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ABSTRACT

3D shape captioning is a challenging application in 3D shape
understanding. Captions from recent multi-view based meth-
ods reveal that they cannot capture part-level characteristics
of 3D shapes. This leads to a lack of detailed part-level de-
scription in captions, which human tend to focus on. To
resolve this issue, we propose ShapeCaptioner, a generative
caption network, to perform 3D shape captioning from se-
mantic parts detected in multiple views. Our novelty lies in
learning the knowledge of part detection in multiple views
from 3D shape segmentations and transferring this knowl-
edge to facilitate learning the mapping from 3D shapes to
sentences. Specifically, ShapeCaptioner aggregates the parts
detected in multiple colored views using our novel part class
specific aggregation to represent a 3D shape, and then, em-
ploys a sequence to sequence model to generate the caption.
Our outperforming results show that ShapeCaptioner can
learn 3D shape features with more detailed part characteris-
tics to facilitate better 3D shape captioning than previous
work.
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Figure 1: Humans tend to describe 3D shapes by
focusing on their semantic parts (in red) with their
various attributes (in blue).
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1 INTRODUCTION

Jointly understanding 3D shapes and sentences is an impor-
tant challenge in 3D shape analysis. For example, generated
captions are helpful for visually impaired people to under-
stand what a 3D shape looks like, including the category,
color, form, and material of the 3D shape, as shown in the
examples in Fig. 1. This motivates us to address the issue of
automatically generating captions for 3D shapes.

Recently, Text2Shape [1] made an important contribution
by proposing a 3D-Text dataset, where voxel-based 3D shapes
and their corresponding captions are paired together. To re-
duce voxel complexity by representing 3D shapes as view
sequences, Y2Seq2Seq [16] was presented to jointly learn a bi-
lateral mapping between view sequences and word sequences.
Although Y2Seq2Seq can produce plausible captions for 3D
shapes, its ability to generate detailed description for parts is
limited because the model does not capture part-level char-
acteristics. However, human-provided captions often focus on
part-level details, as the manually annotated ground truth
examples in Fig. 1 illustrate. Therefore, how to absorb part
characteristics in 3D shape captioning remains challenging.

To resolve this issue, we propose a novel deep neural net-
work, ShapeCaptioner, to generate captions for 3D shapes. By
representing a 3D shape as a view sequence, ShapeCaptioner
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aims to learn a mapping from parts detected in the view
sequence to a caption describing the 3D shape. Specifically,
ShapeCaptioner first leverages 3D shape segmentation bench-
marks to learn the knowledge of detecting parts in terms
of their geometry from multiple views, and then, transfers
this knowledge to incrementally learn the ability of detecting
parts with various attributes from multiple colored views in
3D-Text dataset. ShapeCaptioner further employs a novel
part class specific aggregation to aggregate the detected parts
over all views for the captioning of a 3D shape. The part
class specific aggregation can represent a 3D shape by cap-
turing more part characteristics from different views, which
facilitates more detailed 3D shape captioning. In summary,
our contributions are as follows:

i) We propose ShapeCaptioner to enable 3D shape caption-
ing from semantic parts detected in multi-views, which
facilitates more detailed 3D shape captioning.

ii) We introduce a method to learn the knowledge of part
detection in multi-views from 3D shape segmentation
benchmarks to facilitate 3D shape captioning.

iii) With our novel part class specific aggregation, we effec-
tively capture part charicteristics to represent 3D shapes
for better shape captioning, inspired by the way humans
describe 3D shapes in terms of semantic parts.

2 RELATED WORK

Image captioning. There is a large volume of work on im-
age captioning. Here we review methods based on object
detection, which are most similar to our work. Currently,
end-to-end deep learning approaches [26, 27] are most ef-
fective for image captioning. These methods try to learn
to generate captions from global image features. However,
using a global feature limits their interpretability. Other
work [4, 24, 43, 46, 48, 49] employs object-level semantics
to generate captions. These methods represent images based
on occurring semantic concepts or objects. In [48], explicitly
detected objects are employed with their category, size and
layout to generate captions. In contrast, based on a bag of
word model, impressive captions can also be generated by
only using the explicitly detected objects [43].

Our method is different from these methods in four aspects.
First, the parts we want to detect are more various than the
objects. Second, part detection becomes more challenging
when considering multiple unaligned and varying viewpoints.
Third, how to aggregate the detected parts over different
views to enable learning the mapping from 3D shapes to
captions represents an additional problem. Fourth, a final ob-
stacle is that there is no labeled dataset available to learn the
knowledge of part detection in multiple views of 3D shapes.
Yet ShapeCaptioner can resolve these issues to generate cap-
tions with detailed part characteristics.
3D shape captioning. Although deep learning based 3D
shape understanding has made significant progress [6–21, 23,
29–31, 33, 34, 44, 45, 47? ], 3D shape captioning has been
less explored due to the lack of training dataset. However,
the recently proposed 3D-Text dataset [1] has enabled the

research in this area. Y2Seq2Seq [16] employs multiple views
as a 3D shape representation to address the cubic complexity
of voxel representations. It learns 3D shape features by aggre-
gating the global feature of each view. Although Y2Seq2Seq
can generate plausible captions for 3D shapes, it often fails
to generate captions with local part details. To resolve this
issue, ShapeCaptioner represents a 3D shape as a set of parts
detected in multiple views, which not only avoids the cubic
complexity of voxels but also enables the ability of capturing
part characteristics. This leads to captions that are more
similar to the manually annotated ground truth, which usu-
ally includes part details, such as color, form, material, and
texture of parts shown in Fig. 1.

3 OVERVIEW

ShapeCaptioner learns to generate a caption 𝑡 for a 3D
shape 𝑠 under a 3D-Text dataset D which provides ground
truth (𝑠, 𝑡) pairs, where shape 𝑠 is represented by a 1283

dimensional voxel cube and contains various attributes, such
as color, material and texture, as demonstrated in Fig. 1.
ShapeCaptioner represents shape 𝑠 as a colored view sequence
𝑣 = {𝑣𝑖, 𝑖 ∈ [1, 𝑉 ]}, and detects important parts from each
view 𝑣𝑖 to capture part characteristics for caption generation.
However, dataset D does not have ground truth parts in
multiple views for ShapeCaptioner to learn from.

To resolve this problem, we first leverage a separate 3D
shape segmentation benchmark B to learn the knowledge
of part geometry detection in multiple views, i.e., detecting
parts only in terms of geometry rather than attributes, as
demonstrated in Fig. 2 (a) and (b). This is because there
is no color, material or texture available in benchmark B.
Then, we transfer this knowledge to 3D-Text dataset D to
establish the ground truth parts in multiple colored views
which enables ShapeCaptioner to incrementally learn the
ability of detecting parts in terms of both geometry and
attributes, as demonstrated in Fig. 2 (b), (c) and (d). Finally,
ShapeCaptioner learns a mapping from parts detected in
multiple views of shape 𝑠 to its description 𝑡 to facilitate 3D
shape captioning, as demonstrated in Fig. 2 (d), (e) and (f).

4 SHAPECAPTIONER

Part geometry detection. As shown in Fig. 2 (a), we
propose a method to obtain part geometry ground truth
in multiple views from 3D shape segmentation benchmark
B. We use the 3D shape segmentation benchmarks involved
in [25] as segmentation ground truth.

As illustrated in Fig. 3, starting from each 3D mesh in
benchmak B, our method first voxelizes the 3D mesh into
voxels, along with labelling each voxel according to the seg-
mentation ground truth on the mesh. In the voxelization, we
randomly sample 100 points on each triangle face of the mesh,
and label each sampled point by the label of the triangle
face. This enables us to perform label voting among points
located in the same voxel in the labelling of each voxel. Using
randomly sampled points could resist the imbalance effect
of triangle face size. Then, we render the voxelized shape
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Figure 2: The demonstration of ShapeCaptioner. ShapeCaptioner first learns the knowledge of detecting part
geometry in multiple views from shape segmentation benchmark B ((a) and (b)). By transferring this knowl-
edge to 3D-Text dataset D, ShapeCaptioner learns the ability of detecting parts containing both geometry
and attributes ((b), (c) and (d)). Finally, ShapeCaptioner generates captions by learning the mapping from
the detected parts to the description ((d), (e) and (f)).
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Figure 3: Generating part geometry ground truth.

from 12 viewpoints and locate different part geometries in
each view. Specifically, from each viewpoint, we separately
highlight voxels belonging to the same part class in blue, and
compute the bounding box of each blue region. We denote
𝑝′ as a one hot probability distribution to indicate which
part class the bounding box belongs to, and denote 𝑙′ as the
location of the bounding box, where (𝑝′, 𝑙′) forms the part
geometry ground truth.

Take the first viewpoint in Fig. 3 for example, we separately
obtain the bounding box of the region formed by voxels in
back, arm, seat and leg class of a chair, and finally, we obtain
the part geometry ground truth in the first view. By repeating
this process, we obtain the part geometry ground truth (𝑝′, 𝑙′)
in multiple views, as shown by the bounding box on shapes
in the dashed box in Fig. 3.

The reason why we obtain views with part geometry ground
truth by rendering the voxelized shapes in benchmark B is to
avoid the domain gap. Because 3D shapes in 3D-Text dataset
D are voxelized, there would be a domain gap if we learn

from part geometry ground truth in views rendered from
meshes, while detecting part geometry from views rendered
from these voxelized shapes.

Subsequently, we train a fasterRCNN [35] as a part geom-
etry detector 𝐺 under the obtained part geometry ground
truth (𝑝′, 𝑙′), as shown in Fig. 2 (b). This enables ShapeCap-
tioner to detect part geometries (𝑝𝑔, 𝑙𝑔) from any view 𝑣 by
minimizing the objective function below,

𝑂𝐺(𝑝𝑔, 𝑝
′, 𝑙𝑔, 𝑙

′) = 𝑂𝑝(𝑝𝑔, 𝑝
′) + 𝜆𝑂𝑙(𝑙𝑔, 𝑙

′), (1)

where 𝑂𝑝 measures the accuracy in terms of probability by the
cross-entropy function of part class labels, while 𝑂𝑙 measures
the accuracy in terms of location by the robust 𝐿1 function
as in [5]. The parameter 𝜆 balances 𝑂𝑝 and 𝑂𝑙, and a value
of 1 works well in all our experiments.
Parts detection. Part geometry detection is not enough
for ShapeCaptioner to generate captions with detailed part
characteristics, since the detected geometries lack various
attributes, such as color or texture. Hence, it also needs to
be able to detect parts with attributes.

To resolve this issue, we transfer the learned knowledge
of part geometry detection to the 3D-Text dataset D. We
introduce a bounding box mapping method to establish part
ground truth which contains both geometry and attributes
for ShapeCaptioner to learn from.

As demonstrated in Fig. 2 (b), in the test stage of part
geometry detector 𝐺, we first render multiple views from
each 3D shape in the training set of dataset D without color,
and then, employ the trained part geometry detector 𝐺 to
detect part geometries (𝑝𝑔, 𝑙𝑔) in these views. This process is
further illustrated by the first column in Fig. 4. Subsequently,
we render the 3D shape again but with color, and map the
detected part geometries (𝑝𝑔, 𝑙𝑔) to the corresponding views
with color. Finally, we regard the mapped part geometries
in views with color as the part ground truth (𝑝′′, 𝑙′′), where
𝑙′′ = 𝑙𝑔 and 𝑝′′ is a one hot probability distribution by setting
the entry of 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑔) to be 1. Here, we map the detected
part geometries with 𝑝𝑔 > 0.7.

Finally, we further push the part geometry detector 𝐺 to
detect parts (𝑝, 𝑙) from multiple views with color by fine-
tuning 𝐺 under the part ground truth (𝑝′′, 𝑙′′). We rename 𝐺
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Figure 4: Generating part ground truth.

as part detector 𝑅, as shown in Fig. 2 (d). Note that these
part ground truth (𝑝′′, 𝑙′′) are only obtained from shapes in
the training set of 3D-Text dataset D. After training, 𝑅 can
detect parts from multiple colored views of shapes in the
test set of dataset D. Similar to Eq. (1), we minimize the
following objective function with a 𝜆 of 1,

𝑂𝑅(𝑝, 𝑝
′′, 𝑙, 𝑙′′) = 𝑂𝑝(𝑝, 𝑝

′′) + 𝜆𝑂𝑙(𝑙, 𝑙
′′). (2)

Part class specific aggregation. Given a 3D shape 𝑠,
ShapeCaptioner generates its caption 𝑡 from the parts de-
tected in multiple colored views 𝑣𝑖 of 𝑠, as demonstrated in
Fig. 2 (e). We denote the 𝑗-th part detected by 𝑅 from 𝑣𝑖 as

(𝑝𝑗𝑖 , 𝑙
𝑗
𝑖 ). We select the detected parts with 𝑝𝑗𝑖 > 𝜌 to represent

the 3D shape 𝑠, where 𝜌 is a probability threshold.
ShapeCaptioner aggregates the selected parts {(𝑝𝑗𝑖 , 𝑙

𝑗
𝑖 )}

over all 𝑉 views in terms of different part classes to represent
shape 𝑠, as demonstrated in Fig. 2 (e). For each one of 𝐶

part classes, we group the parts (𝑝𝑗𝑖 , 𝑙
𝑗
𝑖 ) belonging to the same

𝑐-th part class if 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝𝑗𝑖 ) is 𝑐. Then, we obtain a part
class specific feature 𝐹𝑐 by aggregating all parts in the 𝑐-th
part class using pooling procedure as follows,

𝐹𝑐 = pool
𝑎𝑟𝑔𝑚𝑎𝑥(𝑝

𝑗
𝑖 )==𝑐

(𝑓 𝑗
𝑖 ), 𝑖 ∈ [1, 𝑉 ], (3)

where 𝑓 𝑗
𝑖 is a 4096 dimensional feature extracted from the fc7

layer of part detector 𝑅. Finally, we use 𝐹 to represent shape
𝑠 as a sequence of part class specific feature 𝐹𝑐 as follows,
where 𝑐 ∈ [1, 𝐶],

𝐹 = [𝐹1, ...,𝐹𝑐, ...,𝐹𝐶 ]. (4)

The reason we represent a 3D shape 𝑠 as a combination
of part class specific features 𝐹𝑐 is to preserve as much part
characteristics as possible in the aggregation process. This
could reduce the impact of one part class on the others in the
multi-view scenario, which enables 𝐹𝑐 to comprehensively
describe what the semantic part looks like over all 𝑉 views
of shape 𝑠.
Captioning from parts. ShapeCaptioner leverages the se-
quence 𝐹 of part class specific features 𝐹𝑐 from 𝑠 to gen-
erate a sequence of words 𝑡𝑛 as a caption 𝑡, where 𝑡 =

[𝑡1, ..., 𝑡𝑛, ..., 𝑡𝑁 ] and 𝑛 ∈ [1, 𝑁 ]. We cast this problem into a
sequence to sequence translation model, and implement this
seq2seq model by a RNN encoder and a RNN decoder, as
demonstrated in Fig. 2 (f). The RNN encoder encodes 𝐹 by
inputting 𝐹𝑐 at each one of 𝐶 steps, while the RNN decoder
dynamically decodes each word 𝑡𝑛 in 𝑡. Thus, ShapeCap-
tioner learns the mapping from 3D shape to sentences by
minimizing the following objective function,

𝑂𝑡 = −
∑︁
𝑡𝑛∈𝑡

log 𝑝(𝑡𝑛|𝑡<𝑛,𝐹 ), (5)

where 𝑡𝑛 is the 𝑛-th word in the word sequence 𝑡, 𝑡<𝑛 repre-
sents the words in front of 𝑡𝑛, 𝑝(𝑡𝑛|𝑡<𝑛,𝐹 ) is the probability
of correctly predicting the 𝑛-th word according to the previ-
ous words 𝑡<𝑛 and the 3D shape feature 𝐹 . Note that the
optimization is conducted under the training set of 3D-Text
dataset D. After training, we can generate captions for shapes
in the test set of dataset D.

5 EXPERIMENTS AND ANALYSIS

We present the exploration on the parameters, ablation stud-
ies and the comparison with state-of-the-art methods.
Dataset and metrics. We evaluate ShapeCaptioner un-
der the 3D-Text cross-modal dataset [1], which consists of
a primitive subset and a ShapeNet subset. We only employ
the ShapeNet subset, because the 3D shapes in the primitive
subset are too simple to extract parts. The ShapeNet subset
contains 15,038 shapes and 75,344 descriptions in only two
classes, i.e., chairs and tables. We employ the same train-
ing/test splitting in each shape class as [1, 16]. Specifically,
the chair class is formed by 5954 training shapes and 641 test
shapes while the table class contains 7592 training shapes
and 851 test shapes. In addition, we employ 487 chairs (out
of 537) and 481 tables (out of 520) involved in segmentation
benchmarks [25] to train part geometry detector 𝐺, respec-
tively, which avoids the 3D shapes that are also in the test
set of 3D-Text dataset.

We employ BLUE [32], CIDEr [40], METEOR [3], and
ROUGE [28] to evaluate the quality of generated captions
according to the ground truth captions, where these metrics
are abbreviated as “B-1”, “B-2”, “B-3”, “B-4”, and “C”,
“M”, “R”, respectively in the following tables.
Initialization. We extract 3587 unique words from captions
of 3D shapes in the training set of ShapeNet subset to form
the vocabulary for caption generation. Each word is repre-
sented by a 512 dimensional embedding, which is learned
along with the other involved parameters in training. Both
RNN encoder and decoder are implemented by GRU cells [2].
The learning rate in all the experiments is 0.00001.

In addition, the number of part classes is 𝐶 = 4 in the chair
class, while 𝐶 = 3 in the table class, and ShapeCaptioner is
trained under each class respectively. We employ 𝜌 = 0.8 to
select parts detected in 𝑉 = 12 views to represent a 3D shape,
and then, use max pooling to aggregate all the selected parts
over 𝑉 views.
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Y2Seq2Seq:  a chair with a blue seat and back. a black back 

                      and seat, and yellow top.
ViewPool:     a black chair with blue leg, green arm , and a 

                      green stripe on the green color. green the seat.
Ours:             chair with blue leg, green arm, a black back 

                      and seat, and yellow top.
GT:               black chair, blue leg, green trim on arm, 

                     yellow trip on top of back portion.

... ...

Y2Seq2Seq:  a gray color square shape steel material new 

                      model and incline back rest.
ViewPool:     a chair with gray cushion and silver pipe 

                      material back. 
Ours:             chair with color metallic chair with frame 

                      style leg and incline back rest.
GT:               a stylish gray metallic chair with incline back.

... ...

Y2Seq2Seq:  a brown wooden chair with a black cushion 

                      and a back rest.
ViewPool:     this be a chair. there be a gray and black 

                      circle design rest. it be make of wood rest.
Ours:             chair with with no leg and no hand support 

                      make of cushion material.
GT:               this be a textured cushion with a seat and a 

    back. the fabric be brown and have a diamond pattern.

... ...

... ...

Y2Seq2Seq:  a round table with a round top and a round 

                      base. top and a round base.
ViewPool:     the table be gray in shape shape in shape. 

                      for for for for for to have one leg.
Ours:             a brown table with a leg. four round shelf 

                      under top and a round base.
GT: a brown shelf with four level of circular shelf. the 

large circle be on the top and the circle get small towards the bottom.

... ...

Y2Seq2Seq:  a brown wooden table with a square top and 

                      a shelf underneath. at bottom.
ViewPool:     it have square square brown wooden table. 

                      can be brown and the top be make of wood.
Ours:             a brown table with a glass top. wooden table 

                      with a curve at bottom.
GT:               modern design light coffee color square table 

                     with semi - circle shape bottom.

Y2Seq2Seq:  a brown table with a square top and a square

                      base. it be spin.
ViewPool:     a small table, drawing, make of the table. 

collapsible , make as a medium as at at at make make.
Ours:             a brown table with a leg. brown and have

                      vertical stripe. it be spin.
GT:               a brown table with a leg. brown and have

                     vertical stripe. it be spin.

Figure 5: Comparison between captions generated by different methods, where 𝜌 > 0.8.

Table 1: The comparison on 𝐻. 𝜌 = 0.8, 𝑉 = 12.

𝐻 B-1 B-2 B-3 B-4 M R C

16 0.122 0.072 0.041 0.021 0.121 0.168 0.002
32 0.937 0.917 0.894 0.878 0.550 0.847 1.789
64 0.794 0.639 0.537 0.475 0.284 0.551 0.644
128 0.761 0.604 0.493 0.421 0.273 0.529 0.560
256 0.772 0.615 0.503 0.431 0.276 0.534 0.576
512 0.736 0.559 0.442 0.371 0.265 0.503 0.506

Parameters. Here we compare some important parameters
under the chair class.

We first explore the effect of dimension 𝐻 of the RNN en-
coder and decoder by comparing𝐻 ∈ {16, 32, 64, 128, 256, 512}.
As shown in Table 1, the performance is increased with in-
creasing 𝐻 until 𝐻 = 32, and then, degenerates gradually
when 𝐻 becomes larger. We believe this is caused by over-
fitting because the training data is not large enough. In
addition, we compare the generated captions under different
𝐻 in Fig. 6 (a), where the detected parts for caption gener-
ation are also briefly shown on the views. We also observe
the gradually degenerated captions when 𝐻 becomes larger.
For example, the color description becomes inaccurate in the
caption with 𝐻 = 128. Also, some descriptions are repeating
in the captions with 𝐻 = 256 and 𝐻 = 512. In the following,
we set 𝐻 to 32.

Then, we explore the probability threshold 𝜌 of selecting
parts to represent a 3D shape. We compare 𝜌 ∈ {0.6, 0.7, 0.8, 0.9}.
There would be more selected parts when 𝜌 is smaller while
the quality of the selected parts is lower, and vice versa, as
demonstrated in Fig. 6 (b). We believe both the number and
the quality would affect the discriminability of 3D shape fea-
tures. This is because smaller number of parts would decrease
the ability of resisting the effect of viewpoint changing while
lower quality would contain inaccurate part characteristics.

0.6 0.7 0.8 0.9

V
ie

w
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V
ie

w
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w
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16:  a gray chair with a black back . a a a a a a a a a a a a 

       a a a a a a a a a a a a a a a a a a a a a a a.
32:  chair with spherical, revolving steel chair. one vertical 

       central leg, and a round support at bottom.
64:  a black colored chair with a black seat and a black seat

       , and a round support at bottom.
128:  a chair with a red seat and a red seat. central leg, and

         a round support at bottom.
256:  a red color chair with a round base and a circular base

         leg , and a round support at bottom.
512:  a red, round shape chair. the chair have a round 

         bottom. and a round support at bottom.
GT:  a half spherical, revolving steel chair. one vertical

        central leg, and a round support at bottom.

......

......

(a) (b)

Figure 6: The comparison on (a) 𝐻 and (b) 𝜌.

Table 2: The comparison on 𝜌. 𝐻 = 32, 𝑉 = 12.

𝜌 B-1 B-2 B-3 B-4 M R C

0.6 0.225 0.140 0.085 0.053 0.154 0.261 0.046
0.7 0.715 0.576 0.476 0.415 0.260 0.515 0.523
0.8 0.937 0.917 0.894 0.878 0.550 0.847 1.789
0.9 0.463 0.409 0.383 0.366 0.235 0.366 0.428

In Table 2, we found 𝜌 = 0.8 performs best, hence we use
this setting in the following.

Finally, we want to know how the number 𝑉 of views
affects the performance. In this experiment, we use the first
{1, 4, 8, 12} views to select parts, and then, learn to gener-
ate captions. As shown in Table 3, the performance keeps
improving along with the increasing number of views. This
comparison shows that more views would provide more part
characteristics to learn from, which also decreases the effect
of inaccurately detected parts. This can also be observed in
the comparison of the generated captions under different 𝑉
in Fig. 7, where the parts employed for caption generation
are also briefly shown. For example, we cannot get plausible
captions when too few views are available, such as 𝑉 = 1. The
material and the color gradually appear in the captions when
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Table 3: The comparison on 𝑉 . 𝐻 = 32, 𝜌 = 0.8.

𝑉 B-1 B-2 B-3 B-4 M R C

1 0.324 0.210 0.137 0.097 0.158 0.320 0.061
4 0.777 0.638 0.540 0.478 0.292 0.567 0.724
8 0.876 0.779 0.707 0.656 0.374 0.674 1.108
12 0.937 0.917 0.894 0.878 0.550 0.847 1.789

1:     a brown chair with a a back and a back and a back. a a

        a a arm a a a a a arm.

......

4:     a brown chair with a cushion and back rest. physical 

        appearance wooden with 2 hand for rest.
8:     a chair with a back rest. colored, solid physical 

        appearance wooden with 2 hand for rest.
12:   chair with swing chair, light brown colored, solid 

         physical appearance wooden with 2 hand for rest.
GT:  rectangular resting swing chair, light brown colored, 

        solid physical appearance wooden with 2 hand for rest.

Figure 7: The comparison on 𝑉 .

Table 4: Part aggregation. 𝐻 = 32, 𝜌 = 0.8, 𝑉 = 12.

B-1 B-2 B-3 B-4 M R C

Mean 0.220 0.133 0.077 0.044 0.148 0.253 0.018
Mixed 0.843 0.744 0.668 0.617 0.360 0.653 1.019
Max(L) 0.722 0.541 0.433 0.374 0.239 0.482 0.422
MaxAll 0.714 0.593 0.520 0.476 0.299 0.535 0.694
Max 0.937 0.917 0.894 0.878 0.550 0.847 1.789

𝑉 increases from 4 to 12. We do not explore the results with
more views because of the limited computational capacity.
In the following, we use 𝑉 = 12.
Ablation studies. We first highlight our part class specific
aggregation for representing a 3D shape. In the former ex-
periments, we employ max pooling to obtain the part class
specific aggregation 𝐹𝑐. Here, we try mean pooling to com-
pare with the results of max pooling. As shown by the result
of “Mean” in Table. 4, we find that mean pooling is not as
good as max pooling (“Max”) to aggregate parts in multiple
views. To further justify this point, we conduct another ex-
periment to combine max pooling and mean pooling together.
Specifically, we use max pooling to aggregate parts in the
same part class in the same view while further using mean
pooling to obtain 𝐹𝑐 by aggregating the same part class over
different views. As shown by the result of “Mixed”, although
it is better than the result of “Mean”, it is still worse than
the result of “Max”. In addition, we also highlight the idea of
part class specific features. As shown by the result of “Max-
All”, we max pool all parts over views into a single feature
while ignoring the part class, and leverage this feature to
generate captions. The degenerated results show that parts
in different classes would affect each other in the aggregation.
In addition, we compare our employed GRU with LSTM cell
in RNN. As shown by “Max(L)”, GRU cell is more suitable
in our problem. The captions in Fig. 8 also show the similar
comparison results.

Mean:   a gray chair with a black cushion and a cushion and 

             back and a cushion and back and a cushion and back.

......

Mixed:  a brown chair with a cushion. colored seating 

             provide, with good design .
Max:     chair with colored chair, with red colored seating 

              provide, with good design.
MaxAll: a modern and black seat and sit and the design. 

GT:       a stylish colored chair, with red colored seating 

             provide, with good design.

 
MM

G

 

Figure 8: Comparison on part aggregation.

Table 5: Representations for chairs.𝐻 = 32,𝜌 =
0.8,𝑉 = 12.

B-1 B-2 B-3 B-4 M R C

RNN 0.231 0.148 0.090 0.055 0.172 0.252 0.009
CNN 0.337 0.218 0.173 0.152 0.153 0.285 0.221
VMax 0.409 0.244 0.181 0.157 0.176 0.307 0.229
VMean 0.494 0.338 0.251 0.214 0.209 0.381 0.301
Part 0.937 0.917 0.894 0.878 0.550 0.847 1.789

Subsequently, we highlight the advantage of our part based
features over view based features. Similar to [16], we employ
a VGG19 [37] to extract the feature of each view, and employ
a RNN encoder to aggregate these view features for caption
generation. As shown in Table. 5, without the multi-task
scenario and constraints in [16], this aggregation by RNN
(“RNN”) cannot obtain satisfactory results. In addition, we
also try a CNN+RNN architecture similar to the method of
image captioning [42]. We employ the first view of each shape
to caption a 3D shape. Although the results of “CNN” are a
little bit better than “RNN”, there is still room to improve.
We further try to pool the 𝑉 = 12 view features together into
a single feature, and convey this feature to the RNN decoder
for caption generation. We find both mean pooling (“VMean”)
and max pooling (“VMax”) works well on aggregating views
to generate captions, and mean pooling is better than max
pooling. However, all these view based shape features cannot
capture part characteristics to generate better captions than
our part based features (“Part”). Moreover, we also observe
similar results in the table class in Table 6.

In addition, we elaborate on the results in Table 5 and
Table 6 by cumulative distribution in Fig. 11. For each metric,
we use 11 values as probes, and calculate the percentage of
samples over the whole test set whose metric scores are bigger
than each probe, respectively. These comparisons also demon-
strate our significant improvement by higher percentage.
Visualization of detected parts. ShapeCaptioner em-
ploys an effective way of detecting parts from multiple colored
views of a 3D shape. As demonstrated by the consistent part
detection results in Fig. 9, where the bounding boxes of the
detected parts are shown on all the 𝑉 = 12 views, ShapeCap-
tioner can detect reasonable parts for caption generation
by understanding the complex geometry of semantic parts
without the impacts by viewpoints and colors.
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Table 6: Representations for tables.𝐻 = 32,𝜌 =
0.8,𝑉 = 12.

B-1 B-2 B-3 B-4 M R C

RNN 0.310 0.194 0.110 0.054 0.161 0.317 0.073
CNN 0.451 0.279 0.186 0.143 0.190 0.343 0.228
VMax 0.450 0.285 0.210 0.180 0.192 0.344 0.283
VMean 0.530 0.367 0.274 0.229 0.225 0.414 0.385
Part 0.860 0.755 0.675 0.620 0.362 0.664 1.099

Table 7: Comparison with others. 𝐻 = 32, 𝜌 = 0.8,
𝑉 = 12.

Method B-1 B-2 B-3 B-4 M R C

ShowAndTell [42] 0.494 0.338 0.251 0.214 0.209 0.381 0.301
Video2Text [41] 0.670 0.430 0.260 0.150 0.210 0.450 0.270
GIFT2Text [39] 0.610 0.350 0.210 0.120 0.160 0.360 0.140

SLR [36] 0.400 0.170 0.080 0.040 0.110 0.240 0.050
Y2S [16] 0.800 0.650 0.540 0.460 0.300 0.560 0.720

Ours(C) 0.937 0.917 0.894 0.878 0.550 0.847 1.789
Ours(T) 0.860 0.755 0.675 0.620 0.362 0.664 1.099
Ours 0.899 0.836 0.785 0.749 0.456 0.756 1.444

Comparison with other methods. We evaluate ShapeCap-
tioner by comparing it with the state-of-the-art methods. As
shown in Table 7, we compare to the methods which are able
to generate captions from images or image sequences, such
as ShowAndTell [42] for image captioning, Video2Text [41]
for video captioning, GIFT2Text [39] for GIF understanding,
SLR [36] for video understanding, and Y2Seq2Seq (“Y2S”) [16]
for 3D shape understanding. The results of SandT are pro-
duced with mean pooling of all views as shape feature for
caption generation, while the results of GIF2T and SLR are
produced by the nearest retrieval in the joint feature space
of shape and caption.

We can see that ShapeCaptioner (“Ours”) significantly out-
performs the other view-based methods in all metrics, where
“Our” is the average of results under chair (“Ours(C)”) and
table (“Ours(T)”) classes. We believe our results benefit from
the ability of understanding parts of 3D shapes, which cap-
tures more part characteristics to generate better captions in
a more similar way to humans. We also obtain the captions in
the test set generated by Y2Seq2Seq, and compare Y2Seq2Seq
and SandT (“VMean”) to ShapeCaptioner in Fig. 11 in all
metrics, where we also observe significant improvement.
Real image test. We further evaluate ShapeCaptioner un-
der a real image set in Fig. 10. What we want to show here
is that ShapeCaptioner can also help to caption images by
leveraging the detected parts, although it is only trained
under 3D data. We select real chair and table images from
the Stanford Online Products dataset [38], and we use the
trained ShapeCaptioner (“Ours(C)” and “Ours(T)”) in Ta-
ble 7 to conduct the results. We first compare our method
to the state-of-the-art image captioning methods including
CaptionBot [22] and NeuralTalk2 [26] in Fig. 10. We find
ShapeCaptioner can generate more detailed and accurate
descriptions for parts in captions. This benefits from the
detected semantic parts with part details, which also justifies
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Figure 12: (a) The statistical analysis of the user
study over all cases. (b) The statistical analysis of
each case.

that ShapeCaptioner has the ability to overcome the gap
between rendered views and real images. Note that the gen-
erated captions lack variety due to the absence of training
on the real images and captions.

To further evaluate the generated captions, we conduct
a user study (URL) over randomly selected 30 chairs and
tables. We provide all 66 participants each one of the 30 cases
accompanied with the generated captions. Then, we ask the
participants to select one of three options for each case, i.e.,
perfectly correct (All descriptions about parts are correct),
roughly correct (Some descriptions about parts are correct),
and totally wrong (All descriptions about parts are wrong),
to evaluate how well the generated caption matches the shape
in the real image. Finally, we show the statistical results in
Fig. 12 (a). We can see that participants gave almost 90%
cases (“Avg”) perfectly and roughly correct, where the results
on each case are elaborated in Fig. 12 (b). In addition, our
results in the table class (“Table”) are better than the results
in the chair class (“Chair”) in terms of percentage of perfectly
correct. This is because tables are usually simpler than chairs,
and there are more training samples in the table class than
the chair class in the 3D-Text dataset.

6 CONCLUSION

We propose ShapeCaptioner to better caption a 3D shape
by leveraging more part characteristics. ShapeCaptioner suc-
cessfully learns the ability of semantic part detection from
multiple views of 3D shapes in segmentation benchmarks,
and effectively transfers this ability to 3D-Text dataset to
caption 3D shapes from the parts detected in multiple colored
views. Moreover, our part class specific aggregation can also
preserve the part characteristics from different views. Our
outperforming results indicate that captioning from parts
can produce more accurate descriptions for parts, which is
also more similar to human’s way of describing 3D shapes.
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Figure 9: Demonstration of part detection under 3D-Text dataset, where 𝜌 > 0.8.
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square shape seat and
back rest.

a brown colored wooden
chair with four leg and 
a back rest.

a brown colored
chair with a round
back and seat.

a gray chair with
a high back and 
no arm rest.

a black chair with
a black cushion
and a back rest.

a brown chair with a 
round back and a 
round back.

it be a chair with a 
red cushion.

a gray chair with
a square seat.

a wooden table with a 
drawer and a shelf
underneath.

a brown colored wooden 
table with four leg.

a brown colored 
wooden table with
four leg.

a brown wooden table
with a glass top and a 
shelf underneath.

a square table with a
glass top and a
square top.

a brown colored wooden 
table with a shelf on the 
top and a shelf on the bottom.

a brown wooden
table with a shelf
underneath.

I think it's a large red
chair in a room.

I think it's a 
close up of a
chair. 

I think it's a chair 
sitting in front of
a wooden table. 

I think it's a person 
sitting on a chair in
a room.

I think it's a bird 
sitting on a chair.

I think it's a close up 
of a chair. 

I think it's a 
close up of 
a stool. 

I think it's a 
close up of 
a chair. 

a bed with a red blanket
and a red chair.

a wooden bench 
sitting in front of 
a window.

a white bed with a 
white comforter and 
a white blanket.

a small bird
sitting on top
of a table.

an old fashioned
chair with a 
laptop on it.

a cat sitting on a 
chair in a room.

a pair of scissors
sitting on a table.

a pair of scissors
sitting on a table.

I can't really describe
the picture but I do 
see indoor,table,white.

I think it's a wooden
bench sitting in the
grass.

I think it's a chair that 
is sitting on a table.

I think it's a wooden 
table.

I think it's a book sitting
on top of a table. 

I think it's a close
up of furniture. 

I think it's a wooden
table. 

a white and black cat
sitting on a table.

a wooden bench sitting
in the grass near a tree.

a wooden table with a 
white and blue cup on it.

a wooden table with
a chair and a chair.

a black and white photo
of a plane flying in the sky.

a tv sitting on top
of a wooden table.

a black and white photo
of a pair of scissors.

Figure 10: Comparison with CaptionBot (Black) [22] and NeuralTalk2 (Blue) [26], our results (red) presents
more detailed and accurate part characteristics under real images, where 𝜌 > 0.5.
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Figure 11: The comparison with methods in Table 5, Table 6 and state-of-the-art under the test set of chair
(1st row) and table (2nd row) class. The comparison is conducted in terms of cumulative distribution of
different metrics.
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