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Abstract

Recently, Gaussian Splatting has sparked a new trend in the
field of computer vision. Apart from novel view synthesis, it
has also been extended to the area of multi-view reconstruc-
tion. The latest methods facilitate complete, detailed surface
reconstruction while ensuring fast training speed. However,
these methods still require dense input views, and their output
quality significantly degrades with sparse views. We observed
that the Gaussian primitives tend to overfit the few training
views, leading to noisy floaters and incomplete reconstruction
surfaces. In this paper, we present an innovative sparse-view
reconstruction framework that leverages intra-view depth and
multi-view feature consistency to achieve remarkably accu-
rate surface reconstruction. Specifically, we utilize monoc-
ular depth ranking information to supervise the consistency
of depth distribution within patches and employ a smooth-
ness loss to enhance the continuity of the distribution. To
achieve finer surface reconstruction, we optimize the absolute
position of depth through multi-view projection features. Ex-
tensive experiments on DTU and BlendedMVS demonstrate
that our method outperforms state-of-the-art methods with
a speedup of 60x to 200x, achieving swift and fine-grained
mesh reconstruction without the need for costly pre-training.

Introduction
Reconstructing surfaces from multi-view images is a long-
standing task in 3D vision, graphics, and robotics. Multi-
view stereo (Xu and Tao 2019; Yao et al. 2018; Schönberger
et al. 2016) is a traditional reconstruction method consist-
ing of processes such as feature extraction, depth estimation,
and depth fusion. This technique achieves favorable results
with dense views, but struggles in sparse view reconstruc-
tion due to the lack of matching features.

Over the recent years, neural implicit reconstruction has
rapidly progressed based on neural radiance fields (Milden-
hall et al. 2020). Some methods (Wang et al. 2021; Yariv
et al. 2021; Fu et al. 2022) employ neural rendering to op-
timize implicit geometry fields and color fields from multi-
view images. They can achieve smooth and complete sur-
faces with implicit geometric representations. However, im-
plicit geometric fields tend to overfit with a limited number
of input views, leading to geometric collapse.

To address this issue, two types of neural implicit meth-
ods for sparse view reconstruction have been developed. The
first type is a generalizable approach (Long et al. 2022; Ren
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Figure 1: Surface reconstruction from 3-view images of
DTU scan 24. The trendiest general method 2DGS (Huang
et al. 2024a) is fast but yields coarse results. The state-
of-the-art per-scene optimization method, NeuSurf (Huang
et al. 2024b), and the generalization method, UFORecon (Na
et al. 2024), produce suboptimal surfaces and require long
training time. In contrast, our method (FatesGS) achieves
swift and detailed reconstruction. *Pre-training time.

et al. 2023; Na et al. 2024), which is trained on large-scale
datasets and subsequently applied to infer new scenes. The
second type focuses on per-scene optimization (Huang et al.
2024b; Yu et al. 2022), where no pre-training is needed,
and the method directly fits different scenes. Although both
types of methods achieve satisfactory geometric results, they
require either several days of pre-training or optimization for
several hours per scene, as shown in Figure 1.

Lately, Gaussian Splatting (Kerbl et al. 2023) has been
widely adopted for novel view synthesis due to its high ren-
dering quality and fast training speed. However, 3D Gaus-
sians lack the capability to represent scene geometry con-
sistently, leading to imprecise surface reconstruction. To en-
sure the surface alignment property, some methods (Huang
et al. 2024a; Dai et al. 2024) modify the shape of Gaussian
primitives and the splatting techniques. With depth maps fu-
sion, the geometry of the object can be reconstructed com-
pletely and precisely. These methods retain the fast training



speed of Gaussian Splatting in multi-view reconstruction.
However, with fewer input views, geometric consistency de-
creases, leading to inaccurate Gaussian primitive localiza-
tion and flawed depth rendering. This results in noisy and
incomplete output meshes.

In this paper, we present a novel sparse view reconstruc-
tion framework that leverages the efficient pipeline of Gaus-
sian Splatting along with two consistency constraints to en-
hance both reconstruction speed and accuracy. Specifically,
we transform the 3D ellipsoid Gaussian into a 2D ellipse
Gaussian for more precise geometric representation and em-
ploy 2D Gaussian rendering to optimize the attributes of
the Gaussian primitives. To mitigate local noise induced
by overfitting, we segment the image into patches and reg-
ulate the ranking relationships within these patches using
monocular depth information. Additionally, we introduce a
smoothing loss to address abrupt depth changes in texture-
less regions, thereby ensuring the continuity of the depth dis-
tribution. The intra-view depth consistency aided in achiev-
ing coarse reconstruction geometry, yet compromised nu-
merous details. To resolve the issue of over-smoothing, we
align the reprojection features of depth-rendered points to
ensure precise multi-view feature consistency, which signif-
icantly enhances the quality of surface reconstruction.

Our contributions are summarized as follows.

• We propose FatesGS for sparse-view surface reconstruc-
tion, taking full advantage of the Gaussian Splatting
pipeline. Compared with previous methods, our approach
neither requires long-term per-scene optimization nor
costly pre-training.

• We leverage intra-view depth consistency to facilitate the
learning of coarse geometry. Furthermore, we optimize
the multi-view feature consistency of depth-rendered
points to enhance the learning of detailed geometry.

• We achieve state-of-the-art results in sparse view surface
reconstruction under two distinct settings on the widely
used DTU and BlendedMVS datasets.

Related Works
Multi-View Stereo (MVS)
In the field of 3D reconstruction, MVS methods have estab-
lished themselves based on their scalability, robustness, and
accuracy. Point clouds (Furukawa and Ponce 2010; Lhuil-
lier and Quan 2005), depth maps (Galliani, Lasinger, and
Schindler 2015; Schönberger et al. 2016; Xu and Tao 2019),
and voxel grids (Kostrikov, Horbert, and Leibe 2014; Choe
et al. 2021; Ji et al. 2017) are used as 3D representations
in MVS pipeline to accomplish geometry reconstruction.
While these methods can achieve dense reconstruction, they
often produce limited results in texture-less regions.

Neural Implicit Reconstruction
NeRF (Mildenhall et al. 2020) represents a scene as den-
sity and radiance fields, which are optimized using volumet-
ric rendering. Inspired by this, NeuS (Wang et al. 2021),
VolSDF (Yariv et al. 2021), and subsequent optimization
methods (Yu et al. 2022; Fu et al. 2022; Darmon et al. 2022;

Li et al. 2023) transform signed distance function(SDF) into
density, reconstructing multi-view images into implicit sur-
faces. However, these methods focus on dense view recon-
struction, which places high demands on the input.

To enable sparse view reconstruction, both generalization
and per-scene optimization methods have been proposed re-
cently. The generalizable methods (Long et al. 2022; Ren
et al. 2023; Xu et al. 2023; Na et al. 2024; Liang, He,
and Chen 2024; Peng et al. 2023) are trained on large-scale
datasets and then generalized to new scenes. These methods
require significant time on high-performance GPUs (usu-
ally several days) to learn the correspondence between 3D
geometry and 2D views in advance. In contrast, per-scene
optimization methods (Huang et al. 2024b; Yu et al. 2022;
Vora, Patil, and Zhang 2023; Wang et al. 2023) do not re-
quire training on large-scale datasets but instead directly fit
the 3D geometry from the sparse images of a given scene.
Due to the lack of learned correspondence, these methods
often require several hours to fit from scratch.

Gaussian Splatting
3D Gaussian Splatting (3DGS) (Kerbl et al. 2023) repre-
sents the latest advancement in novel view synthesis, lever-
aging explicit Gaussian primitives for scene representation.
By integrating a splatting-rendering pipeline, 3DGS main-
tains high-quality rendering while enabling real-time perfor-
mance. However, 3DGS still requires dense view input and
tends to overfit the training views when dealing with sparse
input. To address this issue, some studies introduce monoc-
ular depth regularization (Li et al. 2024; Zhu et al. 2023;
Chung, Oh, and Lee 2023; Xiong et al. 2023) for sparse
views to constrain geometric relationships, thereby reducing
Gaussian overfitting for high-quality rendering.

Lately, to extend the advantages of Gaussian Splatting
into the field of surface reconstruction, some work (Chen,
Li, and Lee 2023; Guédon and Lepetit 2023; Lyu et al. 2024)
have enhanced surface representation by integrating regular-
ization terms and Signed Distance Function (SDF) implicit
fields at the cost of reduced training speed. 2DGS (Huang
et al. 2024a) and Gaussian Surfels (Dai et al. 2024) flat-
ten the 3D ellipsoid into 2D ellipse to obtain more stable
and consistent geometric surfaces. Although these methods
achieve satisfactory results with dense views, they can only
produce noisy and incomplete surfaces under sparse input.

Method
Our goal is to reconstruct the high-quality geometry S of a
scene from a collection of sparse-view images I = {Ii | i ∈
1, 2 . . . , N}, with poses T = {Ti | i ∈ 1, 2 . . . , N}. In this
paper, we propose FatesGS, a Gaussian surface reconstruc-
tion approach with sparse views, as shown in Figure 2.

Since the Gaussian splatting process involves localized
operations for fast rendering and optimization, it tends to
produce floating artifacts and view misalignments when
only a few views are provided (Sun et al. 2024a). This re-
sults in the collapse of the learned geometry. Our motivation
is to leverage intra-view depth consistency to prevent local
noise for coarse geometry and multi-view feature alignment
to maintain coherent observations for detailed geometry.
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Figure 2: Overview of FatesGS. Starting with a set of sparse input views, we initialized 2D Gaussians using COLMAP and
employed splatting to render RGB images and depth maps. To enhance the geometric learning process, we integrated ranking
information from monocular depth estimation and applied depth smoothing to ensure intra-view depth consistency. Using the
reference depth map, we computed 3D spatial points and projected them onto the source image to extract multi-scale features.
By aligning these multi-view features, we further refined the reconstructed geometry.

Learning Multi-View Geometry by Gaussian
Splatting
3DGS (Kerbl et al. 2023) represents the scene as a series of
3D Gaussians. Each Gaussian can be defined by center po-
sition µ, scaling matrix S, rotation matrix R, opacity o, and
SH coefficients. The view-dependent appearance can be ren-
dered with local affine transformation (Zwicker et al. 2001)
and alpha blending techniques. Although 3DGS can achieve
good rendering results, the geometric results remain noisy.

Following the previous work (Huang et al. 2024a; Dai
et al. 2024), we flatten the 3D ellipsoid into 2D ellipse to
enable the primitives to better cover the surface of objects.
Scaling matrix S and rotation matrix R can be expressed as
S = (s1, s2), R = (t1, t2, t1 × t2). Then the 2D ellipse can
be defined within a local tangent plane in world space as:

P (u, v) = µ+ s1t1u+ s2t2v. (1)

For the point u = (u, v) within the uv plane, its correspond-
ing 2D Gaussian value can be determined using the standard
Gaussian function:

G(u) = exp

(
−u2 + v2

2

)
. (2)

During the scene optimization process, the parameters of
the 2D Gaussian primitives are all designed to be learnable.
The view-dependent color c is obtained through spherical
harmonic (SH) coefficients. For Gaussian rasterization, 2D
Gaussians are depth-sorted and then integrated into an im-
age with alpha blending from front to back. Given a pixel
from one image, the rendered color Ĉ(r) of a homogeneous
ray r emitted from the camera can be expressed as:

Ĉ(r) =
∑
i=1

ciωi, (3)

ωi = oiGi (u(r))

i−1∏
j=1

(1− ojGj(u(r))) , (4)

where ci is the i-th view-dependent color, ωi is blending
weight of the i-th intersection.

Similarly, the rendered depth D̂(r) for the homogeneous
ray r can be accumulated by alpha blending as:

D̂(r) =

∑
i=1 ωidi∑

i=1 ωi + ϵ
. (5)

Following (Huang et al. 2024a), the i-th intersection depth
di is obtained by the ray-splat intersection algorithm.

Intra-View Depth Consistency
Since Gaussian Splatting lacks the concept of geometric
fields, surface reconstruction relies on rendered depth ex-
traction. Direct depth optimization seems to avoid overfit-
ting and address geometric noise effectively. Employing ab-
solute scaling for monocular depth to supervise rendered
depth (Yu et al. 2022; Xiong et al. 2023) and enhancing
the correlation between monocular and rendered depth (Zhu
et al. 2023) are regarded as effective depth regularization
techniques. However, it has been proven that these strategies
might result in a noisy distribution of Gaussian primitives
(Sun et al. 2024b). To avoid geometric collapse caused by
hard constraints, we utilized monocular depth information to
maintain the ranking consistency of local rendering depth.
Since long-range depth ambiguity may exist in monocular
depth, we performed local depth information distillation on
a patch-by-patch basis.

Specifically, We divide the image I into patches, each of
size M × M . The i-th patch Pi is represented as a list of
pixels:

Pi =
{
p
(i)
j

∣∣∣ j ∈ 1, . . . ,M2
}
. (6)



To simplify, the pixels in the patch are shuffled, denoted as:

P ′
i = shuffle (Pi) =

{
p
(i)
kj

∣∣∣ j ∈ 1, . . . ,M2
}
. (7)

For each pixel in Pi and P ′
i , we obtain its rendered depth D̂

and monocular depth D̃. A patch-based depth ranking loss
is then expressed as:

Lr =
∑
i,j

σ
(
sgn

(
D̃

(i)
kj

− D̃
(i)
j

)
·
(
D̂

(i)
j − D̂

(i)
kj

)
+m

)
,

(8)
where σ(·) represents the ReLU function, and m is a small
positive threshold.

The patch-based depth ranking loss ensures the overall
distribution consistency of Gaussian primitives. However,
noisy primitives still exist in texture-less areas, resulting in
abrupt depth changes. Therefore, we propose a smoothing
loss for the depth of adjacent pixels to enhance the distribu-
tion continuity of the reconstructed surface:

Ls =
∑
i,j,k

∑
|D̃k−D̃(i,j)|<me

σ
(∣∣∣D̂k − D̂(i,j)

∣∣∣−mt

)
. (9)

Here, D̂(i,j) denotes the rendered depth value of the pixel at
i-th row and j-th column within the whole image. Small pos-
itive thresholds me and mt are utilized to recognize edges
and avoid over-smoothing. k ∈ {(i+ 1, j), (i, j + 1)}.

Multi-View Feature Alignment
Intra-view depth consistency helps maintain the overall
shape and structure of the reconstructed object. While rank-
ing and smoothing are effective in reducing artifacts and
preserving the coarse geometry, they fall short in refining
the finer details of the reconstruction. Multi-view geome-
try may present a reliable solution. The traditional Multi-
View Stereo (MVS) reconstruction pipeline typically em-
ploys photometric consistency across multiple views to re-
fine the surface. Inspired by that, a straightforward idea is
to project the 3D points corresponding to the depth of each
view onto other views and then compute the color difference
on the projected views.

However, due to the influence of lighting, the colors may
differ across different viewpoints (Zhan et al. 2018). When
there are only a few input views, the number of reference
views for projection is limited, and the spacing between
views is greater compared to dense views. As a result, the
influence of lighting on the color of surface points becomes
more pronounced. To resolve these issues, we have designed
a multi-level feature projection loss.

Let I(l)i denote the image whose resolution is downscaled
by a scale factor l from the original image Ii, the image set
of the downscaled images then can be marked as

I(l) =
{
I
(l)
i

∣∣ i ∈ 1, 2, . . . , N
}
, l ∈ 1, 2, . . . , 2L. (10)

Multi-view feature at single level l can be calculated using
a frozen feature extraction network fϕ:

F (l) = fϕ(I(l)) =
{
F

(l)
i

∣∣ i ∈ 1, 2, . . . , N
}
. (11)

Let Ir, Is denote the reference view image and one of its
source view image, respectively. For a pixel pr,i of Ir, with
its rendered depth D̂r,i, we can calculate the corresponding
spatial point xr,i and its projected pixel coordinate ps,i to
the source view Is by

xr,i = or + D̂r,i · dr,i, (12)
ps,i = KP−1

s xr,i, (13)
where K and Ps represent the intrinsic matrix and camera
pose of the source view image Is. dr,i is the normalized di-
rection vector of the ray omitted form or passing through
pr,i. Then the feature loss can be acquired by

Lf =
∑
s,i,l

1

l
· vr,s,i

∣∣∣1− cos
(
F (l)
r (pr,i) ,F

(l)
s (ps,i)

)∣∣∣ .
(14)

Since surface points may be occluded when projected onto
the source views. We design visibility item vr,s,i, which in-
dicates the visibility of xr,i from the viewpoint os. For spa-
tial points along the ray rs,i which is emitted from os and
passes through ps,i, only the nearest one is considered visi-
ble and its visibility item is set as 1, while the others are set
as 0. The process can be expressed as

vr,s,i =

[
i = argmin

t
(∥xr,t − os∥)

]
,

where t ∈
{
t
∣∣∣ ps,i = KP−1

s xr,t

}
.

(15)

[·] represent the Iverson Bracket.

Loss Functions
The overall loss functions are defined as follows:
L = Lc + λ1Lr + λ2Ls + λ3Lf + λ4Ld + λ5Ln, (16)

where Lr and Ls represent the ranking and smoothing losses
from intra-view depth consistency, respectively, and Lf de-
notes the multi-view feature loss. These terms are defined
above.

According to 3DGS (Kerbl et al. 2023), the L1 loss and
LD−SSIM loss are utilized for color supervision Lc. This
can be formulated as follows, with λ = 0.2:

Lc = (1− λ)L1 + λLD−SSIM . (17)
As with 2DGS (Huang et al. 2024a), depth distortion loss
and normal consistency loss are used as regularization terms
to optimize surface geometry.

Ld =
∑
i,j

ωiωj |di − dj | , Ln =
∑
i

ωi(1− nT
i N).

(18)
Here, ω and d are computed during the Gaussian Splatting
process, nT

i represents the estimated normal near the depth
point, and N is the estimated normal near the depth point.

Experiments and Analysis
To demonstrate the effectiveness and generalization perfor-
mance of our approach, we compare our evaluation results
with previous state-of-the-art methods in terms of recon-
struction accuracy and training efficiency. Additionally, we
provide a detailed ablation study and analysis to validate the
efficacy of each component of our proposed method.



Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

COLMAP 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
TransMVSNet 1.07 3.14 2.39 1.30 1.35 1.61 0.73 1.60 1.15 0.94 1.34 0.46 0.60 1.20 1.46 1.35

SparseNeuSft 2.17 3.29 2.74 1.67 2.69 2.42 1.58 1.86 1.94 1.35 1.50 1.45 0.98 1.86 1.87 1.96
VolRecon 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38
ReTR 1.05 2.31 1.44 0.98 1.18 1.52 0.88 1.35 1.30 0.87 1.07 0.77 0.59 1.05 1.12 1.17
C2F2NeuS 1.12 2.42 1.40 0.75 1.41 1.77 0.85 1.16 1.26 0.76 0.91 0.60 0.46 0.88 0.92 1.11
GenSft 0.91 2.33 1.46 0.75 1.02 1.58 0.74 1.16 1.05 0.77 0.88 0.56 0.49 0.78 0.93 1.03
UFORecon 0.76 2.05 1.31 0.82 1.12 1.18 0.74 1.17 1.11 0.71 0.88 0.58 0.54 0.86 0.99 0.99

NeuS 4.57 4.49 3.97 4.32 4.63 1.95 4.68 3.83 4.15 2.50 1.52 6.47 1.26 5.57 6.11 4.00
VolSDF 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
MonoSDF 2.85 3.91 2.26 1.22 3.37 1.95 1.95 5.53 5.77 1.10 5.99 2.28 0.65 2.65 2.44 2.93
NeuSurf 0.78 2.35 1.55 0.75 1.04 1.68 0.60 1.14 0.98 0.70 0.74 0.49 0.39 0.75 0.86 0.99

3DGS 3.38 4.19 2.99 1.76 3.38 3.80 5.21 2.91 4.29 3.18 3.23 5.18 2.78 3.48 3.32 3.54
Gaussian Surfels 3.56 5.42 3.95 3.68 4.61 2.72 4.42 5.22 4.71 3.46 4.07 5.42 2.44 3.27 4.00 4.06
2DGS 1.26 2.95 1.73 0.96 1.68 1.97 1.58 1.87 2.50 1.02 1.93 1.91 0.72 1.85 1.37 1.69

Ours 0.67 1.94 1.17 0.77 1.28 1.23 0.63 1.05 0.98 0.69 0.75 0.48 0.41 0.78 0.90 0.92

Table 1: The quantitative comparison results of Chamfer Distance (CD↓) on DTU dataset (large-overlap setting). Cell
colors denote best , second best and third best results.

Experimental Settings
Datasets. We evaluate our approach on DTU dataset
(Jensen et al. 2014), which is extensively utilized in previous
surface reconstruction research. DTU comprises 15 scenes,
each with 49 or 69 images at a resolution of 1600 × 1200.
We follow the previous work (Huang et al. 2024b) to train
and evaluate the model on 3 views of both the large-overlap
(SparseNeuS) setting and the little-overlap (PixelNeRF) set-
ting. The images are downscaled into 800 × 600 pixels
during training procedure, following (Huang et al. 2024a).
To assess generalization performance, we further test our
method on BlendedMVS dataset (Yao et al. 2020) with ran-
domly selected 3 input views per scene at a resolution of 768
× 576. Consistent with sparse-view settings from previous
works, the camera poses are assumed to be known.

Baselines. We compare our approach with abundant
SOTA methods of various categories. i. MVS methods:
COLMAP (Schonberger and Frahm 2016) and TransMVS-
Net (Ding et al. 2022). ii. Generalizable sparse-view neural
implicit reconstruction methods: SparseNeuS (Long et al.
2022), VolRecon (Ren et al. 2023), ReTR (Liang, He, and
Chen 2024), C2F2NeuS (Xu et al. 2023), GenS (Peng et al.
2023) and UFORecon (Na et al. 2024). iii. Per-scene opti-
mization neural implicit methods: NeuS (Wang et al. 2021),
VolSDF (Yariv et al. 2021), MonoSDF (Yu et al. 2022) and
NeuSurf (Huang et al. 2024b). iv. Gaussian splatting based
methods: 3DGS (Kerbl et al. 2023), Gaussian Surfels (Dai
et al. 2024) and 2DGS (Huang et al. 2024a). For a fair com-
parison, we initialize 3DGS and 2DGS with the same point
clouds used in our method. We also adopt the same TSDF
depth fusion approach as ours for 3DGS to extract meshes.

Implementation Details. Following previous research,
we use COLMAP (Schonberger and Frahm 2016) for Gaus-
sians initialization. Our framework is built upon 2DGS

GT Image UFORecon NeuSurf Ours2DGS

Figure 3: Visual comparison of 3-view reconstruction on
BlendedMVS dataset.

(Huang et al. 2024a) and 3DGS (Kerbl et al. 2023). We adopt
Vis-MVSNet (Zhang et al. 2020) as the feature extraction
network fϕ and Marigold (Ke et al. 2024) as the monocular
depth estimation model fθ. All experiments presented in this
paper are conducted on a single NVIDIA RTX 3090 GPU.

Comparisons
Sparse View Reconstruction. The quantitative results of
geometry reconstruction from sparse input views on the
DTU dataset (large-overlap setting) are presented in Table 1.
Additional experimental results (e.g., little-overlap setting)
are presented in the supplementary materials. Our method
achieves the best mean Chamfer Distance (CD) performance
across 15 scenes compared to others. As illustrated in Figure
4, our approach achieves more comprehensive global geom-
etry and preserves finer details. This highlights our method’s
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Figure 4: Qualitative comparison of reconstruction results on the DTU with different sparse settings.

superior capability in multi-view feature extraction. More-
over, in contrast to NeuSurf, our method successfully avoids
over-smoothing of the geometric surfaces.

Reconstruction results on BlendedMVS are shown in Fig-
ure 3. Our method exhibits consistent and stable perfor-
mance across datasets with the same set of hyperparameters.
In contrast, UFORecon, which is currently the most recent
generalizable method, has not undergone extensive training
on this dataset, resulting in significant reconstruction defects
and noise. NeuSurf, being the latest per-scene optimization
method, produces surfaces in the SDF field that are overly
smooth, leading to a loss of local texture details. 2DGS, a
leading Gaussian splatting surface reconstruction method,
struggles with sparse image coverage. Insufficient geometric
consistency can lead to flawed depth rendering and subopti-
mal reconstruction results.

Efficiency. We conduct an efficiency study on all spe-
cialized sparse-view reconstruction methods using the DTU
SparseNeuS 3-view setting, as detailed in Table 2. The pre-
sented results are obtained from tests conducted on a sin-
gle NVIDIA RTX 3090 GPU. To ensure a fair compari-

Method
Training Time

GPU Mem.
Pre-Training Per-Scene

SparseNeuSft 2.5 days 19 mins 7 GB
GenSft ∼ 1 day∗ 25 mins 19 GB∗

VolRecon ∼ 2 days
-

17 GB
ReTR ∼ 3 days 22 GB
UFORecon ∼ 10 days 23 GB
MonoSDF

-
6 hours 14 GB

NeuSurf 14 hours 8 GB
Ours 14 mins 4 GB

Table 2: Comparison with the efficiency of sparse-view
reconstruction methods. The listed GPU memory val-
ues are approximate maximum occupancies during training.
∗We use 2 NVIDIA RTX 3090 GPUs for GenS pre-training.

son, all models are configured with settings optimized for
peak performance. In previous methods, generalizable ap-
proaches require extensive pre-training, often taking several
days. Per-scene optimization methods, on the other hand,



need several hours of training for each scene. In contrast,
our method completes training in just a few minutes and uses
significantly less GPU memory.

Depth Prediction. We trained our model using three seen
views and tested it on the same three views, along with
three additional unseen views. We then calculated the er-
ror with the ground truth depth, and compared the results
with methods Marigold (Ke et al. 2024) and 2DGS (Huang
et al. 2024a), as shown in Table 3. Marigold is a universal
method for monocular depth prediction, limited to predict-
ing relative depth. To facilitate comparison, we rescale the
predicted results to real-world dimensions using the ground
truth depth. The results demonstrate that our method signif-
icantly outperforms both the 2D Gaussian Splatting (2DGS)
backbone and the prior method, Marigold, in depth predic-
tion. Our approach effectively integrates monocular depth
information with the Gaussian splatting pipeline, leading to
a more consistent and accurate multi-view depth learning.

Method Marigold 2DGS Ours

< 1 ↑ 5.01 / 4.40 35.74 / 31.24 77.35 / 73.52
< 2 ↑ 9.98 / 8.84 57.26 / 50.71 89.58 / 87.38
< 4 ↑ 19.55 / 17.82 73.78 / 66.92 94.34 / 92.69
Abs. ↓ 15.58 / 15.12 7.46 / 18.07 2.41 / 3.43
Rel. ↓ 2.37 / 2.31 1.05 / 2.66 0.33 / 0.49

Table 3: Depth map evaluation results on DTU (seen / un-
seen). The result of mean absolute error (Abs.) is in millime-
ters. The result of threshold percentage (< 1mm, < 2mm
and < 4mm) and mean absolute relative error (Rel.) are in
percentage (%). The best results are highlighted as bold.

Ablation Study
The proposed components To demonstrate the effective-
ness and necessity of each proposed component, we isolate
individual design choices and measure their impact on re-
construction quality. Our experiments are conducted on the
DTU dataset using the little-overlap setting, maintaining the
same hyperparameters as in the main experiment. The mean
Chamfer Distance (CD) values of all 15 scenes are reported
in Table 4. Furthermore, the ablation results for scan 83 are
visualized in Figure 5.

Lr Ls Lf Mean CD↓
2.47

√ √
2.56

√ √
1.56

√ √
1.62

√ √ √ 1.37

Table 4: Comparison of reconstruction from the ablation
study for the little-overlap setting on the DTU dataset.

Removing each of the proposed optimization losses re-
sults in varying degrees of performance decline, demon-
strating the effectiveness of each component. Notably, the

Full model

CD: 1.19

w/o ℒ!
CD: 1.50

w/o ℒ"
CD: 1.58

w/o ℒ#
CD: 2.14

Baseline

CD: 2.21

Figure 5: Visual comparison of ablation study on DTU
scan 83. The transition of the error maps from blue to yellow
indicates larger reconstruction errors.

model with only the intra-view depth ranking loss (Lr) and
the smoothing loss (Ls) performs worse than the baseline
model, which does not include any of the three losses. This
indicates that the contributions of the three optimization
losses to the full model are neither isolated nor merely ad-
ditive. As shown in Figure 5, Lr and Ls provide globally
complete and coarsely correct geometric guidance. How-
ever, they cannot ensure local details due to the lack of abso-
lute scale information. After incorporating feature loss (Lf ),
we observe that the reconstructed surface details are signifi-
cantly enhanced, effectively avoiding excessive smoothing.

The number of training views To validate the impact of
image counts on our proposed method, we varied the number
of views, and the results are summarized in Table 5. As the
number of images increases, the reconstruction quality im-
proves progressively. Incorporating additional views can en-
hance multi-view consistency, ensure stable reconstruction
results, and prevent overfitting.

Number of Views Mean CD↓
3 0.92
6 0.85
9 0.79

Full 0.61

Table 5: Ablation study of number of views on DTU
dataset. The best result is highlighted as bold.

Conclusion
In this paper, we present FatesGS, a novel method for sparse
view surface reconstruction utilizing a Gaussian Splatting
pipeline. To combat geometric collapse caused by overfit-
ting in sparse views, we enhance the learning of coarse ge-
ometry through intra-view depth consistency. For finer geo-
metric details, we optimize multi-view feature consistency.
Our method is robust across various sparse settings and does
not require large-scale training. Unlike previous methods,
our approach eliminates the need for long-term per-scene
optimization and expensive in-domain prior training. We
demonstrate state-of-the-art results in sparse view surface
reconstruction under two distinct settings, validated on the
widely used DTU and BlendedMVS datasets.
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