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Abstract

Signed Distance Functions (SDFs) are vital implicit represen-
tations to represent high fidelity 3D surfaces. Current meth-
ods mainly leverage a neural network to learn an SDF from
various supervisions including signed distances, 3D point
clouds, or multi-view images. However, due to various rea-
sons including the bias of neural network on low frequency
content, 3D unaware sampling, sparsity in point clouds, or
low resolutions of images, neural implicit representations still
struggle to represent geometries with high frequency com-
ponents like sharp structures, especially for the ones learned
from images or point clouds. To overcome this challenge, we
introduce a method to sharpen a low frequency SDF observa-
tion by recovering its high frequency components, pursuing a
sharper and more complete surface. Our key idea is to learn a
mapping from a low frequency observation to a full frequency
coverage in a data-driven manner, leading to a prior knowl-
edge of shape consolidation in the frequency domain, dubbed
frequency consolidation priors. To better generalize a learned
prior to unseen shapes, we introduce to represent frequency
components as embeddings and disentangle the embedding
of the low frequency component from the embedding of the
full frequency component. This disentanglement allows the
prior to generalize on an unseen low frequency observation
by simply recovering its full frequency embedding through
a test-time self-reconstruction. Our evaluations under widely
used benchmarks or real scenes show that our method can re-
cover high frequency component and produce more accurate
surfaces than the latest methods.

Introduction
Singed distance Functions (SDFs) can represent high fidelity
3D surfaces with arbitrary topology. An SDF is an implicit
function that can predict signed distances at arbitrary 3D
query locations. It describes a distance field in the 3D space
hosting a surface, where we have iso-surfaces or level sets,
each of which has the same signed distance values. One can
extract the surface as the zero level set of the SDF using the
marching cubes algorithm (Lorensen and Cline 1987).

Recent methods (Mildenhall et al. 2020; Oechsle, Peng,
and Geiger 2021; Takikawa et al. 2021; Martel et al. 2021;
Rematas, Martin-Brualla, and Ferrari 2021; Jun and Nichol
2023; Takikawa et al. 2021; Müller et al. 2022; Li et al.
2023b) use a neural network to learn an SDF from 3D su-
pervision (Jiang et al. 2020a; Michalkiewicz et al. 2019;
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Figure 1: The concept of frequency consolidation priors. We
also show averaged frequency weights across a band.
Park et al. 2019; Ouasfi and Boukhayma 2022; Chen and
Zhang 2019; Takikawa et al. 2021; Liu et al. 2021), 3D point
clouds (Williams et al. 2019; Liu, Zhang, and Su 2020; Mi,
Luo, and Tao 2020; Genova et al. 2019; Atzmon and Lipman
2020; Zhao et al. 2020; Atzmon and Lipman 2021), or multi-
view images (Fu et al. 2022b; Oechsle, Peng, and Geiger
2021; Wang et al. 2021; Yu et al. 2022; Sitzmann, Zollhöfer,
and Wetzstein 2019; Liu et al. 2020; Jiang et al. 2020b;
Zakharov et al. 2020; Liu et al. 2019; Wu and Sun 2020;
Niemeyer et al. 2020a; Lin, Wang, and Lucey 2020; Yariv
et al. 2021; Fu et al. 2022a; Wang et al. 2021; Yu et al. 2022;
Wang, Skorokhodov, and Wonka 2022; Vicini, Speierer, and
Jakob 2022; Wang et al. 2022a), which seamlessly turns
a neural network into a neural implicit function. However,
due to various reasons like neural networks’ bias on low
frequency signals, 3D unaware sampling, sparsity in point
clouds, or low resolutions of images, neural SDFs still strug-
gle to represent geometries with high frequency components
like sharp structures, especially for the ones inferred from
point clouds or multi-view images. Although positional en-
codings (Mildenhall et al. 2020; Park et al. 2021) or feature
grids (Sara Fridovich-Keil and Alex Yu et al. 2022; Chen,
Liu, and Han 2023) were proposed to recover high frequency
components during the inference, their downsides cause ei-
ther unstable optimization or discontinuous representations,
resulting in either artifacts in empty space, or noisy surfaces,
holes. Thus, how to recover high frequency components in
neural implicit functions is still a challenge.

To address this challenge, we propose frequency consol-
idation priors to sharpen a neural SDF observation, as il-
lustrated in Fig. 1. Since sharper features are usually rep-
resented by high frequency components, our key idea is
to learn a mapping from a low frequency observation to



its full frequency coverage in a data-driven manner. The
prior knowledge learned by the mapping, dubbed frequency
consolidation priors, can produce sharper and more com-
plete surfaces. To generalize a learned prior on unobserved
low frequency SDFs better, we introduce to represent fre-
quency components as embeddings, and disentangle the
embedding of low frequency components from the one of
its full frequency coverage.Our design enables the learned
prior to recover full frequency embeddings by overfitting
unseen low-frequency observations through test-time self-
reconstruction. We learn a frequency consolidation prior
by establishing a dataset containing low and full frequency
component pairs, where we produce low frequent compo-
nents by removing high frequencies from full frequency
coverage of a shape in the frequency domain. We demon-
strate the prior’s effectiveness and good generalization in
shape and scene modeling. Benchmark comparisons show
our method’s superiority in reconstruction accuracy and gen-
eralization over the latest methods. Our contributions are
listed below.

• We present a novel method to sharpen neural SDFs for
sharper and more complete surfaces in the frequency do-
main. Our frequency consolidation prior recovers full
frequency coverage from a low frequency observation.

• We justify the idea of representing frequency compo-
nents as embeddings. This design prompts the general-
ization of learned priors due to the simplicity of recov-
ering the embedding of full frequency coverage by con-
ducting a test-time self-reconstruction on low frequency
observations.

• We report the state-of-the-art results in shape or scene
modeling by sharpening reconstructions from sparse
point clouds or multi-view images.

Related Work
Neural Implicit Representations. Neural implicit repre-
sentations have made huge progress in representing 3D ge-
ometry (Michalkiewicz et al. 2019; Mescheder et al. 2019;
Chen and Zhang 2019; Jiang et al. 2020b; Chen, Liu, and
Han 2022). One can learn neural implicit representations us-
ing coordinate-based MLP from supervision including 3D
ground truth distances (Jiang et al. 2020a; Chabra et al.
2020; Songyou Peng 2020; Martel et al. 2021; Takikawa
et al. 2021; Liu et al. 2021; Tang et al. 2021), 3D point
clouds (Zhou et al. 2022; Ma et al. 2021; Gropp et al. 2020;
Atzmon and Lipman 2020; Zhao et al. 2020; Atzmon and
Lipman 2021; Chen, Liu, and Han 2022), or multi-view im-
ages (Mildenhall et al. 2020; Fu et al. 2022b; Oechsle, Peng,
and Geiger 2021; Wang et al. 2021; Yu et al. 2022; Wang,
Skorokhodov, and Wonka 2022; Vicini, Speierer, and Jakob
2022; Wang et al. 2022a; Guo et al. 2022; Rosu and Behnke
2023; Li et al. 2023b; Jiang, Hua, and Han 2023). With dif-
ferentiable renderers, neural implicit representations can be
learnt by minimizing errors between their 2D renderings and
ground truth images. Using surface rendering (Jiang et al.
2020b), DVR (Niemeyer et al. 2020b) and IDR (Yariv et al.
2020) estimate geometry in a radiance field. IDR also mod-
els view direction as a condition to reconstruct high fre-

quency details. Since these methods focus on intersections
on surfaces, they need masks to filter out the background.

NeRF (Mildenhall et al. 2020) and its variations (Park
et al. 2021; Rückert, Franke, and Stamminger 2021; Sara
Fridovich-Keil and Alex Yu et al. 2022; Müller et al. 2022)
simultaneously model geometry and color using volume ren-
dering. These methods aim to generate novel views, and
render images without masks. By deriving novel rendering
equations, UNISURF (Oechsle, Peng, and Geiger 2021) and
NeuS (Wang et al. 2021) are able to render occupancy and
signed distance fields into RGB images, which measures the
errors of implicit functions. Following methods improve ac-
curacy of implicit functions using additional priors or losses
including depth (Yu et al. 2022; Azinović et al. 2022; Wang,
Wang, and Agapito 2023; Zhu et al. 2022a,b; Hu and Han
2023), normals (Yu et al. 2022; Wang et al. 2022a; Guo
et al. 2022), multi-view consistency (Fu et al. 2022b), and
segmentation priors (Kong et al. 2023; Haghighi et al. 2023)
Learning with Frequency. Learning neural implicit rep-
resentations with multi-scale details enhances interpretabil-
ity. It allows progressively detailed visualization at differ-
ent scales (Saragadam et al. 2022; Takikawa et al. 2021).
Controlling curvature regulation (Ehret, Marı́, and Facciolo
2022) can add or remove surface details. A common ap-
proach is learning neural implicits with several frequency
bands that cover a whole frequency scope (Lindell et al.
2022; Yang et al. 2022; Shayan et al. 2022; Cho et al. 2022;
Grattarola and Vandergheynst 2022; Benbarka et al. 2022).
This yields a multi-scale representation by reconstructing
surfaces or signals from different frequency bands. More-
over, SAP learns an occupancy function by solving a Pois-
son equation in the frequency domain (Peng et al. 2021a).
Recovering Sharp Structures. There are several different
strategies to recover sharp edges. Dual contouring (Chen
et al. 2022) can reconstruct sharper edges than the march-
ing cubes (Lorensen and Cline 1987) with the help of gradi-
ents. By modeling displacements, more high frequency de-
tails can get recovered on surfaces (Yifan, Rahmann, and
Sorkine-hornung 2021). Edges are also an important struc-
ture to recover, especially in CAD modeling. NEF (Ye et al.
2023) was proposed to learn an implicit function to represent
edges from multi-view images. Some methods (Matveev
et al. 2022; Cherenkova et al. 2023; Lambourne et al. 2022;
Feng et al. 2023) focus on sharpening edges directly on 3D
shapes. However, these methods merely work on relatively
clean and plausible shapes. Consolidation is also a way to
sharpen shapes, especially for point clouds (Metzer et al.
2021), which can generate points with sharp features or in
sparse regions, and also remove noises and outliers.

Unlike previous methods, our approach aims to sharpen
implicit functions poorly recovered from point clouds or
multi-views. We use a data-driven strategy to sharp a shape
by learning priors in the frequency domain, which consol-
idates the frequency components of a shape and completes
missing structures as well.

Method
Overview. Our method aims to sharpen a low frequency ob-
servation represented by an SDF fL (or a point cloud), as
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Figure 2: The overview of our method.
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Figure 3: The illustration of low frequency observations and
the full frequency coverage.

illustrated in Fig. 2. With fL, we intend to recover its full
frequency coverage as another SDF fF which represents a
surface with sharper and more complete structures than the
low frequency observation. Both fL and fF are learned by
neural networks with parameters θL and θF , respectively.
At an arbitrary query q, fL and fF predict signed distances
as sL = fL(q, eL) and sF = fF (q, eF ), respectively, where
eL and eF are learnable embeddings representing low fre-
quency components and full frequency coverage (or shape
identities), respectively, which are also conditions in fL and
fF . We use eL and eF as bridges to connect fL and fF ,
where eL is formed by eC and eF .

We learn a frequency consolidation prior by learning
fL and fF in a data-driven manner using supervision es-
tablished from ground truth meshes. During testing, given
an unseen SDF with low frequency components, we gen-
eralize the learned prior by conducting a test-time self-
reconstruction, which learns the embeddings eL and eF of
the shape using fL with the fixed parameters θL. Then, we
further sharpen the shape by decoding the learned eF using
fF with the fixed parameters θF .
Supervisions for Learning Priors. We establish supervi-
sions from ground truth meshes. For a shape M , we pro-
duce its low frequency observations ML by randomly re-
moving its high frequency components from its full fre-
quency coverage MF . To decompose a 3D mesh into

frequency domain, the traditional method like the spec-
tral geometry theory (Vallet and Levy 2008; Zhang, van
Kaick, and Dyer 2007) does eigen-decomposition of the dis-
crete Laplace–Beltrami operator and regards the eigenvec-
tors as frequency components. Some recent learning-based
methods (Lindell et al. 2022; Takikawa et al. 2021; Sara-
gadam et al. 2022) are also alternatives. However, eigen-
decomposing a large matrix whose dimension is determined
by the vertex number is usually limited due to the large space
complexity, while learning based methods are too slow to
get enough samples as supervisions. Instead, we introduce
to manipulate frequency components in solving Poisson sur-
face reconstruction from point clouds for efficiency. As a
fast solving PDE strategy, spectral methods solve a Poisson
surface reconstruction problem using Fast Fourier Trans-
form (FFT) (Peng et al. 2021b). The low frequency observa-
tions (SDF) established by our method with proper low fre-
quency band could produce over smoothed surfaces which
are very similar to the one produced by spectral geometry
theory one meshes in Fig. 4.

Traditional SAP(Ours)

Figure 4: Over-smoothed sur-
faces.

Specifically, we
first randomly sample
dense points on the
mesh of M , and then
estimate an occupancy
field by solving a Poisson surface reconstruction equation,
where we obtain magnitudes for frequencies in a frequency
band. We reconstruct M by running the marching cubes
algorithms (Lorensen and Cline 1987) with the estimated
occupancy function, and use the reconstruction as the full
frequency coverage MF . At the same time, we produce low
frequency occupancy functions by removing some parts of
high frequency components (setting their corresponding
magnitudes to 0), and use each one of the manipulated oc-
cupancy functions to reconstruct a mesh as a low frequency
observation ML. To make low frequency observations cover
all frequencies over the frequency band [0, 64] illustrated



in Fig. 3, we randomly select one frequency from one
of six subbands, such as “[3,5]” or “[5,10]”, and remove
all frequencies larger than the sampled one. For instance,
we select 4 in “[3,5]”, then we will get a low frequency
observation ML by removing all frequencies from 5 to
64. Each low frequency observation produced is paired
with the full frequency coverage MF as a training sample.
Fig. 3 illustrates 6 pairs of low frequency observations
{ML} and their corresponding full frequency coverage MF

(rightmost). Note that we do not simply use the ground
truth meshes as a full frequency coverage MF to avoid
non-watertight meshes during training.

Moreover, we produce more low frequency observations
in the frequency band [3, 30], as most inputs during infer-
ence contain very low-frequency components. These obser-
vations not only have smooth surfaces but also severe struc-
tural corruptions. Using them as training samples enables
our prior to handle extremely poor reconstructions well.
Frequency Component Modeling. With low frequency ob-
servation ML and its corresponding full frequency coverage
MF , we learn a frequency consolidation prior as a mapping
from ML to MF in Fig. 2. We represent both ML to MF as
SDFs fL and fF which are approximated by a two-branch
network parameterized by θL and θF . At each query q, one
branch predicts a signed distance sL = fL(q, eL) around
ML, the other predicts a signed distance sF = fF (q, eF )
around MF . We use embeddings eL and eF to model ML

and MF , which are also used as conditions to distinguish
the low frequency band and shape identity when sharing the
same neural network implementation.

For an embedding eL, we formulate it as a learnable 256-
dimensional vector, and assign it to a low frequency obser-
vation ML. Similarly, we formulate an embedding eF as a
learnable 128-dimensional vector, assign it to the full fre-
quency coverage MF , and more importantly, make it share-
able to all low frequency observations {ML} of shape M .

We bridge the two neural SDFs fL and fF by disentan-
gling eF from eL. We formulate eL as a concatenation of
eF representing a shape identity M and eC representing a
frequency corruption on the specific MF below,

eL = [eF eC ]. (1)
This disentangling makes the frequency modeling inter-

pretable, compacts the embedding space, synchronizes the
learning of fL and fF , and more importantly, increases the
generalization ability of the learned frequency consolidation
prior which will show in experiments.
Learning Frequency Consolidation Priors. To learn the
prior, we train the two-branch network to regress signed dis-
tances at query q. With a low frequency observation ML and
its target MF , we sample queries q around MF and record
the ground truth signed distances sgtL and sgtF . We optimize
parameters by minimizing the prediction error denoted by

min
θL,θF ,{eF },{eC}

||sL − sgtL ||22 + ||sF − sgtF ||22, (2)

where sL = fL(q, [eF eC ]) and sF = fF (q, eF ) are signed
distance predictions.
Generalizing Frequency Consolidation Priors. We gener-
alize the learned prior to sharpen an unseen low frequency

observation M ′
L. M ′

L can be represented as an SDF, a point
cloud, or a mesh. To leverage the learned prior, we transform
a point cloud or a mesh into an SDF using surface recon-
struction methods like NeuralPull (Ma et al. 2021).

With our disentangling of eF from eL, we can estimate
the shape identity eF through a test-time optimization in
self-reconstruction on M ′

L as auto-decoding (Park et al.
2019). To this end, we sample queries q around M ′

L and
record their ground truth signed distances sgtL

′. We estimate
e′L = [e′F e′C ] with fixed parameters θL by minimizing the
reconstruction errors below,

min
e′
F
,e′

C

||sL − sgtL
′||22. (3)

After the optimization, we represent the SDF of a full fre-
quency coverage M ′

F as fF (q, e′F ). We can reconstruct the
surface of M ′

F by running the marching cubes (Lorensen
and Cline 1987) with fF (q, e

′
F ).

Implementation Details. We adopt two Gaussian functions
centered at each point with standard deviations σ1 and σ2

to sample queries. Starting from meshes, we sample dense
point clouds as surface points, and sample queries around
each surface point. We set σ1 to 8 for full-space sampling,
allowing the network to perceive a large space and cover
various shape variations. σ2 is set to 0.2, enabling queries to
be sampled close to the surface. These two types of queries
are sampled with a one-to-one weighting ratio, dynamically
sampling 16,384 queries in each iteration.

We learn eL and eF by 3 fully connected layers with
128 hidden units and a ReLU on each layer. We employ
two SDF-decoder networks similar to DeepSDF (Park et al.
2019) to learn fL and fF . The Adam optimizer is used with
an initial embedding learning rate of 0.0005 and an SDF-
decoder learning rate of 0.001, both decreased by 0.5 every
500 epochs. We train our model in 2000 epochs. During test-
time optimization, we overfit fL on a low frequency obser-
vation in 800 iterations with a learning rate of 0.005.

Method CDL1 × 10 CDL2 × 100 NC
DeepSDF (Park et al. 2019) 0.287 0.381 0.804

ConvOcc (Songyou Peng 2020) 0.306 0.451 0.805
LIG (Jiang et al. 2020a) 0.292 0.430 0.809

IDF (Yifan, Rahmann, and Sorkine-hornung 2021) 0.287 0.390 0.815
NDC (Chen et al. 2022) 0.269 0.358 0.768

POCO(pretrained) 0.259 0.374 0.812
POCO (Boulch and Marlet 2022) 0.217 0.284 0.858

ALTO(pretrained) 0.253 0.367 0.819
ALTO (Wang et al. 2022b) 0.213 0.285 0.861

Ours 0.187 0.216 0.871

Table 1: Reconstruction accuracy of 13 classes on ShapeNet
in terms of CDL1, CDL2 and NC. The accuracy for each
class is provided in the supplement.

Experiments and Anaylysis
Datasets and Metrics. We evaluate our method by numer-
ical and visual comparisons with the latest methods on the
ShapeNet (Chang et al. 2015), ABC (Koch et al. 2019), and
ScanNet datasets (Dai et al. 2017). For ShapeNet, we report
evaluations under 13 classes with the train/test split from
3D-R2N2 (Choy et al. 2016) and also on 8 classes under
the test split from NeuralTPS (Chen, Han, and Liu 2023) for
fair comparisons. For ABC, we follow Points2Surf (Erler
et al. 2020), and use its train/test splitting for evaluation. For
ScanNet, we follow Neural Part Priors (Bokhovkin and Dai



Input DeepSDF ConvOcc LIG IDF NDC POCO (pretrained) POCO ALTO (pretrained) ALTO Ours GT

Figure 5: Visual comparison with the state-of-the-art on ShapeNet.

2022) and use the same 6 classes and test split. All experi-
ments leverage marching cubes (Lorensen and Cline 1987)
on a 2563 grid to reconstruct meshes.

For the ShapeNet dataset, we measure errors using L1
Chamfer Distance (CDL1), L2 Chamfer Distance (CDL2),
and normal consistency (NC). Following NeuralTPS (Chen,
Han, and Liu 2023), we randomly sample 100k points on the
reconstructed and ground truth meshes. Under the ScanNet
dataset, we follow Neural Part Priors to report L1 Cham-
fer Distance (CDL1) between the reconstructed meshes and
the ground truth meshes which are transformed to the Scan-
Net coordinate space. Notice that in Neural Parts Prior, each
shape is evaluated over the union of the CDL1 of predicted
and ground truth parts, which is equivalent to the CDL1 be-
tween global predictions and global ground truths. We re-
port two results using annotated shapes from Scan2CAD
(Avetisyan et al. 2019) dataset and extracted shapes using
ScanNet segmentation masks as ground truth, respectively.
Learning Frequency Consolidation Priors. For each
shape used for training, we use the first 5 low frequency ob-
servations (as shown in Fig. 3) and the full frequency cov-
erage to learn the frequency consolidation prior. We sample
queries around both the low frequency obseravtions and the
full frequency coverage, and record the signed distances to
both of the low and full frequency meshes as supervision.

Evaluations with The Latest Methods
Evaluation on ShapeNets. We use our frequency consolida-
tion priors learned from training samples for evaluation. For
each shape in the testing dataset, we produce low-frequency
observations using the method previously described and use
the worst observation from each shape to evaluate all com-
pared methods. We report the average evaluations over all
classes in Tab. 1, demonstrating that our method achieves
the best performance. Please refer to our supplementary ma-
terials for more detailed evaluation in each class.

We use pre-trained parameters or parameters retrained us-
ing our data from the latest methods. To train the latest meth-
ods like DeepSdf (Park et al. 2019), POCO (Boulch and
Marlet 2022), and ALTO (Wang et al. 2022b) which map
a point cloud into an SDF, we sample the low frequency
observation as a point cloud, record the signed distances at
queries near their full frequency coverages, forming train-
ing samples for both POCO and ALTO. Our method signif-
icantly outperforms these methods. Visual comparisons in
Fig. 5 shows that DeepSDF, POCO and ALTO struggle to
generalize their prior knowledge on various low-frequency
observations. With pre-trained parameters, NDC (Chen et al.
2022) produces sharp edges with dual contouring, preserv-
ing more and sharper structures than marching cubes algo-
rithms (Lorensen and Cline 1987). But NDC does not gener-
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Figure 6: Reconstruction results for test-time optimization
with sparse reconstructions from NeuralTPS and OnSurf as
low-frequency observations, respectively.

alize well on low frequency shapes and produces broke and
noisy surfaces, as shown in Fig. 5. IDF (Yifan, Rahmann,
and Sorkine-hornung 2021) and ConvOcc (Songyou Peng
2020) pretrained on corrupted shapes also generate high fre-
quency geometry on surfaces from corrupted point clouds in
the spatial space. Comparisons in Tab. 1 and Fig. 5 show that
it can not handle large geometry variations.
Refining Reconstruction from Sparse Point clouds. We
further evaluate the generalization ability of our learned
prior. In the previous experiment, we produce test shapes
from a known frequency band used in training. What the
performance of our prior is on unobserved frequency band
will be answered in this experiment. We use reconstruction
from sparse point clouds by the latest method as test shapes,
which are barely with any geometry details as shown in
Fig. 6 and have unobserved frequency components.

We use NeuralTPS (Chen, Han, and Liu 2023) and On-
Surf Prior (Ma et al. 2022), the latest methods for re-
construction from sparse point clouds, to produce our test
shapes. They provide shapes reconstructed from 300 points
of each shape in 8 classes from ShapeNet. Thus, we use our
learned prior to recover the high frequency components. Nu-
merical and visual comparisons in Tab. 2, Fig. 6, and Fig. 9
(first two rows) indicate that our method can generalize the
prior well on unknown frequency bands and improve the
reconstruction accuracy by recovering sharper edges, flat-
ter planes, and more complete surfaces. Please refer to our
supplementary materials for more evaluation in each class.
Evaluations on CAD Modeling. CAD shapes usually con-
tain many sharper edges. We learn a prior from shapes in
the training dataset collected from ABC dataset (Koch et al.
2019) by Points2Surf (Erler et al. 2020). We use the same
way to produce training samples using 5 low frequency and
a full frequency coverage from each shape for training. For
each testing shape, we also produce 5 low frequency obser-
vations, and use each one as a testing sample. We calculate
the mean and variance of the 5 evaluations for each test-
ing shape. Tab. 3 reports the average values over all test-
ing shapes, comparing our method with Points2Surf (Er-

Method CDL1 × 10 CDL2 × 100 NC
Onsurf (Ma et al. 2022) 0.214 0.223 0.845

Onsurf+Ours 0.180 0.165 0.886
NeuralTPS (Chen, Han, and Liu 2023) 0.141 0.093 50.899

NeuralTPS+Ours 0.115 0.088 0.918

Table 2: Numerical comparisons with sparse point cloud re-
construction on ShapeNet.

Input Points2Surf SECAD-Net Ours GT

Figure 7: Visual comparisons on ABC.
ler et al. 2020) and SECAD-Net (Li et al. 2023a). Our
method achieves the best reconstruction accuracy and stabil-
ity. Visual comparisons in Fig. 7 show that our method can
generate much sharper edges and more accurate structures.
Points2Surf struggles with surface variations, and SECAD-
Net generates sharper edges but does not generalize well.
Reconstruction in Scenes. Our learned prior also works
with objects in scene modeling. We learn our priors on
ShapeNet classes that appear in the scenes used for eval-
uation. These scenes are reconstructed from real scans.
We use the GT segmentation masks to segment shapes as
partial meshes. These partial meshes are also with arti-
facts, few geometry, unobserved frequency bands or severe
corruption. We use the poses and scale information from
Scan2CAD (Avetisyan et al. 2019) to determine the layout
in our visualizations.

We use two kinds of GT shapes in evaluations in Tab. 1
and Tab. 2 in our supplement, respectively. One is the shapes
provided by Scan2CAD, which are retrieved from ShapeNet.
These shapes are complete but may drift away a lot from the
real scans. The other kind is the shapes obtained directly
from real scans with GT segmentation masks. These shapes
are mostly incomplete but more identical to the real scenes.

With a shape segmented from a scene, we use NeuralPull
to reconstruct a coare but watertight mesh, serving as a low

Method CDL1 NC
Mean Variance Mean Variance

Points2Surf (Erler et al. 2020) 0.014 0.431 0.902 5.166
SECAD-Net (Li et al. 2023a) 0.041 0.178 0.800 1.370

Ours 0.011 0.015 0.962 1.076

Table 3: Accuracy of reconstruction on ABC dataset in terms
of CDL1 and NC. We multiply both variances by 104.
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Figure 8: Visual comparisons on ScanNet dataset. The red
in error maps indicates larger errors.

frequency observation, We then generalize the learned prior
to recover its full frequency coverage (Rec). Using the low
frequency observation, we can also produce two results by
retrieving all low frequency observations in our training set.
Specifically, we render 30 images from viewpoints around
each shape. We use clip image encoder (Radford et al. 2021)
to extract features of each image. Then, we use a single di-
rection CD distance as a retrieval metric to evaluate the dis-
tance between two sets of images representing two shapes.
For each retrieved low frequency observation, we use the
reconstructed high frequency coverage or their GT meshes
from ShapeNet to report the results including (Retrieve Rec)
and (Retrieval Mesh). We report the evaluations of these
three results in both Tab. 1 and Tab. 2 in our supplement.

Input Ours

Figure 9: Re-
constrcutions
from severely
corrupted cases.

Our reconstruction results pro-
duce more accurate reconstruction
than NeuralPartPriors (Bokhovkin
and Dai 2022) and PartUnderstand-
ing (Bokhovkin et al. 2021) using
Scan2CAD as GT shapes. Based
on that, our retrieved results can
produce even better results. Simi-
larly, comparisons in Tab. 2 in our
supplement show our superiority
over Scan2CAD with segmented
meshes as ground truth shapes. We
detail our results with error maps in
Fig. 8, and show plausible results
on bad reconstructions from scenes
in ScanNet in Fig. 9. We can see that shapes retrieved by
Scan2CAD are not every identical to the real scans.

Ablation Studies and Analysis
Semantic Latent Space. The latent space that we learn is
semantic. We visualize the reconstructed full frequency cov-

Input 0 5 10 50 100 300 800

Figure 10: Visualization of the test-time optimization.

A B A+B C D C-D

Figure 11: Embedding manipulations for shape generation.

erage optimization process in the self-reconstruction during
testing. The transformation from one latent code to another
in Fig. 10 shows semantic shapes on the optimization path.
Moreover, we can also manipulate embeddings in a seman-
tic way like the plus and minus of embeddings for full fre-
quency components in Fig. 11. We reduce the dimensions
of all embeddings learned for low and full frequency com-
ponents in each iteration using TSNE (van der Maaten and
Hinton 2008) in Fig. 12. We also see semantic structures
like lines, each of which is formed by embeddings learned
in all iterations (the order is mapped from light to dark
color) on an optimization path. All optimization paths start
from a similar point, goes quite similar in the beginning and
become diverse at the end which corresponds to different
shapes.

Low and Full Frequency (10 Shapes)Low and Full Frequency (One Shape)

Figure 12: Embeddings for low and full frequency shapes.

Conclusion

We introduce frequency consolidation priors to sharpen
neural implicit functions. We successfully learn the priors
from an established set containing training pairs with low
frequency components and full frequency coverage. The
learned priors can seamlessly work with our novel ways of
recovering full frequency coverage from a low frequency
observation, which significantly increases the generalization
ability of the learned priors. We show that the learned pri-
ors can recover high frequency components from the low
frequency observation, which sharpens the surfaces but also
completes some missing structures. Our numerical and vi-
sual comparisons with the latest methods on widely used
shape or scene datasets show that our priors can recover
geometries with higher frequencies by sharpening low fre-
quency SDF observation than the latest methods.
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