouds by
learning implicit functions as a predictive context prior. Our
method successfully specializes the learned local context
prior into predictive context prior for a specific point cloud,
which effectively searches the reconstruction prior across
the whole prior space without focusing on some specific lo-
cations. This advantage significantly increases our ability
of leveraging the learned prior, which makes the learned
prior generalize to as many unseen target regions as possi-
ble. Our idea is justified by our experimental results which
outperform the state-of-the-art in terms of various metrics
under widely used benchmarks.
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