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Abstract

Point cloud upsampling aims to generate dense and uniformly
distributed point sets from a sparse point cloud, which plays
a critical role in 3D computer vision. Previous methods typ-
ically split a sparse point cloud into several local patches,
upsample patch points, and merge all upsampled patches.
However, these methods often produce holes, outliers or non-
uniformity due to the splitting and merging process which
does not maintain consistency among local patches. To ad-
dress these issues, we propose a novel approach that learns an
unsigned distance field guided by local priors for point cloud
upsampling. Specifically, we train a local distance indicator
(LDI) that predicts the unsigned distance from a query point
to a local implicit surface. Utilizing the learned LDI, we learn
an unsigned distance field to represent the sparse point cloud
with patch consistency. At inference time, we randomly sam-
ple queries around the sparse point cloud, and project these
query points onto the zero-level set of the learned implicit
field to generate a dense point cloud. We justify that the im-
plicit field is naturally continuous, which inherently enables
the application of arbitrary-scale upsampling without neces-
sarily retraining for various scales. We conduct comprehen-
sive experiments on both synthetic data and real scans, and
report state-of-the-art results under widely used benchmarks.
Project page: https://lisj575.github.io/APU-LDI

Introduction
Point cloud, as a lightweight representation of 3D objects
and scenes, has gained significant attention. It can be easily
obtained through depth cameras or other 3D scanning de-
vices. However, the raw point clouds obtained from these
devices are often sparse and non-uniform, which nega-
tively impacts various downstream applications like seman-
tic understanding (Zhang et al. 2019), surface reconstruction
(Chen, Liu, and Han 2023b), and point cloud rendering (Dai
et al. 2020). Hence, it is crucial to generate dense and uni-
formly distributed points from the raw point cloud data.

Recently, the learning-based methods on point cloud up-
sampling have achieved promising results. The mainstream
methods typically split a sparse point cloud into several
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Figure 1: Comparison with PC2-PU (Long et al. 2022) and
Grad-PU (He et al. 2023). The input point cloud has 2048
points, and ground truth has 8192 points for the palm and
32768 points for the chair. Previous methods upsample the
point cloud at the local level, which results in outliers, holes
and non-uniform when combining local patches. We repre-
sent the entire point cloud as a continuous implicit field and
generate globally consistent results.

patches, in which a neural network is trained for predict-
ing surface signals, such as surface points (Yu et al. 2018;
Li et al. 2019; Qian et al. 2021a; Feng et al. 2022), offsets
(Li et al. 2021), interpolation weights (Luo et al. 2021; Qian
et al. 2021b), and the point-to-surface distances (He et al.
2023; Zhao et al. 2023). With the help of learned signals,
points on each patch become denser. Finally, the upsampled
patches are combined into a complete point cloud as the final
prediction. However, the inconsistency among local patches
causes two issues as shown in Figure 1. First, the geome-
try of the patch boundary is hard to determine without the
global shape information, resulting in outliers on the final
dense point cloud. Second, combining inconsistent patches
leads to holes or non-uniformity on the final point cloud.

To solve these issues, we propose to learn an unsigned
distance field to represent a shape with the guidance from
a pre-trained local distance indicator (LDI) learned from
dense point cloud patches at local level. With the continuous
implicit field and local distance prior, we produce accurate
upsampling results which capture rich geometric details and
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also retain uniformity due to the global consistency of the
entire shape. Specifically, we first train a LDI that predicts
the distance from a query location to the underlying surface,
which aims to learn a sparse-to-dense prior on local patches.

To predict the distance more accurately and robustly, we
further design an attention-based module to learn attention
weights between the query point and its neighbouring patch
points at the feature space. Given the learned LDI, we then
utilize it as the supervision to guide the learning of the global
implicit function which represents the underlying surface of
the entire sparse point cloud. Finally, for randomly sampled
query points, we use the implicit function to obtain the dis-
tances and the gradients, and then project queries onto a sur-
face by pulling them along the direction of gradients at a
stride of distances to form the dense point cloud. By intro-
ducing the continuous implicit function, we achieve an ac-
curate and uniform point cloud upsampling with consistency
among patches. We further justify that the continuity of the
implicit surface can control the density of the dense point
cloud by changing the number of sampled query points,
which enables our method to achieve arbitrary-scale upsam-
pling without retraining for various scales.

Our contributions are summarized as follows.

• We propose to learn an unsigned distance field from a
sparse point cloud with the guidance of a pre-trained dis-
tance indicator at local level. By pulling 3D queries into
the zero level set of the field, we can achieve point cloud
upsampling at arbitrary-scales.

• We design an attention-based module to learn a local dis-
tance indicator that estimates point-to-surface distances,
which brings rich local priors to the global implicit field.

• We achieve state-of-the-art results in arbitrary-scale point
cloud upsampling for synthetic data and real scans on
widely used benchmarks.

Related Work
Optimization-based Point Cloud Upsampling
Optimization-based methods generate dense point clouds by
employing well-designed shape priors. As the pioneering
work in point cloud upsampling, Alexa et al. 2003 propose
to add points at the vertices of Voronoi diagrams. To pre-
serve more geometrical structures, Huang et al. 2009 intro-
duce weighted locally optimal projection operator and ro-
bust normal estimation process for point cloud upsampling.
Later, Edge-Aware Resampling (EAR) (Huang et al. 2013)
achieves fine detail preservation by resampling points away
from edges and progressively upsampling them to approach
the edge singularities. In addition, several methods are pro-
posed to deal with different conditions such as noisy data
(Lipman et al. 2007) and missing regions (Wu et al. 2015).
Overall, optimization-based methods heavily rely on surface
smoothness assumptions, which often leads to struggles be-
tween geometric detail and robustness.

Learning-based Point Cloud Upsampling
Recently, with the development of deep learning, learning-
based methods (Yu et al. 2018; Qian et al. 2020; Luo et al.
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Figure 2: Overview of the proposed method. The key idea of
our method is to learn an unsigned distance field to represent
the sparse point cloud at global level with the guidance from
a pre-trained LDI learned from dense local patches.

2021; Liu et al. 2022; Feng et al. 2022) are proposed for
point cloud upsampling. Yu et al. (Yu et al. 2018) propose
the first learning-based point cloud upsampling method PU-
Net. PU-GAN (Li et al. 2019) introduces generative adver-
sarial network (Goodfellow et al. 2014) to generate uniform
point clouds. PU-GCN (Qian et al. 2021a) uses a Graph
Convolutional Network to learn better local features. Con-
sidering the patch connection, PC2-PU (Long et al. 2022) in-
troduces patch-to-patch and point-to-point modules to help
the combination of different patches. Meta-PU (Ye et al.
2021) supports arbitrary scale factor upsampling using meta-
network to adjust the weights of residual graph convolution
blocks dynamically. PU-SMG (Dell’Eva et al. 2022) maps
the sparse point cloud to the Spherical Mixture of Gaussians.
More recently, Grad-PU (He et al. 2023) samples more ac-
curate point clouds by predicting point-to-point distances.
PU-SSAS (Zhao et al. 2023) uses implicit neural functions
to estimate projection distance and direction with unsigned
distance and normal supervision. Existing methods focus on
the geometrical structure at the local level and use networks
to learn rich patch information, but the ambiguous bound-
aries at local patches always lead to issues like holes, out-
liers and non-uniformity. Although PC2-PU tries to alleviate
the connection problem between patches with patch corre-
lation module, they still suffer from outliers for the lack of
global consistency of the global shape. We propose to learn
an unsigned distance field of the entire shape with local pri-
ors, which introduces globally consistent information.

Implicit Neural Representation
Implicit neural representation has shown great advantages
in continuous surface representation (Zhang et al. 2023; Ma
et al. 2023). Usually, the implicit function is learned by a
neural network, the input of the network is a query point,
and the output is occupancy probability (Mescheder et al.
2019; Chen and Zhang 2019) or signed/unsigned distance
(Park et al. 2019; Michalkiewicz et al. 2019). Moreover,
Neural Radiance Fields (NeRFs) (Mildenhall et al. 2021)
use implicit representations to encode the geometry and ap-
pearance information. Recently, some researches (Ma et al.
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2022; Zhou et al. 2023; Jin, Wu, and Zhou 2023; Chen, Liu,
and Han 2023a) propose to learn implicit continuous sur-
faces from 3D point clouds. Among them, OnSurfacePrior
(Ma et al. 2022) proposes to learn surface priors to guide the
learning of signed distance functions (SDF). However, di-
rectly transferring this method to the point cloud upsampling
task leads to oversmoothed surfaces due to the MLP-based
prior network and the lack of sufficient global constraints.
In our method, the designed attention-based distance indi-
cator guides the neural network to learn a global unsigned
distance field that handles more complex shapes, and the
additional global constraints help to preserve more details.
More recently, some methods (Zhao et al. 2022, 2023) have
achieved encouraging results by applying implicit represen-
tations to point cloud upsampling tasks, while these methods
often require other shape information, such as normals and
unsigned distances. Our method only requires dense point
clouds as supervision.

Methodology
Overview
Given the input sparse point cloud S = {si}Ni=1, point
cloud upsampling aims to generate a dense point cloud
T = {tj}Mj=1, where M = rN and r is the scale factor.
The generated point cloud should meet the requirement that
each point of the dense point cloud is located at the under-
lying surface represented by the sparse point cloud and the
dense point cloud is uniformly distributed. The overview of
our proposed method is shown in Figure 2. We learn an un-
signed distance field to represent the continuous surface de-
scribed by the sparse point cloud S, which is guided by the
local distance indicator that predicts the distance from the
query point to the local patch. At inference time, we project
the query points to the zero-level set of the implicit field to
generate the dense point cloud. In this Section, we will begin
by introducing the specifics of the local distance indicator.
Subsequently, we will delve into the learning process of the
global implicit field, followed by the technique of arbitrary-
scale upsampling on the continuous implicit field.

Local Distance Indicator (LDI)
To learn more accurate geometrical details, we first train a
neural network as a local distance indicator to learn upsam-
pling priors from grouped patches in local level. For a sparse
point cloud S, we first split it into different patches like pre-
vious methods (Long et al. 2022; He et al. 2023). Then, we
sample queries around each patch point with normal distri-
bution. The distance indicator takes the query point q and
its corresponding local patch P as the input and predicts the
distance dl from the query point to the local patch in a local
coordinate system as follows:

fθ(q, P ) = dl, (1)
where fθ denotes the network parameterized by θ.

To predict the distance more accurately and robustly,
we further design an attention-based module to learn at-
tention weights between the query point and its neighbor-
ing points at the feature space. The structure is shown in
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Figure 3: Structure of the local distance indicator. The
attention-based distance indicator predicts the distance be-
tween the query point and the patch surface.

Figure 3. Specifically, for patch P = {ph}nh=1, we use
the feature extractor to obtain the point-wise patch features
F = {fh}nh=1 for patch points. Then we find a smaller re-
gion Pq = {pl}kl=1 where k < n with k-nearest neighbor
algorithm (KNN) for query point q. We further normalize
Pq by centering it to the query point q followed by MLPs to
extract the relative features F ′ = {f ′

d}kd=1. To add the global
information of the patch to the features, we use max-pooling
on the relative features to generate the global feature. Fi-
nally, we concatenate the relative features and global fea-
tures together and predict the relative weights wd between
the query point and the neighboring points. With the relative
weights, we find the most important features on the local
patch. We also use the relative features of q and the patch
points to add relative distance perception for more accurate
prediction. The final feature fq for q is computed by weight-
ing patch features and relative features:

fq =

k∑
d=1

wd · f ′
d + (1− wd) · fd. (2)

Then, we concatenate fq , the global feature of patch fea-
tures and the query point coordinate together and use a dis-
tance predictor to map the final vector to point-to-surface
distance dl. We train the network by minimizing the L1 loss
between the predicted distance and the distance dgt between
the query point and its nearest point in the dense point cloud:

L1 = |dl − dgt|. (3)

We visualize the weights learned by the attention module
in Figure 4. For a query point, we select its four neighbors
to generate its final feature. The color map indicates the val-
ues of the weights, where the darker the color, the greater
the weight. The results show that the closer points have rela-
tively larger weights, which proves that the learned weights
are reasonable. In addition, the value of the weights are
not strictly positively correlated with the distances, which
proves that the attention module is adaptable.

Learning the Continuous Field
With the learned LDI, we can learn the global implicit field
to represent the entire point cloud. As shown in Figure 2,
for the query point q, we use the neural network gϕ that is
parameterized by ϕ to predict its distance dg to the surface
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Figure 4: The visualization of learned weights.

in the global coordinate system. Here, we use the pulling
process introduced by (Ma et al. 2021) to project the query
point q to the surface point q′, formulated as,

q′ = q − gϕ(q)∇gϕ(q)/||gϕ(q)||2, (4)

where ∇gϕ(q) is the gradient at q within the network. We
aim to learn to project qi to the underlying surface repre-
sented by the sparse point cloud S. However, the real po-
sition of q′ is unknown due to the sparsity of S, where we
leverage our learned LDI as supervision for guiding the im-
plicit field learning process.

Specifically, we use KNN to find the local patch Pq′ that
q′ is centered at and use the fixed indicator to predict the dis-
tance fθ(q

′, Pq′) from q′ to Pq′ at the local level. We justify
that the indicated distance fθ(q

′, Pq′) of q′ increases as q′

gets projected to locations far from the underlying surface
and decreases when q′ is projected close to the underlying
surface. Additionally, fθ(q′, Pq′) = 0 means that q′ is pro-
jected to the correct position. Therefore, we minimize the L1
loss between the predicted distance and 0:

Llocal = |fθ(q′, Pq′)|. (5)

To take full advantage of the information of the global
point cloud, we also add some additional constraints.

At the early stage of training, the global network gϕ
projects the query point to the location away from the sur-
face, leading to large fθ(q′, Pq′), which makes the optimiza-
tion difficult. Therefore, we introduce the surface point con-
straint that encourages q′ to get projected closer to its nearest
point qs on the sparse point cloud:

Lnp = ||q′ − qs||. (6)

To make the implicit field faithfully describe the under-
lying surface described by the sparse point cloud, we add a
term to encourage the zero-level set of the implicit field to
pass through the input points {si}Ni=1. The loss term is:

Lsurf = |gϕ(si)|. (7)

Due to the approximation error of the point-to-surface dis-
tance, the gradient of the implicit field is not the exact nor-
mal direction, leading to errors when q′ is very close to the
underlying surface. To learn a more accurate distance and
direction of the query point q, we add a shortest path con-
straint introduced by (Ma et al. 2022):

Lsp = |gϕ(q)|. (8)

The total global loss is given as:

Lglobal = α · Lnp + β · Lsurf + γ · Lsp, (9)

where α, β and γ are the weights for different loss terms.
Therefore, the total loss is L = Llocal + Lglobal. After

training, the global implicit field can be leveraged to predict
the projection direction and distance for an arbitrary query
point to reach the underlying surface. The advantage of the
implicit function is that the neural network learns the rela-
tion between the spatial point and the underlying surface,
so it can represent the shape with arbitrary precision theo-
retically, which leads to a continuous surface representation.
Next, we show the details of arbitrary-scale point cloud up-
sampling with the implicit field.

Arbitrary-Scale Point Cloud Upsampling
With the learned global implicit field, each query point
can be projected to the continuous underlying surface. We
change the number of query points to achieve arbitray-
scale upsampling without retraining. For the surface point
s ∈ S, we sample offsets from a uniform distribution that
is bounded by zero and the nearest distance of s and other
points in S. Then, we add the offsets to s to form the queries.
We use the implicit filed to predict the gradient and distance
for each query point, and project it to the surface by pulling
q along gradient ∇gϕ(q) at a stride of the predicted distance
gϕ(q) with Eq. 4. To make the upsampled point cloud more
uniform, we generate more query points than the target and
employ farthest points sampling (FPS) (Eldar et al. 1997)
algorithm to downsample it to the target number.

Implementation Details
For the local distance indicator, the input patches are nor-
malized and interpolated using the same strategies in (He
et al. 2023). During the learning of global implicit field, we
adopt the similar strategy as (Zhou et al. 2022) to sample
about 240 queries around each point si. Specifically, we add
Gaussian noises to the sparse point cloud to generate query
points where the mean is 0 and the standard variance is 20%
of the distance between si and its 50-th nearest point on the
point cloud. We also add some query points randomly sam-
pled on the whole space.

We employ network structures of encoder and decoder
similar to (He et al. 2023) for the feature extractor and dis-
tance predictor individually. The encoder mainly consists of
several dense blocks (Huang et al. 2017) and the decoder
contains several MLP layers with ReLU activation. Besides,
we adopt a neural network similar to DeepSDF (Park et al.
2019) to represent the global implicit field, which is com-
posed of 8 fully connected layers with a residual connection.

Experimental Results
Experiment Setup
Dataset. We adopt two public synthetic datasets to eval-
uate our method. First, we make a comparison with the
baseline methods on the PU-GAN dataset provided by (Li
et al. 2019). This dataset contains 147 objects with various
geometries, and 120 objects are used for training and the
rest are used for testing. Second, we adopt a more complex
dataset PU1K provided by (Qian et al. 2021a), which con-
tains 1,147 3D models collected from different categories,
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Figure 5: Qualitative comparisons of 16× upsampling results on the the PU-GAN dataset. Our method generates uniform dense
point clouds with fewer holes and outliers than state-of-the-art methods.

Factor 4× (r=4) 16× (r=16)

Methods CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
10−3 10−3 10−3 10−3 10−3 10−3

PU-Net 0.507 4.312 4.694 0.596 6.929 6.014
MPU 0.289 4.771 2.830 0.175 5.898 3.111
PU-GAN 0.284 3.301 2.660 0.202 5.045 2.996
Dis-PU 0.278 3.447 2.343 0.180 4.888 2.560
PU-GCN 0.274 2.974 2.535 0.144 3.713 2.731
NePs 0.385 5.615 1.642 0.147 8.851 1.925
PU-SMG 0.296 2.404 2.492 0.155 2.749 2.573
PC2-PU 0.255 2.504 2.119 0.111 2.806 2.351
MAFU 0.280 2.315 1.854 0.156 3.408 1.996
Grad-PU 0.260 2.462 1.949 0.132 2.421 2.190

Ours 0.232 1.675 1.338 0.092 1.504 1.544

Table 1: Quantitative comparison between our method and
the state-of-the-art methods on the PU-GAN dataset.

and 1020 objects are used for training. We use the patch to
form the training data provided by the authors, which con-
tains the pairs of sparse patches with 256 points and dense
patches with 1024 points. We use the sample data augmenta-
tion strategy like previous methods (He et al. 2023) to make
data diverse, including normalizing, rotation and random
scale. For testing, each input point cloud generated from
the watertight meshes contains 2048 points and ground truth
contains 8096 points. We use the training sets of the two
datasets to learn the local priors, and then learn the implicit
field on the sparse point cloud of the test. All experiments
are conducted on a single GeForce RTX 3090 gpu. We set
α = 1.0, γ = 0.1, and β decays linearly from 0.5 to 0.

Evaluation Metrics. To evaluate the performance of point
cloud upsampling, we use Chamder distance (CD), Haus-
dorff distance (HD), and point-to-surface distance (P2F) as
evaluation metrics following (He et al. 2023).

Arbitrary-Scale Point Cloud Upsampling. We compare
our method with previous arbitary-scale upsampling meth-

Methods CD↓ HD↓ P2F↓
10−3 10−3 10−3

PU-Net 1.155 15.170 4.834
MPU 0.935 13.327 3.511
PU-GCN 0.585 7.577 2.499
Dis-PU 0.485 6.145 1.802
PU-SMG 0.527 4.396 1.647
PU-Transformer 0.451 3.843 1.277
Grad-PU 0.404 3.732 1.474

Ours 0.371 3.197 1.111

Table 2: Comparison with the state-of-the-art methods on
PU1K dataset.

ods including MAFU and Grad-PU on the PU-GAN dataset
in Table 3. All methods are trained with scale factor 4x and
are trained for one time. The results show that our method
achieves the best performance in various scale factors.

Baselines. We compare the proposed method with several
state-of-the-art methods and divide them into fix-scale meth-
ods and arbitrary-scale methods according to the scale fac-
tor. The fix-scale methods include PU-Net (Yu et al. 2018),
MPU (Yifan et al. 2019), PU-GAN (Li et al. 2019), Dis-PU
(Li et al. 2021), PU-GCN (Qian et al. 2021a), PC2-PU(Long
et al. 2022) and PU-Transformer (Qiu et al. 2022), and the
arbitrary-scale methods include MAFU (Qian et al. 2021b),
NePs (Feng et al. 2022), PU-SMG (Dell’Eva et al. 2022),
and Grad-PU (He et al. 2023). For a fair comparison, we
used the official pre-trained models when available and re-
trained the others with the published code with default pa-
rameter settings.

Evaluation on Synthetic Dataset
Results on PU-GAN Dataset. As shown in Table 1, our
method significantly outperforms the baseline methods in-
cluding PU-Net (Yu et al. 2018), MPU(Yifan et al. 2019),
PU-GAN (Li et al. 2019), Dis-PU (Li et al. 2021), PU-
GCN (Qian et al. 2021a), NePs (Feng et al. 2022), PU-SMG
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Figure 6: The results on KITTI dataset. Our method gener-
ates visual-appealing results.

3× (r=3) 5× (r=5)

Methods CD↓ HD↓ P2F↓ CD↓ HD↓ P2F↓
10−3 10−3 10−3 10−3 10−3 10−3

MAFU 0.555 2.902 1.758 0.252 2.308 1.949
Grad-PU 0.524 3.050 1.778 0.244 2.447 2.459

Ours 0.448 2.447 1.333 0.193 1.706 1.445

7× (r=7) 13× (r=13)

Methods CD↓ HD↓ P2F ↓ CD↓ HD↓ P2F ↓
10−3 10−3 10−3 10−3 10−3 10−3

MAFU 0.207 2.593 2.013 0.177 3.212 2.014
Grad-PU 0.223 2.654 3.325 0.242 4.144 5.703

Ours 0.148 1.534 1.468 0.134 1.878 1.524

Table 3: Quantitative comparison between our method and
the state-of-the-art methods with various scale factors.

(Dell’Eva et al. 2022), PC2-PU (Long et al. 2022), MAFU
(Qian et al. 2021b), and Grad-PU (He et al. 2023), indicat-
ing that learning continuous field helps to upsample points
accurately on the surface. We also perform a visual compar-
ison in Figure 5, which shows that our method can produce
uniform point cloud with fewer holes and outliers. The qual-
itative and quantitative results for the scale factor 16× show
that our method gains larger improvements. The reason be-
hind is that the errors that produced by the local prediction
accumulate with the scale factor increasing. Our method will
not be affected by these due to the continuous field learning.

Results on PU1K Dataset. We evaluate our method on
the more challenging PU1K dataset. We set the scale factor
to 4× and report the comparison results with (Yu et al. 2018;
Yifan et al. 2019; Qian et al. 2021a; Li et al. 2021; Qiu et al.
2022; Dell’Eva et al. 2022; He et al. 2023) in Table 2, which
shows that our method outperforms others on all metrics.

Evaluation on Real Scan Dataset
We validate our method on the real scanned datasets
ScanObjectNN (Uy et al. 2019) and KITTI (Geiger et al.
2013) with the models trained on the PU-GAN dataset.
We only show the qualitative results since the ground truth
dense point clouds are unavailable. We utilize BallPivoting
(Bernardini et al. 1999) to reconstruct the meshes for the

Input 256 Input 512 Input 1024 Input 4096

Figure 7: 4× results with various input sizes. The blue point
clouds are inputs and the red point clouds are corresponding
outputs. Our method generates consistent point clouds with
various input sizes.

Input MAFU OursGrad-PUPC2-PU

Figure 8: The 4× results on ScanObjectNN dataset. The
meshes are reconstructed with the BallPivoting algorithm.
The results show that our method generates more complete
and smooth dense point clouds and meshes.

Input GT PU-GAN Dis-PU

PU-GCN PC2-PU Grad-PU Ours

Figure 9: 4× results with noise level τ = 1%. The point
cloud sampled by our method is cleaner with fewer outliers.
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Noise Level τ = 1% τ = 2%

Methods CD ↓ HD ↓ P2F ↓ CD ↓ HD↓ P2F↓
10−3 10−3 10−3 10−3 10−3 10−3

PU-Net 0.588 6.182 9.842 1.057 9.954 16.282
PU-GAN 0.435 7.848 7.300 0.815 9.450 14.246
Dis-PU 0.430 6.580 6.954 0.776 8.861 13.934
PU-GCN 0.411 5.001 6.963 0.781 8.926 13.730
PC2-PU 0.369 4.390 5.646 0.733 7.921 12.610
Grad-PU 0.423 4.307 6.403 0.730 6.993 11.481

Ours 0.339 3.089 5.167 0.622 6.485 10.984

Table 4: Quantitative comparison on the PU-GAN dataset
with different noise level τ .

upsampled point clouds on ScanObjectNN and report the re-
sults in Figure 8 which show that our method can generate
more complete and smooth point clouds and meshes. The
testing results on KITTI in Figure 6 show that we achieve
visual-appealing upsampling results. The comparison with
other methods is provided in the supplemental materials.

Robustness Test
Various Input Size. The input sizes of test point cloud in
PU-GAN and PU1K are fixed to 2048. To prove that our
method is robust to the input size variation, we conduct 4×
upsampling experiment on PU-GAN dataset. As shown in
Figure 7, our method is not affected by the input sizes and
generates consistent results in different point density.

Additive Noise. Following previous methods (Qian et al.
2021a; Long et al. 2022; He et al. 2023), we conduct r = 4×
experiments on PU-GAN dataset to test the robustness of
the proposed method. We add Gaussian noise to clean point
clouds to generate noisy point clouds at two noise levels (1%
and 2%). We compare our method with PU-Net, PU-GAN,
Dis-PU, PU-GCN, PC2-PU and Grad-PU, and all of these
methods are trained with the same augmentation strategy of
Gaussian noise perturbation. The reported results in Table 4
show that our method achieves the best performances at both
noise levels. Figure 9 shows that our method can produce
point cloud with cleaner surface with fewer outliers, which
proves the robustness of our method to noisy input.

Ablation Studies
We conduct ablation studies on the subset of the PU1K
dataset to show how each module influences the results. We
randomly choose about 15% shapes from the testing set as
the subset and the results are reported in Table 5.

Module Design. We first demonstrate the effectiveness of
the attention-based module. We adopt the same interpola-
tion operation as (He et al. 2023) to replace the attention
weighting process with the inverse Euclidean distances with
neighboring points. At local level, we use the same gradi-
ent descent (GD) strategy as Grad-PU. As shown by “In-
terpolation (GD)” and “Attention (GD)” in the label, the at-
tention module improves the performance in all metrics. At
global level, we use the interpolation based local distance

Ablation Settings CD↓ HD ↓ P2F ↓
Interpolation (GD) 0.759 5.206 1.753
Attention (GD) 0.678 4.931 1.456
Interpolation (Global) 0.714 5.452 1.503
OnSurfacePrior 0.719 9.533 2.934
w/o Llocal 0.874 6.523 1.819
w/o Lnp 0.555 5.720 1.794
w/o Lsp 0.746 5.089 1.344
w/o Lsurf 0.676 5.040 1.541
full 0.637 4.864 1.401

Table 5: Results of the ablation study for different exper-
iment settings, with metrics CD(×10−3), HD(×10−3) and
P2F(×10−3). Bold and underlined numbers indicate the first
and second best performance, respectively.

indicator to guide the learning of continuous field (“Interpo-
lation (Global)”). Comparing with our attention-based indi-
cator (“full”), we find a drop in performance, which shows
that the attention-based module plays a positive role in the
learning of the global implicit field.

As shown by “Interpolation (GD)” vs “Interpolation
(Global)” and “Attention (GD)” vs “full”, the global implicit
field strategy performances better than the gradient descent
strategy in almost all metrics, which shows the global im-
plicit field helps to generate point clouds with higher quality.

We conduct the experiment to compare our method with
OnSurfacePrior (Ma et al. 2022) that also has the combina-
tion of local indicator and global learning as shown by “On-
SurfacePrior” in Table 5. The results demonstrates that our
designs are more adaptive to the point cloud upsampling.

Loss Function. We remove each loss term from the full
setting to show how it influences the final result. As shown
by “w/o Llocal”, the performance degenerates dramatically
without the local distance indicator. As shown by “w/o Lnp”,
the nearest point loss increases the CD, but it improves the
other metrics significantly. The reason for the metric in-
crease is that the nearest point on the sparse point is not exact
the nearest point on the underlying surface, which leads to
approximation errors. The third row “w/o Lsp” shows that
the shortest path loss improves the CD and HD, but leads
to an increase on P2F for the introduced noises. The surface
loss can improve the performance on all metrics.

Conclusion
In this paper, we present a novel method to learn an unsigned
distance field with a local distance indicator for arbitrary-
scale point cloud sampling. Instead of upsampling the point
sets at the local level as existing methods, we propose to
represent the entire point cloud in the global implicit field to
keep the consistency among local patches. We first design an
attention-based local distance indicator that predicts the dis-
tance from a query location to the surface of the local patch,
and then utilize it to guide the learning of implicit field for
the point cloud. Extensive quantitative and qualitative com-
parisons on synthetic data and real scans demonstrate that
our method outperforms prior state-of-the-art methods.
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