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Abstract

Normal estimation for unstructured point clouds is an
important task in 3D computer vision. Current methods
achieve encouraging results by mapping local patches
to normal vectors or learning local surface fitting using
neural networks. However, these methods are not gen-
eralized well to unseen scenarios and are sensitive to
parameter settings. To resolve these issues, we propose
an implicit function to learn an angle field around the
normal of each point in the spherical coordinate sys-
tem, which is dubbed as Neural Angle Fields (NeAF).
Instead of directly predicting the normal of an input
point, we predict the angle offset between the ground
truth normal and a randomly sampled query normal.
This strategy pushes the network to observe more di-
verse samples, which leads to higher prediction ac-
curacy in a more robust manner. To predict normals
from the learned angle fields at inference time, we ran-
domly sample query vectors in a unit spherical space
and take the vectors with minimal angle values as the
predicted normals. To further leverage the prior learned
by NeAF, we propose to refine the predicted normal
vectors by minimizing the angle offsets. The experi-
mental results with synthetic data and real scans show
significant improvements over the state-of-the-art under
widely used benchmarks. Project page: https://lisj575.
github.io/NeAF/.

Introduction
Estimating normals for unstructured point clouds is a fun-
damental task in 3D computer vision. The estimated nor-
mal vectors can be leveraged in various downstream applica-
tions, such as surface reconstruction (Kazhdan, Bolitho, and
Hoppe 2006), registration (Pomerleau et al. 2015), and se-
mantic segmentation (Grilli, Menna, and Remondino 2017).
Recently, the learning-based methods have achieved promis-
ing results by casting the normal estimation task into a re-
gression problem. They resolved this problem by directly
learning a mapping from local patches to normal vectors us-
ing neural networks. However, these methods fail to observe
adequate samples for accurate normal estimation. This leads
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to poor generalization ability on unseen scenarios such as
large-scale scenes.

As a remedy, state-of-the-art methods introduce to predict
the normal of a point by fitting a local geometric surface.
They learned point-wise weights for neighboring points to fit
the surface, and then predict the normal vector from the fit-
ted surface. However, the geometric surface settings (e.g. the
constant order of the polynomial surface) are predefined dur-
ing the training process, which leads to poor fitting results
due to the various complexity of the local point patches. For
example, when the geometric surface is more complex than
the underlying point patches, it results in overfitting prob-
lems. Otherwise, the underfitting leads to over-smoothing
details. As a result, the performance of surface fitting meth-
ods is dramatically limited in cases with complex topology
and geometry.

To resolve these issues, we propose an implicit method to
learn the Neural Angle Field (NeAF) of local patches in the
spherical coordinate system. Specifically, instead of explic-
itly predicting the normal from the input point clouds, we
design a neural network to implicitly predict the angle offset
between the ground truth normal and a randomly sampled
query vector. The network observes more diverse samples
by learning to model the relationship between vectors from
various directions and the target normal, leading to an an-
gle field around the target normal. With a well-learned angle
field, the network will have the ability to predict accurate
and robust normal vectors.

At inference time, to predict normals from the learned an-
gle fields, we randomly sample query vectors in a unit spher-
ical space and take the vectors with minimal angle offsets as
the predicted normals. To further leverage the prior learned
by NeAF, we propose a novel learning scheme for refin-
ing the predicted normal vectors. Unlike existing learning-
based methods that can only predict the normal via one for-
ward pass, our proposed method can further optimize the
predicted normal, which leads to more accurate normal esti-
mation.

Our contributions are summarized as follows.
• We propose Neural Angle Field (NeAF) for point normal

estimation. Unlike previous methods, our implicit func-
tion learns an angle field for each point, which implicitly
predicts the angle offset of query vectors.

• Our method can conduct further optimization at infer-
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Figure 1: Comparisons between previous learning-based normal estimation approaches and our NeAF. (a) Given a point on the
point cloud, we sample its K nearest neighbors as a local patch and output the normal for the point. (b) Existing learning-based
normal estimation methods can be roughly divided into (i) regression-based and (ii) fitting-based methods. (i) Regression-based
methods directly map the local patch to a 3D vector as the normal. (ii) Surface fitting-based methods estimate the weight for
each point in the local patch and compute the normal of the surface fitted with the weighted points. (iii) Our NeAF learns the
angle offsets between the random query vectors and the ground truth normal, and outputs the query vector with an angle offset
zero as the normal vector. (c) The colors of the shapes indicate normal RMSE errors. The estimated normals can be used for
surface reconstruction and significantly affect the quality of the reconstructed surface.

ence time to refine the predicted normals by minimizing
the angle offsets for more accurate normal estimation.

• We achieve state-of-the-art results in normal estimation
for synthetic data and real scans on widely used bench-
marks.

Related Work
Normal Estimation
Traditionally, principal component analysis (PCA) (Hoppe
et al. 1992) is a simple and efficient method for normal esti-
mation, which is based on constructing a tangent plane from
a fixed-scale local neighborhood and analyzes its normal
vector. Variants such as truncated Taylor expansion (Jets)
(Cazals and Pouget 2005), moving least squares (MLS)
(Levin 1998) and multi-scale kernel methods (Aroudj et al.
2017) were proposed to fit more complex local surfaces.
However, these methods tend to choose large scales to en-
sure the robustness of normal estimation. To preserve more
details, the approaches (Amenta et al. 1999; Mérigot et al.
2010) were proposed based on analyzing Voronoi cells. In
practice, these methods have to tune their parameters to
work with different cases, which dramatically limits their
application scenarios.

Recently, with the development of deep learning,
learning-based methods were proposed for normal estima-
tion. Boulch and Marlet (2016) proposed to transform the
local patches of point clouds into accumulators in a 2D

Hough space and estimate normals from the resulting ap-
proximate planes. However, the transformation from 3D to
2D resulted in the loss of the structural information con-
tained in the surface. To preserve a complete local shape,
Guerrero et al. (2018) proposed the PCPNet with a multi-
scale point cloud normal estimation architecture using Point-
Net (Qi et al. 2017). Based on this method, Zhou et al.
(2020) proposed a new scale selection strategy and extra
constraints on the feature. In addition, Zhou et al. (2022a)
proposed to introduce additional feature representations to
refine the input initial normal. Li et al. (2022b) used the net-
works to learn hyper surfaces and obtained an improved per-
formance.

Recent studies have achieved encouraging performance
on normal estimation by predicting point-wise weights to
select neighboring points softly. Lenssen et al. (2020) pro-
posed to use a graph neural network to iteratively generate
point-wise weights, and then estimate the normal by fitting
a moving least squares plane. Ben-Shabat et al. (2020) used
the n-order Jet of weighted points to fit local surfaces. Cao
et al. (2021) used a differentiable random sample consen-
sus module to predict normals from a latent tangent plane
representation constructed from the neighboring points. To
learn better point-wise weights, Zhang et al. (2022) pro-
posed to add direct geometric weight guidance which is con-
structed by distances between points and the tangent plane.
Zhu (2021) proposed to predict an offset to adjust the dis-
tribution of clouds and designed a cascaded scale aggrega-



tion (CSA) layer adapting to the scale of the local neigh-
borhood, which achieved state-of-the-art results. Li et al.
(2022a) proposed to learn graph convolutional feature repre-
sentation. Although improvements have been made by pre-
dicting point-wise weights and fitting surfaces for normal
estimation, these methods still suffer from several inherent
problems such as the difficulty in determining the form of
the fitted surface and the sensitivity to outliers.

Neural Implicit Representation in 3D
Reconstruction
Recently, neural implicit representations have gained popu-
larity and are widely used for 3D reconstruction (Zhou et al.
2022b; Ma, Liu, and Han 2022; Chen, Liu, and Han 2022;
Ma et al. 2022; Li et al. 2022c). These representations were
learned by neural networks to map input 3D coordinates to
occupancy probabilities (Chen and Zhang 2019; Mescheder
et al. 2019) or distance values (Michalkiewicz et al. 2019;
Park et al. 2019), which implicitly represent continuous sur-
faces of shapes and handle complex shape topology. In ad-
dition, Neural Radiance Fields (NeRFs) (Mildenhall et al.
2020) implicitly encode the geometry and color information
of the scene in the network.

Inspired by neural implicit representations, we propose
to utilize the network to implicitly represent the normals
of points. Unlike existing learning-based normal estimation
methods that focus only on the relationship between lo-
cal neighborhoods and normal vectors, we use the network
to observe the difference between random vectors and the
ground truth normal. This provides the network with more
prior knowledge by learning a neural angle field, which
helps to predict more accurate and robust normals.

Method
In this section, we present NeAF, an implicit normal estima-
tion method for point clouds.

Implicit Angle Functions
We first define the implicit angle function of a given normal
vector. The implicit angle function takes an arbitrary query
vector in a unit spherical space and a condition C as input
and predicts the angle offset between the query vector and
the ground truth vector. The corresponding function is de-
fined as follows,

f : C × R3 → R. (1)
Our key idea is to estimate the normal of one point using

the implicit angle function that is learned by a neural net-
work. Observing that the normal vector is a local property
of a surface, we leverage the local neighborhood of the cen-
ter point as a condition C indicating the center point, together
with the query vector as the input to feed the network, and
the output is the angle offset between the ground truth and
the query vector. Since we focus on unoriented normal esti-
mation, the angle offset is either the difference from the pos-
itive direction or the negative direction of the ground truth,
and its value range is [0, π

2 ]. The implicit angle function of
point pi can be represented as:

fθ(Pi,n
q) = α, i ∈ [1, N ], (2)
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Figure 2: Overview of our NeAF. (a) During training, we
randomly sample query vectors in a unit spherical space,
together with the local patch as the input to the network,
and predict the angle offset α between the query vector nq

and the ground truth normal ngt. (b) At inference time, we
sample m query vectors at different directions, and then se-
lect the query vectors with the minimum l angle offsets as
the coarse normals. Match means to find the query vectors
with the same indices as the minimum l angle offsets. Refine
means coarse normal refinement in a subsequent section.

where fθ denotes the network parameterized by θ, Pi ∈
Rk×3 is the condition of point pi, it is the set of k near-
est neighbors for the center point pi, N is the number of
points on the point cloud, nq ∈ R3 is the query vector, and
α ∈ [0, π

2 ] is the angle offset of nq relative to the target
normal.

With this definition, the target normal of pi is implicitly
represented as the zero level set of the implicit angle func-
tion, which is denoted as nt, i.e. fθ(Pi,n

t) = 0.

Training for Implicit Angle Functions
To learn the parameters θ of the neural network fθ, we first
randomly sample query vectors nq

j , j = 1, ...M on the unit
sphere. For a given point pi, i = 1, ...N , we use the K-
Nearest-Neighbors algorithm to sample the nearest neigh-
bors Pi as the local patch centered at pi. Next, the network
takes the local patch Pi and query vector nq

j as inputs and
predicts the angle offsets between the ground truth normal
ngt

i and nq
j . We minimize the difference between the pre-

dicted angle offset fθ(Pi,n
q
j) and ground truth angle offset

αgt
ij by the following L1 loss,

L =
1

NM

∑
i∈[1,N ]

∑
j∈[1,M ]

|fθ(Pi,n
q
j)− αgt

ij |, (3)

and the αgt
ij is computed by,

αgt
ij = arcsin(||ngt

i × nq
j ||), (4)

where arcsin(·) represents the arcsine function, || · || is the
L2-norm, and × is cross product.

After convergence, the network learns an implicit angle
field for each point. In Figure 3, we visualize the optimizing
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Figure 3: The visualization of learning an implicit angle
field. Each point on the unit sphere represents a query vec-
tor, and the color map indicates their angle offsets to the
ground truth normal represented as the black line. After con-
vergence, an angle field centered on the ground truth normal
is formed.

process of the angle field around a single point, where the
well-learned angle field can predict correct angle offsets on
the whole spherical surface.

The angle field implicitly represents the target vector as
the zero level-set of the learned angle field. At inference
time, to predict the target vector from the learned field, we
introduce a gradient descent based optimization to explore
the prior learned by the angle field. An intuitive implemen-
tation is to directly optimize some randomly sampled vec-
tors which cover the whole spherical space until their angle
offsets approach zero, but it increases the computational bur-
den to optimize a large number of vectors during inference.
To resolve this issue, we propose to first predict a few coarse
normals and then optimize these predicted coarse normals
by a gradient decent based optimization algorithm.

Inference of Angle Fields
Coarse Normal Prediction. To predict coarse normals at
inference time, we discretize the continuous unit spherical
space into sections, which are the different query directions.
Then a certain density of points are sampled from the dis-
crete sections to form a query vector set S = {nq

k
′|k =

1, 2, ...,m} to cover m different directions. If the query vec-
tors in S are infinitely dense to cover the full spherical space,
there is a vector no ∈ S that satisfies fθ(P ′,no) = 0, then
no can be viewed as the approximated direction of ngt′ .

However, it is impossible to cover the full spherical space
during testing since the discrete query vectors approximate
the continuous spherical space and it is also time-consuming
to infer highly dense query vectors. Therefore, we propose
to predict a few coarse normals from the learned angle fields
first.

In practice, given a test point p′i, the trained network fθ
takes the local neighborhood P ′

i around p′i and the query
vectors in S as input, and predicts the angle offsets A =
{αik|k = 1, 2, ...,m}, that is fθ(P ′

i ,n
q
k
′
) = αik. We select

the query vectors {nc
s|s = 1, ..., l} from S with the min-

imum l angle offsets as the predicted coarse normals. The
coarse normals will be further refined in the following.

Coarse Normal Refinement. The analysis of normal pre-
diction by the learned angle fields shows that the random
sampling of discrete spherical points cannot perfectly cover
the entire continuous spherical space, thus the forward pass
prediction cannot make full use of the learned angle fields.
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Figure 4: Coarse normal refinement. For the coarse normal
nc

s, s = 1...l, we use the trained network fθ with fixed pa-
rameters to estimate the angle offset α′

s, then we update the
vector nc

s to make α′
s closer to zero. When the further opti-

mization is done, we average all the coarse normals to output
the final predicted normal.

To further improve the accuracy of the predicted normals
at inference time, we propose a novel learning scheme for
refining the predicted normal vectors by a gradient de-
cent based optimization algorithm. Unlike existing learning-
based methods that can only predict normals via a single for-
ward pass during inference, our proposed method can fully
leverage the prior learned by NeAF to adjust the predicted
normals, and can further optimize the predicted normal at
inference time, thus leading to a more accurate estimation.

Specifically, the proposed NeAF represents the relation-
ship between the target normal and an arbitrary vector in the
neural network by measuring the angle offset. Thus we can
adopt further refinement given the predicted coarse normals
by minimizing the angle offsets of these normals.

At inference time, we utilize the network fθ with fixed pa-
rameters to output an angle offset α′

is for the coarse normal
nc

s, and then update nc
s to make α′

is as close as possible to
zero following the formula,

nc
s
′ = argmin

nc
s

L1(fθ(P
′
i ,n

c
s)− 0), (5)

where L1 is the L1 loss, and P ′
i is the local patch for the

testing point p′i.
After coarse normal refinement, nc

s is optimized to ap-
proximate the real zero level-set of the learned angle field.

To ensure the robustness of the results, we propose to av-
erage these refined normals nc

s
′, s ∈ [1, l] as the final esti-

mation npred by the following formula,

npred =
1

l

∑
s∈[1,l]

nc
s
′. (6)

Since the correct normal vector direction can be easily es-
timated by several methods (Mullen et al. 2010; Wu et al.
2015; Huang et al. 2019; Metzer et al. 2021), we mainly fo-
cus on unoriented normal estimation. However, the mean of
the refined normals described above may lead to a large error
due to the uncertain signs. For example, both the vector with



Methods Density Noise average
Stripes Gradients No noise Low Noise Med Noise High Noise

Jets (Cazals and Pouget 2005) 13.39 13.13 12.23 12.84 18.33 27.68 16.29
PCA (Hoppe et al. 1992) 13.66 12.81 12.29 12.87 18.38 27.5 16.25
HoughCNN (Boulch et al. 2016) 12.47 11.02 10.23 11.62 22.66 33.39 16.90
PCPNet (Guerrero et al. 2018) 11.74 13.42 9.66 11.46 18.26 22.8 14.56
Nesti-Net (Ben-Shabat et al. 2019) 8.47 9.00 6.99 10.11 17.63 22.28 12.41
IterNet (Lenssen et al. 2020) 7.73 7.51 6.72 9.95 17.18 21.96 11.84
DeepFit (Ben-Shabat et al. 2020) 7.31 7.92 6.51 9.21 16.72 23.12 11.8
Refine-Net (Zhou et al. 2022a) 6.61 7.02 6.27 9.18 16.59 22.57 11.37
AdaFit (Zhu et al. 2021) 6.04 5.90 5.19 9.05 16.44 21.94 10.76
NeAF (Ours) 4.89 4.88 4.20 9.25 16.35 21.74 10.22

Table 1: Comparison of the angle RMSE with the state-of-the-art methods on PCPNet dataset.

an actual angle offset of α̂ and the one with an angle offset of
(π− α̂) are with the same angle offset α̂, but the mean of the
two normals can be far from the ground truth normal by an
offset of π/2. To solve this problem, we normalize the signs
of these vectors before averaging them together. We choose
one of the refined vectors nc

r
′ as the reference and re-direct

the other vectors nc
s
′, s ∈ [1, l], according to the dot product

between nc
r
′ and nc

s
′ below

nc
s
′ = sign(nc

r
′Tnc

s
′)nc

s
′, (7)

where sign represents the sign function with an output in
{−1, 1}.

Implementation Details
For generating training data, we adopt the method proposed
by Muller (1959) to randomly and uniformly sample M =
5000 query vectors in the unit spherical space for training,
and the ground truth angle offsets are calculated by Eq. (4).
As for inference data, we use the same method to sample
m = 10000 query vectors for extracting coarse normals.
During training, we randomly select 400 query vectors from
the training set as a batch to train the network. At inference
time, we select to extract l = 10 coarse normals and op-
timize them simultaneously in 5 epochs for coarse normal
refinement. We use the same strategy as AdaFit (Zhu et al.
2021) for preprocessing local patches, including centering
and normalizing.

We employ an encoder similar to AdaFit to learn features
of local patches, which is mainly based on the PointNet (Qi
et al. 2017) architecture, and we retain the CSA layer. The
local patch size and parameter settings of our networks are
also the same as AdaFit. Besides, we adopt a neural network
similar to DeepSDF (Park et al. 2019) to decode the angle
offsets, which is composed of 8 fully connected layers with
a residual connection.

Experimental Results
Evaluation on synthetic dataset
Dataset and metrics. For the experiments on synthetic
shapes, we adopt the PCPNet dataset provided by Guerrero
et al. (2018). We use the same train/test settings and data
augmentation strategies. PCPNet samples 100k points on the

mesh of each shape to obtain a point cloud. The training
set contains 8 shapes, and each shape includes a noise-free
point cloud and three point clouds containing Gaussian noise
with a standard deviation of 0.125% (Low), 0.65% (Med)
and 1.2% (High) of the length of the bounding box diago-
nal of the shape. In addition to the three noise variants, two
additional point clouds with varying densities (Stripes and
Gradients) are added to the test set. For training, we use the
Adam optimizer with an initial learning rate of 1 × 10−3,
and adopt a cosine learning rate decay strategy with warm-
up. The model is trained on 2 GTX 1080Ti. In coarse normal
refinement, we use the Adam optimizer with an initial learn-
ing rate of 0.005. We use the angle root mean square error
(RMSE) between the predicted normal and the ground truth
normal as a quantification metric, and compute the final re-
sult with 5000 points subset sampled by PCPNet.

Comparisons. We make a comparison with traditional
normal estimation methods, including PCA (Hoppe et al.
1992), Jets (Cazals and Pouget 2005), and learning-based
methods HoughCNN (Boulch et al. 2016), PCPNet (Guer-
rero et al. 2018), Nesti-Net (Ben-Shabat et al. 2019), Iter-
Net (Lenssen et al. 2020), DeepFit (Ben-Shabat et al. 2020),
Refine-Net (Zhou et al. 2022a), AdaFit (Zhu et al. 2021). A
comparison of the angle RMSEs is shown in Table 1. The
results show that our method significantly outperforms both
the traditional methods and the state-of-the-art learning-
based methods. Especially on the point clouds with density
variations, the latest fitting-based method Adafit fails dra-
matically due to the point sparsity. This leads to a large dis-
crepancy between the explicitly fitted surface and the un-
derlying surface, while our method is not affected by point
density and can make an accurate estimation.

We perform a visual comparison with the PCPNet (Guer-
rero et al. 2018), DeepFit (Ben-Shabat et al. 2020), Re-
fineNet (Zhou et al. 2022a), and AdaFit (Zhu et al. 2021) in
Figure 5, where the numbers represent the angle RMSE be-
tween the predicted normals and the real normals. The color
of the shape indicates errors, and the closer to yellow the
larger the error, the closer to the blue the smaller the error.
The results show that our method outperforms others with
more details, and can better handle complex regions such as
sharp corners and sharp edges.
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Figure 5: Errors of normal estimation on the PCPNet dataset.

Evaluation on real scanned dataset
We employ the model pretrained on PCPNet dataset to re-
port our results on the scanned dataset.

SceneNN dataset. The SceneNN (Hua et al. 2016) dataset
provides indoor scenes in the form of reconstructed meshes.
We randomly sample 1 million points on the mesh of the
shape to obtain a point cloud, and calculate the normal of
each point. We randomly select 40% of all points to calcu-
late RMSE. The results of the baseline methods are obtained
by testing on the dataset using the models provided by (Ben-
Shabat et al. 2020) and (Zhu et al. 2021) under the same
experimental conditions. The angle RMSE comparison be-
tween NeAF, AdaFit (Zhu et al. 2021) and DeepFit (Ben-
Shabat et al. 2020) is given in Table 2, and the qualitative
results are shown in Figure 6. The numerical and visual com-
parisons show that NeAF achieves the best performance.

Semantic3D dataset. The Semantic3D (Hackel et al.
2017) dataset provides 30 non-overlapping outdoor scenes
acquired with the Terrestrial Laser Scanner in the form of
point clouds. This dataset does not provide reconstructed
meshes, so the ground truth normals are not available, and
we mainly report visual comparisons on this dataset. The
comparison between NeAF and baseline methods is shown

10.71 8.12 7.58

14.62 11.23 10.15

DeepFit AdaFit Ours

0 45

Input

Figure 6: Error maps of estimated normals on the SceneNN
dataset.

NeAF AdaFit DeepFit

RMSE 9.50 10.19 12.56

Table 2: Normal RMSE of NeAF, AdaFit (Zhu et al. 2021)
and DeepFit (Ben-Shabat et al. 2020) on the SceneNN
dataset.

Input DeepFit AdaFit Ours

Figure 7: Estimated normals on the semantic3D dataset. The
point normal vectors are mapped to RGB colors.

in Figure 7. The results show that the proposed method can
estimate normals at sharp edges more accurately than base-
line methods.

Surface Reconstruction

As an important property of local surfaces, normals are of-
ten used as the input for 3D surface reconstruction tasks, and
accurate normal vectors play a key role in Poisson recon-
struction (Kazhdan, Bolitho, and Hoppe 2006). We use the
estimated normals for surface reconstruction, and the com-
parison with the baseline methods is shown in Figure 8. The
results show that the normals estimated by NeAF are more
accurate, which helps to reconstruct surfaces with higher ac-
curacy.
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Figure 8: The comparison of the Poisson surface reconstruc-
tion using the estimated normals from NeAF, DeepFit (Ben-
Shabat et al. 2020), and AdaFit (Zhu et al. 2021).

No CNP No CNR Min NeAF

Stripes 37.23 5.05 4.94 4.89
Gradients 37.03 5.04 4.93 4.88
No Noise 37.11 4.41 4.26 4.20
Low Noise 37.97 9.34 9.27 9.25
Med Noise 40.10 16.40 16.36 16.35
High Noise 41.92 21.76 21.73 21.74

Average 38.56 10.33 10.25 10.22

Table 3: Effect of framework design.

Ablation Studies
Framework design. We demonstrate the effectiveness of
each design of our framework in Table 3. We first skip pre-
dicting the coarse normals and instead directly refine the ran-
dom vectors the same number of times. As shown by “No
CNP” , the performance degenerates dramatically. We also
predict normals without coarse normal refinement, and the
result demonstrates that the coarse normal refinement can
effectively improve the accuracy of the predicted normals in
all settings as shown by “No CNR”. We replace averaging
coarse normals with selecting the coarse normals with the
minimum angle offsets after refinement as shown by “Min”
and find a drop in performance.

Density of query vectors. We explore the effect of the
sampling number M of query vectors on the angle field
learned by fθ. We report the performance of different M =
[2.5k, 5k, 7.5k, 10k] in Table 4. The query vector set that is
too sparse (“2.5k”) cannot provide enough sample vectors
for the network to learn the angle field, while the sets that
are too dense (“7.5k”, “10k”) make the implicit angle func-
tion more complicated and make it difficult for the network

M 2.5k 5k 7.5k 10k

Stripes 4.94 4.89 4.95 4.96
Gradients 4.98 4.88 4.98 5.03
No Noise 4.29 4.20 4.24 4.37
Low Noise 9.17 9.25 9.19 9.16
Med Noise 16.41 16.35 16.49 16.41
High Noise 21.83 21.74 21.81 21.69
Average 10.27 10.22 10.28 10.27

Table 4: Effect of query vector number M .

l 1 5 10 20 50

Stripes 4.95 4.90 4.89 4.89 4.89
Gradients 4.93 4.90 4.88 4.88 4.88
No Noise 4.26 4.21 4.20 4.21 4.21
Low Noise 9.28 9.25 9.25 9.25 9.25
Med Noise 16.37 16.35 16.35 16.35 16.34
High Noise 21.76 21.74 21.74 21.72 21.72

Average 10.26 10.23 10.22 10.22 10.22

Table 5: Effect of coarse normal number l.

to learn the correct angle offsets. We found “5k” is a proper
trade-off.

Number of coarse normals. In Table 5, we conduct ex-
periments on the PCPNet dataset to explore how the coarse
normal number l affects coarse normal refinement at the in-
ference time. We report the performance of different l =
[1, 5, 10, 20, 50], where we find that optimizing a single
coarse normal leads to the degradation of results, and the
best accuracy is achieved for the first time with 10 coarse
normals. Optimizing more coarse normals requires longer
time and more memory without improving the accuracy.

Conclusion
In this paper, we proposed NeAF to estimate point normals
implicitly. We randomly sample the query vectors in a unit
spherical space, estimate their angle offsets to ground truth
normals, and output the query vector with the smallest angle
offset as the estimated normal. To fully leverage the prior
learned by NeAF, we refine the predicted normal vector by
minimizing the estimated angle offset for more accurate nor-
mal estimation. NeAF achieves state-of-the-art performance
on the synthetic dataset PCPNet and exhibits good general-
ization on real scans in SceneNN and Semantic3D. Further-
more, the promising results in the surface reconstruction task
with normals estimated by NeAF justify our effectiveness in
real applications.
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