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ABSTRACT
3D Semantic-Instance Segmentation (SIS) is a newly emerging re-
search direction that aims to understand visual information of 3D
scene on both semantic and instance level. The main difficulty lies
in how to coordinate the paradox between mutual aid and sub-
optimal problem. Previous methods usually address the mutual
aid between instances and semantics by direct feature fusion or
hand-crafted constraints to share the common knowledge of the
two tasks. However, they neglect the abundant common knowl-
edge of feature context in the feature space. Moreover, the direct
feature fusion can raise the sub-optimal problem, since the false
prediction of instance object can interfere the prediction of the
semantic segmentation and vice versa. To address the above two
issues, we propose a novel network of feature context fusion for
SIS task, named CF-SIS. The idea is to associatively learn semantic
and instance segmentation of 3D point clouds by context fusion
with attention in the feature space. Our main contributions are two
context fusion modules. First, we propose a novel inter-task context
fusion module to take full advantage of mutual aid and relive the
sub-optimal problem. It extracts the context in feature space from
one task with attention, and selectively fuses the context into the
other task using a gate fusion mechanism. Then, in order to en-
hance the mutual aid effect, the intra-task context fusion module is
designed to further integrate the fused context, by selectively merg-
ing the similar feature through the self-attention mechanism. We
conduct experiments on the S3DIS and ShapeNet datasets and show
that CF-SIS outperforms the state-of-the-art methods on semantic
and instance segmentation task.
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1 INTRODUCTION
Understanding 3D shapes and scenes has received a growing con-
cern due to the fast development of 3D computer vision research
in many real-world applications [11, 16, 22, 23, 28, 41]. It is a basic
research topic in different multimedia applications, such as auto-
navigation, robotics, augmented reality (AR) [33], and shape re-
trieval [34]. In this paper, we address the task of semantic-instance
segmentation of 3D point clouds, which serves as the most funda-
mental problem in understanding 3D scene. Specifically, semantic
segmentation aims to distinguish the class label or object category
(e.g. chair, desk) for every point in 3D scenes, while the instance seg-
mentation identifies the point set that represents an independent
instance object. Therefore, the semantic-instance segmentation
aims to simultaneously identify each instance object with its se-
mantic label, which is a basic requirement for many real-world
applications. For example, the auto-navigation often requires iden-
tifying the object (e.g. cars, passengers) on both semantic level and
instance level.

The biggest challenge of associative segmentation lies in the
paradox between sub-optimal problem and the mutual aid [31]
of two segmentation tasks. Specifically, the incorrect predictions
raise the sub-optimal problem, where false prediction of instance
object can confuse the categorization of its semantic label and
vice versa. On the other hand, the mutual aid, which lies in the
endogenous relationships between semantics and instances, can
serve as an instructive clue to distinguish the instance objects and
the semantic categories behind the points, i.e. the points in the same
instance must have the same semantic label and the points with
different semantic label must belong to the different instances. Such
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Figure 1: Illustration of the context considered by previ-
ous methods and proposed CF-SIS. For example, in CF-SIS,
the instance segmentation can distinguish the points (red &
green points) belong to the same instance object (chair), by
excluding the spatial outliers (yellow) in 3D space (a) and the
semantic outliers (blue) in semantic feature space (b).

insight has prompted several studies [9, 18, 31] to utilize the inner
connection of semantic and instance segmentation and relieve the
negative effect of sub-optimal problem.

To efficiently exploit the endogenous relationships between the
instances and semantics, a typical practice is to regard the asso-
ciative training of the two tasks as a multi-task learning problem,
where the label relationships can be implicitly learned and shared
by the direct point-wise feature fusion [31] or hand-crafted con-
straints [18]. It is usually achieved through a specially designed
pipeline network or optimization objective that connects different
task branches. However, such practice merely learns the spatial
context in neighborhood region of a central point in 3D space, but
neglects the feature context among the features embedded in feature
space, which is more informative to capture the label relationships
compared with the single point feature. Specifically, the spatial
context that we refer to is the representation vector aggregated ac-
cording to distance in 3D space, which contains the information of
the spatial relationships between central point and the other point
in point clouds. And the feature context is aggregated according
to feature similarity in feature space, which contains the seman-
tic relationships between central point and the other point. The
visual illustration about the advantages of utilizing context in both
3D and feature space is shown in Figure 1. Let’s take the instance
prediction of the central red point as the example: the red point
can distinguish its partners (green points) that belong to the same
instance object (chair) by excluding the spatial outliers in 3D space
(yellow) and the context outliers in semantic feature space (blue).
Therefore, it can produce a more precise instance segmentation by
considering context in 3D and semantic feature space. Except for
the absence of feature context in previous methods, the practice of
direct feature fusion may also raise the sub-optimal problem, since
it can bring in false prior prediction from one task and confuse the
downstream prediction of the other task.

Therefore, in this paper, we propose a novel network of feature
context fusion for SIS, named CF-SIS, to address the above problems

by learning and selectively fusing feature context in the feature
space, which is neglected by many previous methods [18, 31]. The
proposed CF-SIS consists of two modules, named intra-task context
fusion and inter-task context fusion, both of which aim to efficiently
leverage the contextual information flow in and between different
tasks. The inter-task context fusion first aggregates the feature
context in feature space, by modeling the relationships between
neighbor and central points using the attention mechanism. Then,
it selectively merges the aggregated context into the other task
through the fusion gate. The intra-task context fusion further inte-
grates the fused features to enhance the mutual aid effect using a
self-attention mechanism, which can be regarded as a contextual-
aware point feature extraction in the feature space.

The reasons that CF-SIS can address the mutual aid and sub-
optimal problem are two-folds. First, compared with the previous
methods which only learn context in 3D space, CF-SIS learns more
informative context in both feature and 3D space, which can capture
much more geometric, semantic and instance characteristics of the
point clouds. Second, by introducing a learnable fusion gate, the CF-
SIS can learn to filter the context information extracted from one
task, and selectively fuse them into the other task. This enables the
network to select the context information of real help and dropout
the information about false prediction, which can effectively relieve
the sub-optimal problem. The main contributions of our work can
be summarized as follows:

• We propose a novel feature context fusion network for SIS
task on 3D point clouds, named CF-SIS. The network can
efficiently learn and fuse the feature context between the
semantic and instance segmentations in the feature space,
which enables the contextual-aware feature extraction for
discriminative semantic-instance segmentation.

• We propose the inter-task context fusion module to exploit
the mutual aid between semantics and instances. Compared
with the previous methods, our module can learn to share
much more informative common knowledge between se-
mantics and instances, by means of feature context fusion
with attention.

• We propose the intra-task context fusion module to further
enhance the mutual aid effect. Such module can learn to
decide the most related regions to the central points through
the self-attention mechanism, and aggregates the informa-
tive context in the related regions to discriminatively predict
the semantic categories or instance objects behind the points.

2 RELATEDWORK
In the field of 3D computer vision, there are many studies concern-
ing various representation form of 3D shapes (e.g. voxels[2, 17, 29],
view[3–6, 8] and point cloud[7, 15, 32]), and in this paper we con-
cern the segmentation task on the specific form of point cloud.

Instance segmentation.The studies concerning 3D instance
segmentation can be roughly divided into two directions. The first
direction is proposal-based methods [25, 26, 42], which predicts the
instances by progressively proposing and refining the region pro-
posals. As a typical work, SlidingShapes [25] is proposed to exploit
handcrafted feature for predicting 3D object bounding boxes, and
Frustum PointNet [19] considered the detection on 2D frame and
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then back-projected into 3D, from which the final bounding box
predictions are refined. In order to directly segment on point clouds,
a bottom-up 3D proposal generation network and 3D proposal refin-
ing network is proposed in PointRCNN [24]. Similarly, SGPN [30]
utilizes the point-level feature similarity for discovering the region
proposal in point clouds. More recently, GSPN [40] is proposed as
a generative framework for object proposal by reconstruction. The
second direction is proposal-free methods, which directly predicts
the instance features for all points and use clustering algorithm to
predict instances as clusters in feature space [18, 31]. Such direction
is newly proposed as a basic framework for incorporating semantic
segmentation and instance segmentation associatively into one
network, which will be detailed in the last part of this section.

Semantic segmentation. In the field of 3D semantic segmen-
tation, great progress has been made in recent year because of the
fast development of deep learning framework. Following the con-
volutional structure of PointNet [20] and PointNet++ [21], many
successors [7, 12, 14, 37] investigate the convolution operations
which aggregate the neighbors of a given point by edge attributes
in the local region graph. In order to extract the rich representa-
tion of contextual relationships between object parts, SPG [10] is
proposed to adopt the super-point graph for capture the spatial
organization of 3D point clouds, in which a partition of the scanned
scene is transformed into geometrically homogeneous elements,
and can be further exploited by a graph convolutional network.

Associative segmentation of semantic and instance. Asso-
ciatively segmenting semantics and instances is a newly merging
area in the research of 3D point cloud. The associative learning of
the two tasks provide a new solution for instance segmentation
in point cloud, instead of the region proposals. Meanwhile, the
semantic segmentation can benefit from the features learned by
the instance segmentation network. To explore the potential of
simultaneously learning both instance and semantic segmentation,
JSIS3D [18] combined a multi-task framework with a multi-value
conditional random field (MRF) model to establish the associations
between semantic and instance labels, which is for separately learn-
ing the per-point semantic and instance embeddings. In the case
of JSIS3D, the problem for learning both semantic and instance
segmentation is formulated as the joint optimization of the energy
function in the MRF model. ASIS [31], on the other hand, integrates
the two tasks into an end-to-end parallel training framework, where
two pipelines between the semantic and instance segmentation
branches are designed to share the common knowledge in a soft
and learnable fashion. Except for performing segmentations on
raw point cloud input, 3D-SIS [9] considers the associative segmen-
tation task on 3D scene represented by RGB-D scans, where two
paralleled pipelines are designed to recognize the geometry and
color feature, respectively. However, the above-mentioned methods
usually consider the direct merging of per-point raw features from
one task into the other one. In contrast, our CF-SIS takes one step
further to consider more delicate extraction of common knowl-
edge as the feature context, and carefully fuse the feature context
from one task into the other using the fusion gate to purify the
information.

3 THE CF-SIS NETWORK ARCHITECTURE
3.1 Overview
The overall architecture of the proposed CF-SIS is illustrated in
Figure 2. The network consists of one shared feature extractor (i.e.
the stacked PointNet++ [20] layers) and two paralleled branches for
instance and semantic segmentation, respectively. The inter-task
context fusion bridges the two branches for learning and fusing fea-
ture context, and the following intra-task context fusion aggregates
the fused feature for predicting task-oriented embeddings.

Specifically, given the input point cloud of size 𝑁 , the network
first prepares the semantic and instance raw features, denoted by
𝐹𝑠𝑒𝑚 and 𝐹𝑖𝑛𝑠 , respectively, using the shared feature extractor with
two separate multi-layer perceptrons (MLPs).

The instance branch first merges the instance raw features 𝐹𝑖𝑛𝑠
with the semantic context 𝐹𝑠𝑒𝑚-𝑐 that extracted from the semantic
branch with self-attention mechanism, through the semantic-to-
instance (Sem2Ins) sub-branch of inter-task context fusion. A fusion
gate is applied to control the information that flows from the se-
mantic branch into the instance branch for knowledge sharing. As
a learnable layer, the fusion gate is trained to select how much of
the semantic context should be allowed to flow into the instance
branch. What’s more, it also controls how much information of
the instance features should be merged with the semantic context.
The fused instance feature 𝐹𝑖𝑛𝑠-𝑓 is then fed into the instance-
to-instance (Ins2Ins) sub-branch of intra-task context fusion. The
intra-task context fusion module integrates the fused feature with
self-attention mechanism, in order to enhance the mutual aid effect
from semantic branch and predict a more discriminative instance
embedding 𝐸𝑖𝑛𝑠 .

The semantic branch is nearly the same as instance branch,
except that the instance context to be merged with semantic raw
features 𝐹𝑠𝑒𝑚 is extracted from instance embeddings 𝐸𝑖𝑛𝑠 , through
the instance-to-semantic (Ins2Sem) sub-branch, and without the
fusion gate. The fused semantic feature 𝐹𝑠𝑒𝑚-𝑓 is fed to semantic-
to-semantic (Sem2Sem) sub-branch of intra-task context fusion
and produce the final semantic embeddings 𝐸𝑠𝑒𝑚 . The detailed
architecture of each part is described as follows.

3.2 Inter-task Context Fusion
The inter-task context fusion consists of two same sub-branches,
i.e. the Sem2Ins sub-branch and the Ins2Sem sub-branch, except
that Ins2Sem has no fusion gate. Without losing generality, the
Sem2Ins sub-branch is taken as the example for further explanation.
Overall speaking, in this sub-branch, we first model the semantic
correlation between points by calculating the semantic attention
according to semantic raw features 𝐹𝑠𝑒𝑚 = {𝒔𝑖 |𝑖 = 1, 2, .., 𝑁 }. Then,
the semantic context is aggregated by the weighted average of
semantic raw features, and fused with the instance raw features
𝐹𝑖𝑛𝑠 = {𝒖𝑖 |𝑖 = 1, 2, .., 𝑁 } using a fusion gate, in order to control the
information flow from the semantic branch to the instance branch.

Specifically, given one point represented by semantic raw fea-
ture 𝒔𝑖 , the 𝑁 − 1 candidate points to form its corresponding se-
mantic context are 𝑺𝑖 = {𝒔𝑖 𝑗 | 𝑗 ∈ {1, 2, ..., 𝑁 − 1}}. In order to
model the semantic relationships between the central point 𝒔𝑖 and
the other points, we propose the spatial attention to calculate the
cosine similarity between the features of central and candidate
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Figure 2: Illustration of the overall architecture of the proposed CF-SIS. The network consists of two task-oriented branches,
where the inter-task context fusion bridges the two branches and controls the information flow through the fusion gate. The
intra-task context fusion further integrates the features in each task and produces the final task-oriented embeddings for
segmentation.

points as the scores to measure semantic relationships, given as

𝑞𝑖, 𝑗 =
𝒔𝑇
𝑖
𝒔𝑖 𝑗

∥𝒔𝑖 ∥2 ∥𝒔𝑖 𝑗 ∥2
, where ∥ ∗ ∥2 denotes the L2 norm. The cosine

distance can be regarded as a hand-crafted feature to characterize
the semantic relationships between points. The reasons that we
propose to use the cosine distance in the high dimensional feature
space instead of a learnable attention mechanism are follows. First,
the cosine distance can force the network to incorporate the spatial
relationships between points into consideration, since two neigh-
bor points will naturally generate similar feature and yield high
cosine similarity. Second, the cosine distance can introduce more
information from the other branches, since the cosine distance is
an unsmoothed activation score, which has a significantly higher
value compared with smoothed (by softmax activation) attention
score used in learnable attention. The semantic feature context
𝐹𝑠𝑒𝑚-𝑐 = {𝒄𝑖 |𝑖 ∈ {1, 2, .., 𝑛}} is computed as the weighted average
over all candidate points as 𝒄𝑖 =

∑𝑁−1
𝑗=1 𝑞𝑖, 𝑗 𝒔𝑖 𝑗 .

Note that, the inter-task context fusion considers the context
extraction over the entire input point set for the following two
reasons. First, compared to the 3D space, the kNN searching for the
neighbor points in the high dimensional feature space suffers from
the heavy computational cost, making it hard to selectively compute
attentions between point and its semantically related neighbors.
Second, collecting the semantic context across the entire feature
space can extend the perception range of the central point, thus
force the network to learn a more discriminative choice of related
points, and extract more informative semantic context.

Fusion gate in inter-task context fusion module. Since the
Sem2Ins sub-branch is at the very bottom of the network compared
with the Ins2Sem sub-branch, where the raw semantic features
are used for context extraction. As a result, the extracted semantic
context is noisy and may contain erroneous information, which can
harm the performance of instance segmentation if directly fused
into instance feature without preprocessing, especially at the early
stage of training. Therefore, in order to filter out the noise and the
erroneous information in the semantic context, and make the train-
ing less sensitive to the initialization and hyper-parameters of the
model, we propose to use a fusion gate to control the information

flow between the two tasks. The fusion gate enables the network
to automatically learn to decide when and how much information
is allowed to flow from one task into the other. Specifically, the
fusion gate determines the quality of the semantic feature context
𝐹𝑠𝑒𝑚-𝑐 using a linear transformation, and predict a probability be-
tween 0 and 1 using sigmoid activation for each position of the
input features. The predicted probability indicates the proportion
of semantic context that is allowed to pass through. The process
can be formulated as

𝛽𝑔,𝑖 = 𝜎 (𝑊𝑔𝒄𝑖 + 𝒃𝑔), (1)

where 𝜎 represents the sigmoid activation, and {𝑊𝑔, 𝒃𝑔} are learn-
ablematrix and bias of linear transformation. The fused instance fea-
ture matrix 𝐹𝑖𝑛𝑠-𝑓 = {𝒖 𝑓 ,𝑖 |𝑖 ∈ {1, 2, .., 𝑛}} is the weighted element-
wise sum of the gated semantic feature context matrix 𝐹𝑠𝑒𝑚-𝑐 and
the instance feature matrix 𝐹𝑖𝑛𝑠 , given as

𝒖 𝑓 ,𝑖 = 𝛽𝑔,𝑖𝒄𝑖 + (1 − 𝛽𝑔,𝑖 )𝒖𝑖 . (2)

We note that the fusion gate is also deployed in the Sem2Ins branch,
which has the same structure described above.

3.3 Intra-task Context Fusion
Except for aiding the context fusion between different tasks, the
presence of attention inside the task can also help the model to
capture the semantic and instance characteristics, by implicitly
pointing out the related region to the central points. This is im-
portant for perceiving and extracting 3D visual information from
point clouds, because the related regions contain more informa-
tion about the semantic and instance characteristics compared to
the single point, which can be further used to distinguish the se-
mantic labels and instance objects behind the points, and yield a
more discriminative segmentation result. In this subsection, we
find inspiration from the previous self-attention based work [35]
to learn the per point context in feature space, through an effective
intra-task context fusion.

The module consists of two same sub-branches, i.e. Ins2Ins sub-
branch and Sem2Sem sub-branch. Without losing generality, we
only describe the detailed structure of Ins2Ins sub-branch. The
input to this module is the fused instance feature 𝐹𝑖𝑛𝑠-𝑓 = {𝒖 𝑓 ,𝑖 |𝑖 ∈
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{1, 2, .., 𝑁 }}. These features are first transformed into three different
feature subspace {𝑟, 𝑙, ℎ}, through the multilayer perceptrons 𝑓 with
parameter 𝜽 , given as

𝒖𝜏,𝑖 = 𝑓 (𝒖 𝑓 ,𝑖 |𝜽𝜏 ), 𝜏 ∈ {𝑟, 𝑙, ℎ}. (3)

The attention is computed as the dot product between the feature
vectors in subspace 𝑟 and 𝑙 , and is smoothed using softmax activa-
tion, which can be written as

𝑎𝑖,𝑗 =
exp(𝒖T

𝑙,𝑖
𝒖𝑟,𝑗 )∑𝑁

𝑗=1 exp(𝒖T
𝑙,𝑖
𝒖𝑟,𝑗 )

. (4)

The final instance point embedding 𝐸𝑖𝑛𝑠 = {𝒆𝑖𝑛𝑠,𝑖 } is the weighted
average over all features in subspace ℎ with a skip connections
linking to 𝐹𝑖𝑛𝑠-𝑓 , given as:

𝒆𝑖𝑛𝑠,𝑖 = 𝑓 (𝜆𝑜
𝑁∑︁
𝑗=1
𝑎𝑖,𝑗𝒖ℎ,𝑗 + 𝒖 𝑓 ,𝑖 |𝜽𝑜 ), (5)

where 𝜆𝑜 is a learnable balance factor that randomly initialized and
updated along with other parameters during training. Note that,
the intra-task context fusion aims at refining the instance features,
which will be used for predicting the per-point instance label. In
order to preserve the information of the original instance feature,
the smoothed attention with a relatively small score for context
features is more desirable than the unsmoothed cosine distance.

3.4 Training and Details
3.4.1 Training Losses. We use the softmax cross entropy loss for
semantic branch. And for instance branch, we follow the class-
agnostic loss of ASIS. Specifically, given a point cloud with 𝐾 in-
stances, we first gather all the predicted instance embeddings for the
𝑘-th ground truth instance as 𝐼𝑘 = {𝒆𝑖𝑛𝑠,𝑘 𝑗 | 𝑗 = 1, 2, .., 𝑛𝑘 }, where
𝑛𝑘 denotes the number of ground truth points belong to instance 𝐼𝑘 .
Then, we optimize the instance segmentation branch by merging
the embeddings belonging to the same instance object together, and
repelling the embeddings of different instance objects away from
each other. Let 𝑀𝑘 denote the number of points in 𝑘-th instance.
The optimization function can be written as follows:

𝐿𝑚 =
1
𝐾

𝐾∑︁
𝑘=1

1
𝑀𝑘

𝑀𝑘∑︁
𝑗=1

max( ∥𝜇𝑘 − 𝑒𝑘 𝑗 ∥2 − 𝛿𝑚, 0), (6)

𝐿𝑟 =
1

𝐾 (𝐾 − 1)
∑︁
𝑖≠𝑗

max( ∥𝜇𝑖 − 𝜇 𝑗 ∥2 − 𝛿𝑟 , 0), (7)

where the 𝜇𝑖 is the center of instance 𝐼𝑘 and {𝛿𝑚, 𝛿𝑟 } are predefined
thresholds. Besides, we also regularize the instance center 𝜇𝑖 by
𝐿𝜇 = 1

𝐾

∑𝐾
𝑖=1 ∥𝜇𝑖 ∥2 . The total instance loss is the weighted sum of

𝐿𝑚 , 𝐿𝑟 and 𝐿𝜇 , given as
𝐿𝑖𝑛𝑠 = 𝐿𝑚 + 𝐿𝑟 + 𝜆𝜇𝐿𝜇 , (8)

where 𝜆𝜇 is the weight factor fixed to 0.001.

3.4.2 Training Settings. For all experiments, we use the Adam op-
timizer with a initial learning rate of 0.001 for training. We set the
hyper-parameter 𝛽1 of Adam optimizer as 0.9 and use the default
𝛽2. The learning rate is decayed for every 10 epoches with a decay
rate of 0.7, and clipped at the minimum learning rate of 1 × 10−5.
We apply one dropout layer with 0.5 dropout rate before the output
layer of both semantic and instance branches. We train the CF-SIS

Table 1: Instance segmentation results (%) on S3DIS.

Method Area 5 6-fold CV
mAP mRec mCov mAP mRec mCov

SGPN [30] 36.0 28.7 32.7 38.2 31.2 37.9
JSIS3D [18] - - - 36.3 - -
ASIS [31] 55.3 42.4 44.6 63.6 47.5 51.2
3D-BoNet [38] 57.5 40.2 - 65.6 47.6 -

Ours(CF-SIS) 59.1 46.8 49.9 65.1 52.4 52.6

Table 2: Semantic segmentation results (%) on S3DIS.

Method Area 5 6-fold CV
oAcc mAcc mIoU oAcc mAcc mIoU

PointNet [20] 83.5 52.1 43.4 78.6 - 47.7
JSIS3D [18] - - - 87.4 - -
ASIS [31] 86.9 60.9 53.4 86.2 70.1 59.3

Ours(CF-SIS) 88.7 67.3 58.9 88.0 74.0 63.2

for 100 epoches with a batch size of 12 on S3DIS dataset and 200
epoches with a batch size of 16 on ShapeNet dataset.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
For fair and comprehensive comparison, we follow the same settings
of ASIS [31] to evaluate the CF-SIS under the S3DIS and ShapeNet
dataset. S3DIS [1] is a large scale scan dataset that contains 3D
scans from Matterport Scanners in 6 areas, which have 272 rooms
in total and each point is assigned with an instance object and
one semantic label of 13 categories. We report the experimental
results on the official 6-fold cross validation (6-fold CV) in accord
with [1] and also on Area 5. The ShapeNet [39] dataset contains
16,881 3D shapes from 16 categories, each point is assigned with
one semantic label and without instance annotation. Therefore, for
training, we used the generated instance annotations from [30] as
the ground-truth labels. For semantic segmentations, we use the
overall accuracy (oAcc) and mean IoU (mIoU) as the evaluation
metrics. For instance segmentation, the mean recall (mRec), mean
average precision (mAP) with IoU threshold 0.5 and the weighted
coverage (wCov) [31] are adopted as the evaluation metric.

4.2 S3DIS Results
S3DIS quantitative comparison.The experiment on S3DIS dataset
follows the basic settings in [30], where points are uniformly sam-
pled into overlapped blocks of size 1𝑚×1𝑚 with a stride of 0.5𝑚. In
each block, we randomly sample 4, 096 points. The embeddings of
all blocks are merged using the BlockMerging procedure in [31].

In Table 1, we compare the overall instance segmentation per-
formance on both 6-fold CV and Area 5 on S3DIS dataset, where
the CF-SIS achieves the best results on 5 out of 6 metrics on both
splittings. In our opinion, the better performance of CF-SIS on these
categories can be dedicated to the following reason. That is, in the
3D scene of a single room, the objects in these categories usually ap-
pear multiple times at different position, and the semantic context
fusion can help the model find the common characteristics among
these spatially distant objects. Taking the chair as an example, learn-
ing the semantic context can aggregate these spatially unrelated
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Figure 3: Illustrative comparison of CF-SIS with ASIS on
S3DIS. Red rectangles denote the region that CF-SIS outper-
forms ASIS. For example, in (a), CF-SIS yields a cleaner in-
stance segmentation on chair back, andmakes lessmistakes
in semantic segmentation, compared to the ASIS.

chairs together and filter out the background objects such as wall,
floor and tables, which makes the objects more distinguishable
from the point cloud and easy to be segmented. A visual analysis
about this fact will be given later in subsection of Visualization of
attentions.

The overall segmentation results on 6-fold CV and Area 5 are
shown in Table 2, in which we compare our CF-SIS with the coun-
terpart methods ASIS [31] and PointNet [20]. Since the JSIS3D [18]
did not report the commonly used IoU in semantic segmentation,
we compare with the JSIS3D on overall accuracy in Table 2. SGPN
[30] and 3D-BoNet [38] are not semantic segmentation methods
which will also not going to be compared. The results show that CF-
SIS outperforms the counterpart methods on both splittings. Note
that although JSIS3D yields an oAcc comparable to our method, the
CF-SIS significantly outperforms the JSIS3D in instance segmenta-
tion on mAP (27.8%), which proves that CF-SIS can achieve a more
balanced performance between two tasks.

In Table 4, we show the detailed instance segmentation results
in terms of per class mAP on 6-fold CV of S3DIS dataset. Note that
JSIS3D didn’t report the results on beam and column, while SGPN
missed the result on clutter, of which the missing values are all
marked by “-" in Table 4. Overall speaking, CF-SIS outperforms
the counterpart methods in terms of mAP in 7 out of 13 classes.
Especially, the segmentation performance on the categories of table,
chair and sofa is improved by over 10%. And in Table 3, we show
the detailed semantic segmentation results in terms of per class IoU
on 6-fold CV of S3DIS dataset. We can find that CF-SIS achieves the
best on 11 out of 13 classes. In Figure 4, we showmore segmentation
results on S3DIS dataset.

S3DIS visualization comparison. To further demonstrate the
effectiveness of our method, we visualize the segmentation results
in Figure 3 and illustratively compare CF-SIS with ASIS. We take
Figure 3(a) as an example. Since ASIS did not adopt the fusion gate
for feature fusion, the false predictions of semantics (top row of
ASIS, on the chair back denoted by red rectangle) mislead the seg-
mentation of instances (bottom row of ASIS). In contrast, although
the semantic branch of CF-SIS makes the similar false semantic
predictions on the same region, the instance branch can still make
the correct prediction. This proves the effectiveness of the fusion
gate in CF-SIS. In Figure 4, we visualize more results on rooms

of S3DIS dataset, of which the predicted results show significant
consistency with the ground truth.

S3DIS conclusions. From the comparison, we draw the follow-
ing two conclusions. First, the experimental results show that the
proposed CF-SIS outperforms the baseline SGPN [30] (also using
PointNet++ backbone). Since SGPN cannot take the advantages of
semantic label for instance segmentation, the better performance
of CF-SIS proves the effectiveness of the mutual aid between the
semantic and instance segmentation tasks. Second, CF-SIS yields
better results compared with the point-wise fusion based ASIS. This
proves the effectiveness of the context fusion module designed in
CF-SIS, which aims to learning the instance-aware semantic feature
and semantic-aware instance feature.

4.3 ShapeNet Results
For the ShapeNet dataset, we follow the practice of [30] to obtain
the instance ground truths by clustering points in each semantic
categories, using the DBSCAN [36] algorithm. The experiment on
ShapeNet dataset is conducted for further analyzing the effective-
ness of mutual aid and context fusion, in terms of the semantic seg-
mentation performance. The reason is that, the clustered instance
parts of object are subsets that are geometrically decomposed from
the semantic categories (e.g. the semantic label of chair legs can
be divided into several independent leg instances). Such geometric
decompositions can be regarded as hand-crafted features for seman-
tic segmentation. And CF-SIS can extract these features from the
instance branch and fuse them into the semantic branch, which can
provide more information about the detailed geometric structure
of object, and improve the performance of semantic segmentation.

We compared with the backbone method PointNet++ and coun-
terpart method ASIS in Table 5, in which we report part-averaged
IoU (pIoU, %) and mean per-class pIoU (mpIoU, %) [12]. For fair
comparison, in the ShapeNet experiment, the backbone of CF-SIS
is exactly the same as PointNet++, including both the feature ex-
traction and interpolation layers. Therefore, the improvement (by
1.1% of pIou and 1.8% of mpIoU) of CF-SIS compared to the Point-
Net++ proves the effectiveness of fusing the instance features into
semantic segmentation task. And the better performance of CF-SIS
compared with ASIS demonstrates that context fusion can learn
and share the instance information more efficiently than point-wise
feature fusion.

In Figure 5, we visualize the semantic and instance segmentation
results of CF-SIS. Figure 5(a) and 5(b) are semantic segmentation
ground truths and predictions. Figure 5(c) shows instance ground
truth, in which spatially disconnected parts of same semantic cate-
gory are successfully separated into independent objects, and Figure
5(d) shows that CF-SIS effectively learns such instance segmenta-
tion.

4.4 Model Analysis
In this subsection, we analyze the effectiveness of each part to
the proposed CF-SIS. By default, all the ablation experiments are
conducted on the splitting of Area 5 for efficient evaluation and use
the spatial attention version of CF-SIS.

Effect of each part. We develop and evaluate five different
variations of our model: (1) The No-Gate variation is the model
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Table 3: Per class results (%) of semantic segmentation on S3DIS dataset with 6-fold cross validation in terms of IoU.

Method cei. floor wall beam col. win. door tab. chair sofa book. board clut.

PointNet 88.8 97.3 69.8 42.4 23.1 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
ASIS 91.3 89.7 69.8 45.8 27.0 51.9 55.1 61 49.3 9.1 40.2 33.5 40.7

CF-SIS(Ours) 94.2 95.6 77.6 36.4 37.4 53.3 66.9 65.8 66.6 38.6 52.6 53.1 59.0

Table 4: Per class results (%) of instance segmentation on S3DIS dataset with 6-fold cross validation in terms of mAP.

Method cei. floor wall beam col. win. door tab. chair sofa book. board clut.

JSIS3D 76.9 83.6 32.2 - - 51.4 7.2 16.3 23.6 16.7 21.8 52.1 13.4
SGPN 79.4 66.3 87.7 78.0 60.4 66.6 56.8 46.9 40.8 6.38 47.6 11.1 -
ASIS 90.6 88.0 62.2 40.0 48.8 71.2 56.9 52.6 48.0 26.5 50.8 86.3 40.9

CF-SIS(Ours) 91.8 87.7 67.4 40.6 43.1 74.9 62.8 60.2 70.8 42.2 50.5 74.8 52.3

(a) Input (b) Pred Ins. (c) Gt Ins. (d) Pred Sem. (e) Gt Sem.

Figure 4: Illustrative evaluation of the segmentation results on S3DIS dataset. From left to right: (a) input point with RGB
color; (b) predicted instance; (c) ground truth instance; (d) predicted semantics; (e) ground truth semantics.

(a) Gt Ins. (b) Pred Ins. (c) Gt Sem. (d) Pred Sem.

Figure 5: Illustrative evaluation of the segmentation results
on ShapeNet.

that removes the gate fusion structure from the CF-SIS. As a result,
the context from one task is allowed to completely flow into the
other task without filtering. (2) The Inter-only variation is the model
without the intra-task context fusion module. (3) The Intra-only
variation is the reverse version of Inter-only model that removes
the inter-task context fusion from the CF-SIS. (4) The Sem2Ins-only
and (5) Ins2Sem-only are variations that only preserve one sub-
branch of inter-task context fusion, in which the single direction of

Table 5: Semantic segmentation results (%) on ShapeNet.

Methods pIoU mpIoU

PointNet [20] 83.7 80.4
PointNet++ [21] 85.1 81.9
ASIS [31] 85.0 -
Point2Sequence [14] 85.2 -
LRC-Net [13] 85.3 -
SGPN [30] 85.8 -
SPLATNet [27] 85.4 83.7

Ours(CF-SIS) 86.2 83.7

context flow from semantic to instance is allowed or vice versa. The
experimental results are shown in Table 6. Except for the above five
variations, we also include the results of Full CF-SIS model and the
baseline model (i.e. remove both inter-task and intra-task context
fusion along with the fusion gate) for comparison.

From Table 6 we can find that each part contributes to the final
performance of the full CF-SIS. Compared with the Full model, the
semantic and instance performances of all variations drop at the
same time, but with different scale. For Sem2Ins-only variation,
the performance of semantic segmentation drops more drastically
than the instance segmentation, and the opposite results can be
observed in the Ins2Sem-only variation. Such phenomenon proves
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Table 6: The effect (%) of each part to the CF-SIS.

Methods Instance Semantic
mAP mRec mAcc mIoU

No-Gate 51.0 41.7 59.9 52.2
Inter-only 56.4 44.6 63.9 55.5
Intra-only 53.8 42.3 61.8 54.2
Sem2Ins-only 55.3 43.4 60.2 50.5
Ins2Sem-only 52.7 41.4 62.1 54.5

baseline 50.1 40.8 59.2 51.3
Full 59.1 46.8 67.3 58.9

the close connection between the two task branches, where both
tasks can improve itself by taking contextual information from the
other one and in return benefit the other task with its own context.
The significance of the inter-task context fusion in respect to the
two segmentation branches is more obvious, when comparing the
Sem2Ins-only, Ins2Sem-only and the Inter-only variations to the
baseline model. Especially, the performance of Inter-only model
improves by 6.3% in terms of mAP for instance segmentation and
4.2% in terms of mIoU for semantic segmentation. The intra-task
context fusion shows its effectiveness when comparing the Intra-
only variation to the baseline model, in which the module increases
the performance by 3.7% in terms of mAP and 2.9% in terms of
mIoU.

Effect of each attention in context fusion module. In order
to analyze the different attention mechanism used in inter-task
context fusion and intra-task context fusion, w develop two varia-
tions: (1) Intra-C is the variation that replace the learnable attention
with the cosine distance in intra-task context fusion. (2) Inter-L is
the variation that replace the cosine distance in inter-task context
fusion with the learnable attention. We compare the performance
of these two variations with original Full model in Table 7, from
which we can find that the original Full model achieves the best
performance. The results are in accordance with the discussion in
Sec 3.2 and Sec 3.3, in which we use the unsmoothed cosine distance
in inter-task context fusion to introduce more context information
from the other branch, and we use the smoothed learnable attention
in intra-task context fusion to preserve the information of original
feature vector when fusing the context.

Table 7: The effect (%) of attention in context fusionmodule.

Methods Instance Semantic
mAP mRec mAcc mIoU

Intra-C 55.0 45.7 60.8 52.2
Inter-L 51.4 44.6 63.1 54.5

Full 59.1 46.8 67.3 58.9

Visualization of attentions. In Figure 6, we visualize the at-
tentions learned in the inter-task context fusion in an 1𝑚 × 1𝑚
block sampled from S3DIS, which is the standard input to CF-SIS
on this dataset. The visual effects of both inter-task and intra-task
context fusion modules are similar, so we exhibit the inter-task
context fusion module for simplicity. Specifically, Figure 6(b) and
6(c) shows the attention assigned by red points (on the chairs in

(a) Input (b) Sem2Ins (c) Ins2Sem

Ceiling

Chair
Table

Floor

High

Low

Figure 6: Visualization of the attention learned in our inter-
task context fusion. The left (a) is the input 1𝑚 × 1𝑚 block
with RGB color. The right (b) and (c) is the visualized atten-
tion of all other points to the red point on the chair.

Figure 6(a)) to the other points in the block. In Figure 6(b) and 6(c),
the region with high attention scores are colored by red, and the
regions with low attention scores are colored by blue. The visual-
ization shows that in both sub-branches, points belong to chairs
are all assigned with significantly higher attentions than the other
points, which proves that inter-task context fusion successfully
learns to discriminate the related points in both instance and se-
mantic feature space. What’s more, the rectangles in Figure 6(b)
and 6(c) further demonstrate the interaction of mutual aid between
two tasks. In Figure 6(b), the semantic segmentation assigns a low
attention scores to the table (red rectangles), while in Figure 6(c) the
instance segmentation assigns a relatively high attention scores to
the table (also red). Therefore, the mutual aid can share the correct
segmentation predictions through Sem2Ins into instance branch.
On the other hand, when semantic segmentation generates a poor
prediction in the conjunctive region between chair and floor (blue
rectangle in Figure 6(b)), it can collect correct prediction from the
instance segmentation (also blue in Figure 6(c)) through Ins2Sem
sub-branch.

5 CONCLUSION
We introduce a novel network, named CF-SIS, for semantic-instance
segmentation. Through the proposed two novel modules, called
inter-task context fusion and the intra-task context fusion, the CF-
SIS can effectively learn and fuse the context from one task into the
other, which enables to share the common information between the
semantic and instance segmentation tasks. The shared information
can be used as an instructive clue to more accurately distinguish the
instance object and its category behind the points. Comprehensive
experiments on S3DIS and ShapeNet dataset prove the effectiveness
of the propose model.
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