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Abstract

Recently, neural implicit functions have demonstrated re-
markable results in the field of multi-view reconstruction.
However, most existing methods are tailored for dense views
and exhibit unsatisfactory performance when dealing with
sparse views. Several latest methods have been proposed
for generalizing implicit reconstruction to address the sparse
view reconstruction task, but they still suffer from high train-
ing costs and are merely valid under carefully selected per-
spectives. In this paper, we propose a novel sparse view re-
construction framework that leverages on-surface priors to
achieve highly faithful surface reconstruction. Specifically,
we design several constraints on global geometry alignment
and local geometry refinement for jointly optimizing coarse
shapes and fine details. To achieve this, we train a neural net-
work to learn a global implicit field from the on-surface points
obtained from SfM and then leverage it as a coarse geometric
constraint. To exploit local geometric consistency, we project
on-surface points onto seen and unseen views, treating the
consistent loss of projected features as a fine geometric con-
straint. The experimental results with DTU and BlendedMVS
datasets in two prevalent sparse settings demonstrate signifi-
cant improvements over the state-of-the-art methods.

Introduction
Surface reconstruction from multi-view images is a critical
task in the fields of computer vision and computer graph-
ics. Traditional methods, like Multi-View Stereo (Campbell
et al. 2008; Schonberger and Frahm 2016; Yao et al. 2018),
leverage geometric consistency between images to compute
the depth map. Subsequently, they obtain the reconstructed
point cloud through depth map fusion. Nonetheless, the
conversion of this intermediate representation might intro-
duce cumulative geometric errors. In scenarios with sparse
views, the MVS method faces challenges in reconstructing a
smooth and detailed surface due to the scarcity of matching
points and variations in viewing angles.

In recent years, neural rendering-based surface recon-
struction methods (Yariv et al. 2021; Wang et al. 2021; Yu
et al. 2022) have been widely used to improve the recon-
struction results by producing smoother and more complete
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Figure 1: Surface reconstruction results from sparse-view
images (large-overlap setting). The state-of-the-art methods
SparseNeuS (Long et al. 2022) and VolRecon (Ren et al.
2023) produce noisy and broken surfaces, while the results
of ours (NeuSurf) are detailed and complete.

geometries. These methods simultaneously optimize both
implicit geometry and neural radiance fields by minimizing
the discrepancy between the rendered and the ground truth
images. However, the well-optimized photometric loss may
distort the geometry due to shape-radiance ambiguity (Zhu
et al. 2023). Especially under the situation of sparse view
input, learning of the geometry field may further collapse.

As a remedy, some recent methods (Long et al. 2022; Ren
et al. 2023) partly solved the sparse view reconstruction by
introducing additional generalizable priors. They first learn
geometric priors from large-scale data, and then fine-tune
the implicit fields to achieve surface reconstruction in new
scenarios. However, the learned priors are only effective in
a fixed large-overlap sparse setting. Once the sparse view is
inconsistent with the pose distribution with the fixed setting,
the priors will be invalid and fail to bring robust guidance to
surface reconstruction. As a result, the performance of the
generalizable methods is dramatically limited in cases with
different sparse settings. Due to the long training time and
complex data pre-processing, it is unrealistic to train a prior
for each sparse setting.

In this paper, we propose a novel sparse view reconstruc-
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tion framework to achieve highly faithful surface reconstruc-
tions using on-surface point priors. The proposed priors are
achieved directly from the raw input sparse views without
requiring any extra training or data, which effectively im-
prove the reconstruction results and are robust to different
sparse settings. The effectiveness of our method is not af-
fected by different sparse settings. Specifically, we obtain
initial on-surface points by SfM method, which can be con-
sidered as “free data” in the training process. Instead of us-
ing these points directly for depth supervision, we design
two constraints in terms of loss functions to make full use
of on-surface points. One is conducted with the guidance of
the global geometry field, where we train a neural network
to learn the geometric field of on-surface points and then use
that field as a rough geometric constraint. The other is local
geometric refinement loss, which is achieved by projecting
surface points onto visible and invisible views and optimiz-
ing the consistency of projection features to reconstruct fine
local geometry. Our contributions are listed below.

• We propose a novel framework for surface reconstruc-
tion from sparse view images. our framework takes full
advantage of on-surface point clouds, which is easy to
access, as an additional effective supervision to guide the
geometry learning.

• We use the global geometric fields obtained from the sur-
face points to help learn rough and continuous geometry.
In addition, we optimize the local feature consistency of
on-surface points to help learn fine geometry.

• We achieve state-of-the-art reconstruction results under
different prevalent sparse settings on the widely-used
DTU and BlendedMVS datasets.

Related Work
Multi-View Stereo (MVS)
Traditionally, MVS methods use point clouds (Furukawa
and Ponce 2010; Lhuillier and Quan 2005), depth maps
(Galliani, Lasinger, and Schindler 2015; Schönberger et al.
2016; Xu and Tao 2019) and voxel grids (Kostrikov, Horbert,
and Leibe 2014; Choe et al. 2021; Ji et al. 2017) as 3D rep-
resentations of scenes to reconstruct the surface geometry.
Due to the need for parallel computing, depth maps based
methods are now widely used. Depth maps based methods
predict the depth of each image and then fuse them to get
the surface point cloud of the object. After the point cloud is
obtained, Screened Poisson surface reconstruction method
(Kazhdan and Hoppe 2013) can be used to further obtain the
surface mesh.

Neural Implicit Representations
Recently, advanced methods employing neural implicit
functions to represent 3D scenes have emerged, and these
can be applied to shape representation (Zhou et al. 2022b;
Mescheder et al. 2019; Zhou et al. 2023), novel view syn-
thesis (Mildenhall et al. 2020; Liu et al. 2020; Zhang et al.
2023) and multi-view 3D reconstruction (Oechsle, Peng, and
Geiger 2021; Wang et al. 2021; Yariv et al. 2021; Yu et al.
2022; Ma et al. 2023). Given raw point clouds, Neural-pull

(Ma et al. 2021) and CAP-UDF (Zhou et al. 2022a) design
neural networks to learn geometric fields that represent 3D
shapes. They provide a way to transform the raw point cloud
representation of an object surface into a geometric field rep-
resentation without the ground truth values of the geomet-
ric field. Neural Radiance Fields (NeRF) (Mildenhall et al.
2020), as a popular novel view synthesis method in recent
years, encodes color fields and volume density fields with
implicit representations.

Neural Surface Reconstruction
Inspired by NeRF, NeuS (Wang et al. 2021) and VolSDF
(Yariv et al. 2021) were proposed to encode signed distance
function (SDF) and color fields of the scene. By minimiz-
ing the discrepancy between the rendered image and the
ground truth image, they can obtain a smooth and complete
SDF geometric field. To make the geometry of the SDF field
more precise, MonoSDF (Yu et al. 2022) and Geo-NeuS (Fu
et al. 2022) add geometric loss in addition to photometric
loss, which reduces the possible bias in the volume render-
ing process. The above-mentioned methods are all based on
dense view input. However, in real world, there are often
only fewer views that can be used for reconstruction.

To achieve sparse view reconstruction, SparseNeuS (Long
et al. 2022) and VolRecon (Ren et al. 2023) learn generaliz-
able geometric priors from large-scale data, and then fine-
tune on new scenes. They train on 75 scenes of the DTU
(Jensen et al. 2014) for several days and then test on the
remaining 15 scenes. Although they have obtained some ge-
ometric priors of the data sets through large-scale training,
they still only generalize in the case of a fixed sparse setting.

In observation, when only sparse views are given, the
complexity of the neural surface learning increases, and it
is more likely to achieve a collapsed geometry (incomplete,
noisy), as shown in Figure 1. Current neural surface learn-
ing methods with large-scale training priors are often time-
intensive and only useful within a specific sparse setting.

Unlike previous works, instead of using costly large-
training priors, our method attempts to exploit the priors of
surface points to optimize the neural surface representation
both globally and locally.

Method
Given sparse-view images I = {Ii|i ∈ 1, ..,M} with cam-
era poses T = {Ti, |i ∈ 1, ...,M}, our goal is to reconstruct
the high-quality geometry S of the scene represented by I .
In this paper, we propose NeuSurf, a neural surface recon-
struction method with sparse input views, as illustrated in
Figure 2.

Our motivation for proposing NeuSurf is to reduce the
complexity of neural surface learning with non-training pri-
ors and produce more complete and detailed reconstruc-
tion. Specifically, points obtained by Structure from Motion
(Schonberger and Frahm 2016) are regarded as a “free” data
source as it is easy to acquire with no extra input. We denote
the surface points obtained by SfM as P , which we do not
use as a depth loss function for the neural rendering directly.
Instead, we learn a global geometric field fθ from these on-
surface points and use it to align the rough geometry. To get
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Figure 2: Structure of NeuSurf. For a set of 3 source views (in large-overlap or little-overlap), we first obtain the surface points
by the SfM method. Within the on-surface points, we train a UDF network as the geometric field and leverage it as global
geometry alignment. Then we utilize the feature consistency between seen and unseen views to optimize the local geometry. In
addition to the RGB rendering loss, explicit on-surface points regularization can be improved as an additional loss.

fine details of the surface, local feature consistency for on-
surface points is optimized as another constraint.

Learning Neural Implicit Surface by Volume
Rendering
We represent the geometry and appearance with SDF fields
and color fields, which are learned by the neural rendering
pipeline. We adopt NeuS (Wang et al. 2021) as our baseline,
which defines the geometry as the zero-level set of signed
distance function (SDF) S = {x ∈ R3|f(x) = 0}, and
develop a novel volume rendering method to learn the ge-
ometry and appearance of the scene. The SDF and color are
parameterized with two MLPs as provided by NeuS.

Given a pixel from one image, the ray could be denoted as
{r(t) = o+ td|t > 0}, where o is the camera center and d
is the direction of the ray. The rendered color is accumulated
by volume rendering with N discrete points:

C(r) =

N∑
i=1

Tiαici, (1)

where Ti is the accumulated transmittance, αi is opacity val-
ues, as denoted by

Ti =

i−1∏
j=1

(1− αi), (2)

αi = max

(
Φs(f(r(ti)))− Φs(f(r(ti+1)))

Φs(f(r(ti)))
, 0

)
. (3)

Φs follows NeuS, expressed as Φs(x) = (1 + e−sx)−1 with
s being a trainable, diminishing parameter.

On-Surface Global Geometry Alignment
On-surface points are discrete and thus fail to determine
some surface locations. We attempt to learn a continuous

geometric field from the discrete point cloud as a prior to
provide coarse information for surface learning. With the
guidance of the prior field, we largely reduce the difficulties
in optimization with neural volume rendering, thus enabling
robust learning process. We also justify that the prior is the
key factor that prevents collapse in the difficult sparse-view
setting, we are able to obtain a rough but relatively complete
geometric surface.

An intuitive solution is first to train an SDF Network for
on-surface points and then use it as a part of NeuS directly.
This is like pre-training the SDF function by on-surface
points and then fine-tuning it with 2D images. However, fit-
ting an SDF field to a sparse point cloud is challenging, due
to the geometry complexity and the closed surface assump-
tion. Even though our reconstruction targets are all closed
surfaces, in sparse view, the on-surface points computed by
the SfM method are only part of the surface of the objects.
It means that enforcing the closed surface assumption leads
to the overfitting of the geometric field.

To resolve this issue, the unsigned distance function
(UDF) is considered to fit the global geometric field of the
on-surface points. It is flexible and can cope with open sur-
faces. We train a UDF network fθ to fit the surface points to
obtain a complete and continuous geometric field. With the
geometric field, we treat it as a coarse global prior that can
stabilize the geometry optimizing with neural renderings.

Since the ground truth UDF values are not provided, we
follow the CAP-UDF (Zhou et al. 2022a) to train a network
fθ within a moving operation. We randomly sample a set
of query locations Q = {qi, i ∈ [1,M ]} around given on-
surface points P . Then we move the point qi against the
direction of the gradient at qi with a stride of UDF value
fθ(qi). Since the gradient points to the steepest uphill direc-
tion, the moving operation aims to find a path to pull point
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pi onto the surface S. The operation can be formulated as:

zi = qi − fθ(qi)×∇fθ(qi)/||∇fθ(qi)||2. (4)

Here, zi is the location after the moving operation. The mov-
ing operation is differentiable in both the unsigned distance
value and the gradient, which allows us to optimize them
simultaneously during training.

For a well-learned network fθ, the moved points should
be on the surface, which can be used as our learning ob-
jective. Hence, the Chamfer Distance between the moved
points and the on-surface points can be used as Ludf to op-
timize our UDF network fθ:

Ludf = CD(Z,Q). (5)

With a trained UDF network fθ, we attempt to incorpo-
rate the knowledge of the continuous geometry field into
neural rendering. For the effect of network fθ, query points
closer to the surface are more accurate. Therefore, we design
a cut-off threshold ϵ for network fθ to supervise the geomet-
ric field near the surface. The global geometry alignment is
given by

Lglobal =
1

|N |
∑
ni∈N

|f(ni)|
(
1− max(fθ(ni)− ϵ, 0)

fθ(ni)− ϵ

)
,

(6)
where N and ϵ are the discrete points in ray rendering and
on-surface alignment threshold value, respectively.

On-Surface Local Geometry Refinement
Geometric field alignment can constrain the shape and en-
sure the integrity of the reconstructed object. However, the
learned geometric field is coarse and can not hone the details
of the reconstruction. The reason is that the sparse input pro-
vides less surface feature information, this may lead to se-
vere noise. Therefore, a local-level optimization is needed.
Our insight comes from the traditional MVS methods (Yao
et al. 2018; Ji et al. 2017) where the correctness of a surface
point estimation is guaranteed by the consistency of its cor-
responding feature between different views. We justify that
on-surface points obtained by SfM methods also follow this
assumption. Inspired by that, we render images with given
poses and a novel pose. By supervising the projection fea-
tures of the on-surface points, geometry and color fields are
optimized simultaneously, which can be expressed by

Llocal =
1

|P ||I|
∑
pi∈P

∑
Hj∈H

∥fϕ(Hj(pi))− fϕ(H0(pi))∥ ,

(7)
where P is on-surface point cloud obtained by SfM method,
fϕ is a geometry feature extraction network, I and H are
input views and the transformation matrices respectively.

However, initial points obtained by SfM method are lim-
ited in quantity and unevenly distributed. The points are
barely concentrated on positions of relatively poor visibility,
which leads to biased optimization spatially. Hence, during
the ray rendering process, we obtain some points by calcu-
lating the ray-surface intersection points P ′. We name them
pseudo on-surface points since they are acquired from the

(a) (b) (c) (d)

Figure 3: (a) Ground truth on-surface points; (b) On-surface
points generated with SfM; (c) Pseudo and SfM on-surface
points at early stages of training; (d) Pseudo and SfM on-
surface points at the end of training process. The pseudo on-
surface points are optimized to potential real surface.

implicit surface to be optimized. The specific point p′ passed
through by a ray r during neural rendering is denoted as
p′ = {r(t∗)|f(r(t∗)) = 0}. We first find ti by solving
f(r(ti))f(r(ti+1)) < 0. And t∗ can be calculated as:

t∗ =
f(r(ti))ti+1 − f(r(ti+1))ti

f(r(ti))− f(r(ti+1))
. (8)

Since the computation of the pseudo on-surface points is
differentiable, it is reasonable to optimize the surface by
considering them within the feature projection alignment
loss. The implicit surface together with 3D coordinates of
the pseudo on-surface points themselves are optimized along
the training process, as we can see in Figure 3. Therefore, we
add differentiable pseudo surface points P ′ to surface points
P during the training process to keep the projected features
consistent between seen and unseen views:

P ← P + P ′. (9)

Loss Functions
The overall loss functions are:
L = Lcolor+λ1Lglobal+λ2Llocal+λ3Leik+λ4Lreg, (10)

where Lglobal and Llocal are the on-surface global geometry
alignment loss and local refinement loss defined above.
Lcolor is the difference between the rendered and ground-

truth pixel colors:

Lcolor =
1

R
∑
r∈R
||C(r)− Ĉ(r)||. (11)

As with NeuS (Wang et al. 2021), an Eikonal term (Gropp
et al. 2020) on the random sample points Y to regularize
SDF of f(x) is introduced:

Leik =
1

|Y|
∑
x∈Y

(||∇f(x)|| − 1)2. (12)

Similar to Geo-NeuS (Fu et al. 2022), AutoRecon (Wang
et al. 2023). We adopt Lreg as supervision with a zero-level
set. However, given sparse views, the points we obtain by
SfM are sparse and precious. We do not supervise rendered
depth with real depth for each view. Alternatively, We super-
vise the SDF values of all points in 3D space in each iteration
of training:

Lreg =
1

P

∑
pi∈P

||f(pi)||. (13)
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Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

Little-overlap (PixelNeRF Setting)

COLMAP 2.88 3.47 1.74 2.16 2.63 3.27 2.78 3.63 3.24 3.49 2.46 1.24 1.59 2.72 1.87 2.61

SparseNeuSft 4.81 5.56 5.81 2.68 3.30 3.88 2.39 2.91 3.08 2.33 2.64 3.12 1.74 3.55 2.31 3.34
VolRecon 3.05 4.45 3.36 3.09 2.78 3.68 3.01 2.87 3.07 2.55 3.07 2.77 1.59 3.44 2.51 3.02

NeuS 4.11 5.40 5.10 3.47 2.68 2.01 4.52 8.59 5.09 9.42 2.20 4.84 0.49 2.04 4.20 4.28
VolSDF 4.07 4.87 3.75 2.61 5.37 4.97 6.88 3.33 5.57 2.34 3.15 5.07 1.20 5.28 5.41 4.26
MonoSDF 3.47 3.61 2.10 1.05 2.37 1.38 1.41 1.85 1.74 1.10 1.46 2.28 1.25 1.44 1.45 1.86

Ours 1.35 3.25 2.50 0.80 1.21 2.35 0.77 1.19 1.20 1.05 1.05 1.21 0.41 0.80 1.08 1.35

Large-overlap (SparseNeuS Setting)

COLMAP 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52

SparseNeuSft 2.17 3.29 2.74 1.67 2.69 2.42 1.58 1.86 1.94 1.35 1.50 1.45 0.98 1.86 1.87 1.96
VolRecon 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38

NeuS 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00
VolSDF 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
MonoSDF 2.85 3.91 2.26 1.22 3.37 1.95 1.95 5.53 5.77 1.10 5.99 2.28 0.65 2.65 2.44 2.93

Ours 0.78 2.35 1.55 0.75 1.04 1.68 0.60 1.14 0.98 0.70 0.74 0.49 0.39 0.75 0.86 0.99

Table 1: The quantitative comparison results of Chamfer Distances (CD↓) on DTU dataset.
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Figure 4: Visual comparisons on the little-overlap sparse setting of DTU dataset. (*NeuS cannot generate valid mesh for scan
122 with the generic 3 views. We take an additional view for training on this scan with NeuS for visual comparison.)

Experiments and Analysis
We conduct abundant experiments on several generic pub-
lic MVS datasets (Jensen et al. 2014; Yao et al. 2020) from
sparse views. We compare our results with some recently
presented neural implicit surface reconstruction methods, in-
cluding the previous state-of-the-art sparse views specified
methods. Then we give an ablation study of our approach.

Experimental Settings
Datasets. Previous neural sparse view reconstruction ap-
proaches normally select 3 proper input views from each
scan of the DTU dataset (Jensen et al. 2014), which contains
from 49 to 64 images at a resolution of 1200 × 1600 for
each object scan with known camera intrinsics and poses,
to evaluate the performance of the models. We notice that
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Figure 5: Visual comparisons of surface reconstruction results on the large-overlap sparse setting of DTU dataset.

different approaches differ in the choice of concrete input
views. SparseNeus (Long et al. 2022) and VolRecon (Ren
et al. 2023) take views 23, 24 and 33 of each scan as one
of the test sets for three-view reconstruction. We name it
large-overlap setting because the distribution of the selected
views is concentrated and the visibility overlap between the
pics is relatively large. While MonoSDF (Yu et al. 2022) fol-
lows PixelNeRF (Yu et al. 2022), taking views 22, 25 and 28
of each scan as sparse-view setting, which we name little-
overlap setting because of the scattered view distribution.
To evaluate our approach and the baselines comprehensively
and fairly, we conduct experiments on both two settings on
15 scans commonly used for evaluation.

Besides, we also employ the BlendedMVS dataset (Yao
et al. 2020) to estimate the versatility of our approach. We
randomly select 3 views from each scene as input and con-
duct the evaluation on 8 challenging scenes at a resolution
of 768 × 576.

Baselines. We compare our approach with various types
of surface reconstruction methods on adopted datasets. a.
COLMAP (Schonberger and Frahm 2016): A widely used
classical SfM framework, which is also the pro-precessing
approach we employ in our pipeline. b. Generalizable
neural implicit surface reconstruction methods, including
SparseNeuSft (Long et al. 2022) and VolRecon (Ren et al.
2023). ft indicates that we do fine-tuning on every single
scene before we test the model. c. Per-scene optimization
methods, including NeuS (Wang et al. 2021), VolSDF (Yariv
et al. 2021) and MonoSDF (Yu et al. 2022). We adjust the
experiment settings for specific baselines to maximize their
performance.

Implementation details. We use naive COLMAP (Schon-
berger and Frahm 2016) for feature matching to obtain
the coarsely estimated point clouds of the test scenes with
ground truth poses as inputs. We implement SDF represen-
tation model and neural radiance field based on NeuS (Wang
et al. 2021) baseline and adopt similar network architecture
as CAP-UDF (Zhou et al. 2022a) to learn UDF network fθ.
To achieve better local geometry refinement, we use Vis-
MVSNet (Zhang et al. 2020) as the feature extraction net-
work fϕ.

For a training procedure of a single scene, we sample 512
rays per batch and train the model for 300k iterations on an
NVIDIA RTX3090 GPU.

Comparisons
Sparse View Reconstruction on DTU. We conduct com-
parisons on both two DTU sparse settings without mask
supervision. We measure the Chamfer Distances on DTU
dataset in the same way as (Ren et al. 2023) to quantitatively
evaluate the reconstruction quality, which is demonstrated in
Table 1. Our approach achieves better performance on most
of the scenes in little-overlap setting and all of the scenes in
large-overlap setting, outperforming the compared baselines
including previous state-of-the-art methods.

We present visualizations for both types of DTU sparse-
settings. Figure 4 shows the reconstruction results on little-
overlap setting, while Figure 5 shows the reconstruction
results of the approaches on large-overlap setting. It is
challenging for most of the compared methods to obtain
complete geometry when the distribution of input views
is relatively concrete, while our approach not only cap-
tures enough global information to rebuild the correct coarse
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Figure 6: Visual comparison of surface reconstruction re-
sults on BlendedMVS dataset.

shape but also better restore the facial details of the objects.

Sparse View Reconstruction on BlendedMVS. To eval-
uate the generalization ability of our approach on different
datasets, we perform an evaluation on BlendedMVS dataset.
We conduct reconstruction tests on 8 representative scenes,
from each of which 3 views are randomly selected together
with the corresponding camera poses. Some of the recon-
struction results are visualized in Figure 6. It shows that our
approach could obtain both better global shapes and finer
geometric details.

Ablation and Analysis
On-surface global geometric loss Lglobal and local geomet-
ric loss Llocal serve as two main components of our recon-
struction approach. To better evaluate the effectiveness of
these supervisions, we conduct an ablation study. We test
our models on the little-overlap DTU sparse setting because
this would better reflect the performance of the methods.
We separately evaluate the model without Lglobal, the model
without Llocal, and the model without both two losses on all
15 scenes. The mean Chamfer Distances are demonstrated
in Table 2.

Although even the model without Lglobal and Llocal still
outperforms NeuS baseline, global geometric prior and local
feature projection boost the performance to a huge extent.

w/o ℒ!"#$%" , ℒ"#&%" w/o ℒ"#&%"

w/o ℒ!"#$%" Full

Figure 7: Comparison for reconstructed normal maps of ab-
lation results on DTU scan 24.

Lglobal Llocal Mean CD↓
× × 2.46
× √

1.96√ × 1.67√ √ 1.35

Table 2: Reconstruction results comparison of mean Cham-
fer Distance on little-overlap sparse input subset of DTU
dataset by variants of our approach.

To point out the concrete contributions of these components
more intuitively, we give a visualization of the reconstructed
normal maps of these ablation models on a single scene in
Figure 7. As we can see from the comparison, the rarity
of input views leads to the dislocation of some local struc-
tures. The participation of Llocal alleviates the error. The
sparsity of view distribution also introduces a new problem:
some spatially continuous parts are incomplete out of the
hardness to distinguish foreground and background. Global
UDF prior significantly improves the integrity, even when
the point clouds obtained by COLMAP are fragmented.

Conclusion
In this paper, we proposed NeuSurf, a novel sparse view sur-
face reconstruction method with on-surface priors. To obtain
a rough and complete geometric surface, we train a UDF
network to learn the on-surface geometry field and leverage
it as global geometry alignment. Then we optimize the fea-
ture consistency as local geometry refinement loss to recon-
struct detailed surfaces. Our method does not require large-
scale training and is robust in various sparse settings. Our
method achieves state-of-the-art performance on the DTU
dataset in both large-overlap and little-overlap settings. Ad-
ditionally, we conduct qualitative experiments on the Blend-
edMVS dataset in different sparse settings and find signifi-
cant improvement over previous methods.
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