
Automation in Construction 50 (2015) 1–15

Contents lists available at ScienceDirect

Automation in Construction

j ourna l homepage: www.e lsev ie r .com/ locate /autcon
IFCCompressor: A content-based compression algorithm for optimizing
Industry Foundation Classes files
Jing Sun a, Yu-Shen Liu a,b,c,⁎, Ge Gao a,d, Xiao-Guang Han a,d

a School of Software, Tsinghua University, Beijing, China
b Key Laboratory for Information System Security, Ministry of Education of China, China
c Tsinghua National Laboratory for Information Science and Technology, China
d Department of Computer Science and Technology, Tsinghua University, China
⁎ Corresponding author at: School of Software, Tsingh
China. Tel.: +86 10 6279 5455, +86 159 1083 1178 (mo

E-mail addresses: sunjing11@mails.tsinghua.edu.cn (J.
liuyushen@tsinghua.edu.cn (Y.-S. Liu).

URL: http://cgcad.thss.tsinghua.edu.cn/liuyushen/ (Y.-

http://dx.doi.org/10.1016/j.autcon.2014.10.015
0926-5805/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 April 2014
Received in revised form 25 October 2014
Accepted 30 October 2014
Available online xxxx

Keywords:
Building Information Modeling (BIM)
Industry Foundation Classes (IFC)
Content-based compression
IFC optimization
As the commonly used open and neutral file format for Building InformationModeling (BIM) data, IFC (Industry
Foundation Classes) aims to facilitate interoperability between various software platforms in the AEC industry.
However, the IFC files generated from different systems often contain enormous redundant information, which
will greatly limit IFC-based data storage and exchange, management, transmission and other applications. To
address this issue, this paper presents a content-based compression algorithm, named IFCCompressor, for
optimizing IFC data files. Its goal is to make a large IFC file as small as possible by reducing its redundant
information. The algorithm is achieved through an iterative compression procedure based on an IFC model's
tree structure. The optimization procedure can be lossless or be constrained by an error bound. Compared
with pure compression (ZIP) regardless of information content, the presented algorithm starts with a compre-
hensive analysis of structure and content of IFC file, and then eliminates its redundant information without
changing the original file format. Unlike partial model extraction methods, our algorithm results in a complete
IFC model but with a more compact IFC physical file. In contrast with some commercial IFC optimization tools
such as Solibri IFC Optimizer, the algorithm can make the size of IFC files smaller. The experimental results
show that the algorithm is particularly effective for some office/residential building models with a large number
of duplicated components. The compression rate with our algorithm is generally very high (the average is
40.32%) for tested cases. The online IFCCompressor tool and its demonstration can be accessed at: http://cgcad.
thss.tsinghua.edu.cn/liuyushen/IFCCompressor/.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

BIM (Building InformationModeling) technology has been receiving
an increasing attention in the AEC (Architecture, Engineering and Con-
struction) industry [1]. Compared with the traditional CAD technology,
BIM is capable of restoring both geometric and rich semantic informa-
tion of buildingmodels, aswell as their relationships, to support lifecycle
data sharing. As the commonly used open and neutralfile format for BIM
data, IFC (Industry Foundation Classes) [2] led by the buildingSMART,
formerly known as International Alliance for Interoperability (IAI),
plays a crucial role to facilitate interoperability between various soft-
ware platforms in the AEC industry. Today, the IFC data format has
been widely supported by the market-leading BIM software vendors. A
list of software applications/utilities, providing IFC import and/or export
ua University, Beijing 100084,
bile); fax: +86 10 6279 5460.
Sun),

S. Liu).
functionality, is available at the buildingSMARTwebsite [3]. A number of
recent research articles have concerned extracting and managing IFC
information for various applications, such as automatic rule-based
checking [4], evaluation of design solutions [5], construction cost
estimating [6], construction management [7], partial model extraction
[8,9], IFC-based path planning [10] and others.

However, the IFCfiles generated by various software platforms often
contain enormous redundant information. For example, one data in-
stance in an IFC model may be mapped to multiple instances in the
exported IFC file, which can result in a hardly manageable IFC file due
to its text based record. Some previous studies [8–17] have exposed
the large IFC file size as a major burden on IFC-based data storage and
exchange, management, transmission and other applications. For
instance, VTT research project SPADEX [12,16] listed this issue as one
of seven major implementation obstacles in IFC applications.

The limitation of large file sizes can be overcome in several ways. A
direct way is to use plain text compression (e.g. ZIP) algorithms or
tools for reducing the file size [18], regardless of information content
of IFC files. However, the ZIP file format does not change the typical
loading (IFC import) time and memory consumption because it has to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2014.10.015&domain=pdf
http://cgcad.thss.tsinghua.edu.cn/liuyushen/IFCCompressor/
http://cgcad.thss.tsinghua.edu.cn/liuyushen/IFCCompressor/
http://dx.doi.org/10.1016/j.autcon.2014.10.015
mailto:sunjing11@mails.tsinghua.edu.cn
mailto:liuyushen@tsinghua.edu.cn
http://cgcad.thss.tsinghua.edu.cn/liuyushen/
http://dx.doi.org/10.1016/j.autcon.2014.10.015
http://www.sciencedirect.com/science/journal/09265805
www.elsevier.com/locate/autcon


2 J. Sun et al. / Automation in Construction 50 (2015) 1–15
be decompressed to the original IFC file in memory first. Another way is
to extract a partial model or required information from the original
complete IFCmodelwith respect to specific applications [8,9,15]. Never-
theless, partial model extraction is limited by specific situations or
purposes, which also requires users to understand the entire complex
inheritance and aggregation structures of IFC. Regardless of specific
application requirements, the third way is the content-based compres-
sion/optimization methods, which focus on analyzing the structure
of an IFC file itself and eliminating its redundant information. A well-
known representative tool is “Solibri IFC Optimizer” [19]. However, as
a commercial software, its algorithm and implementation are not
available. Our method falls into the third way.

This paper presents a content-based compression algorithm, named
IFCCompressor, for optimizing large IFC files. Its goal is to make a large
IFC file as small as possible by reducing its redundant information.
Unlike partial model extraction, our algorithm results in a complete
IFC model but with a more compact IFC physical file. Compared with
pure ZIP compression regardless of information content, the presented
algorithm reduces the redundant information content of an IFC file itself
without changing the original IFC file format. In contrast with some
commercial IFC optimization tools such as Solibri IFC Optimizer, our
algorithm can make the size of IFC files smaller. Our method is tested
on a number of IFC fileswhich are exported through several commercial
BIM software platforms, including Autodesk Revit Architecture and
Graphisoft ArchiCAD. The experimental results show that the algorithm
is particularly effective for some office/residential building models
with a large number of duplicated components.

1.1. Related work

Some recent studies have indicated that the IFC-based data ex-
change required further improvement in the technology before IFC
could be fully adopted in the project data exchange [17,20]. A prom-
inent problem is how to deploy IFC as an exchange format for large
projects. Several literature [12,13,16,17,20] indicate specific techni-
cal issues in IFC-based data exchange, such as geometric misrepre-
sentation, loss of object information, confusion in interdisciplinary
revision, application-specific IFC input/output, and large IFC file
sizes. This paper focuses on the last issue, i.e. large IFC file sizes.
Large file sizes make it difficult to handle and exchange an IFC
model as a file, as reported in Refs. [8–15]. As mentioned above, the
limitation of large IFC file sizes can be overcome in three ways:
pure ZIP compression, partial model extraction, and content-based
compression/optimization.

1.1.1. Pure ZIP compression
Themost directway is to use plain text compression (ZIP) for reducing

the size of IFC data files, regardless of information content of IFC models.
For instance, IFC-ZIP is a typical ZIP compressed format, which consists of
an embedded IFCdatafilewithfile extension “.ifcZIP” [18] using the PKzip
compression algorithm. The buildingSMART [18] announces that IFC-ZIP
files usually compress the IFC data files down by 60–80%. Pazlar and
Turk [12] compared the compression rate between IFC-ZIP and other
IFC optimization tools [19] in some case studies.

The ZIP compressed format (e.g. IFC-ZIP) is usually effective only for
IFC data transmission, such as for sending a large IFC model as e-mail
attachment. However, the ZIP compressed format does not change
the typical loading (IFC import) time and memory consumption in
essence because it has to be decompressed to the original IFC file in
memory first. In addition, parsing the IFC-ZIP format is software-
dependent, which means that only the IFC-ZIP supported software
can parse this kind of file format. This also leads many software
venders to do extra development for importing the IFC-ZIP format.
Since the IFC file format has been strictly defined in terms of its schema
information, the optimization efforts should focus on the structure and
content of the IFC file.
1.1.2. Partial model extraction
The secondway is to extract a partial model or required information

from the original complete IFC model with respect to specific applica-
tions [8,9,15]. As a building information model is transferred between
various participants, more and more information will be added to the
model by different stakeholders at different stages during the building
lifecycle [8,9], which often results in very large IFC files. With the vast
volumes of information being stored in BIM models, the problem of
“information overload” has been increasingly recognized in the AEC
field [8,9,21]. This issue can be solved by extracting an information
subset or a partial model from a complete building information model.

Recently, several approaches have been proposed to extract partial
IFC models for specific application requirements [8,9,22]. For instance,
Beetz et al. [22] developed a tool for converting IFC information into
the OWL, which was applied to partial model extraction of IFC model
by combing a graph query technique. Zhang and Issa [8] presented an
approach to extract a partial IFC model from the complete IFC file,
where an ontology-based framework is introduced for querying specific
information from the IFC model [23]. More recently, Won et al. [9,15]
described a no-schema algorithm for extracting a partial model from
an IFC instance model.

In some cases, the above methods could reduce the size and com-
plexity of an IFC model for specific applications. However, partial
model extraction is highly dependent on specific application require-
ments or purposes, whichmay not be always available. In addition, par-
tial model extraction still remains a research challenge. Defining a
reasonable partial model representation often requires users to under-
stand the entire complex inheritance and aggregation structures in IFC
specification [9], which is a time-consuming and difficult task for the
novice. Another main issue is that the extracted partial IFC model is
only an incomplete model, which limits many applications that require
access to the complete information stored in the original model during
the lifecycle of the project.

1.1.3. Content-based compression/optimization
In order to remove the redundant information in an IFC file while

keeping its complete building model, the third way is the content-based
compression/optimization methods. Such methods first analyze the
structure and content of an individual IFC data file and then eliminate
its redundant information, regardless of specific application require-
ments. It can greatly reduce the file size and processing time required
for working with the IFC file. In the presented research work, the term
optimization or compression represents the process of reducing the
size of IFC data file without any information loss or with an error bound.

Some possible reasons for the abundance of redundancy in the
generated IFC data files are as follows.

(1) Differences of model mapping mechanism between various BIM
software platforms and the standard IFC data. It is worthmention-
ing that each BIM software platformhas its own internal represen-
tation and structure for a building information model. In order to
achieve applications and data exchanges in accordance with the
IFC specification, mapping a platform internal schema into the
IFC schema has to be fulfilled by the platform itself, i.e. mapping
between the internal model and the IFC model for exports and
mapping between the IFC model and the internal model for im-
ports [12,17,20,24,25]. Neithermapping is trivial, but perfect struc-
ture mapping cannot be expected in practical applications due to
the specific internal representation [12]. Ref. [12] has shown
some case studies, in which different model mappings and de-
scription approaches may greatly increase the size of IFC files.

(2) Various possibilities offered by IFC specification. Some applications
describe the same contents, but they canbe constructeddifferently
than those based on IFC specification. Therefore, IFC translator im-
plementers can freely choose different approaches that best serve
their needs. Lee et al. [20] indicated that such various possibilities



3J. Sun et al. / Automation in Construction 50 (2015) 1–15
can make two IFC files exported from the same model have large
differences in physical file size, number of instances, attribute
values and inconsistence in object type.

(3) If an IFC file is repeatedly imported and exported among different
systems, its file size may rapidly increase even if no modification
is made to the original model [20].

A few of recent studies attempted to consider the problem of content-
based IFC optimization. A representative software tool is the Solibri IFC
Optimizer [19]. According to the official announcement on Solibri Inc.,
the optimizer tool is lossless andoptimizes the IFCfile into amuch smaller
size than the original. It mainly removes the redundant entities from the
IFC file by updating the references. Pazlar and Turk [12] examined some
IFC models for evaluating the effectiveness of several IFC optimization
methods including Solibri IFC Optimizer. They [12] confirmed some ad-
vantages such as decreasing the IFC file size and improving the loading
performance. However, they also found that Solibri IFC Optimizer is not
as good as its announcement, and in some cases this software is still
doubtable [12]. In addition, as a commercial software, the algorithm and
implementation of Solibri IFC Optimizer are unavailable, and users have
noway to find outwhat exactly happened to the optimization procedure.

Large IFC file sizes have been a big issue in practice, where numerous
duplicated instances and references in the IFC file are a serious prob-
lem [20]. Therefore, an ideal IFC file-size optimizer, which can eliminate
redundant instances, should be developed to relieve this redundancy
problem [12,19,20]. However, in the long run a redundancy check and
compression should be included in a normal IFC development procedure.

1.1.4. XML compression
Another possible way is to convert the original IFC file into the

ifcXML format [26,27]. From this many XML (Extensible Markup
Language) compression techniques [28] can be used for ifcXML. The
XML compression approaches can be roughly divided into two catego-
ries [28]. The first category is based on general text compression,
which treats XML documents as normal plain text documents and
thus applies the traditional text compression techniques (e.g. ZIP). The
second category is based on XML-conscious compression, which takes
advantage of the XMLdocument structure to achieve better compression
rate over general text compression. According to the dependence on the
XML schema information, the XML-conscious compression approaches
can be further classified: schema-dependent compression and schema-
independent compression. Here schema-dependent compression re-
quires the availability of the schema information of the XML documents
during their encoding and decoding processes.

The ifcXML format is often suitable for interoperabilitywith XML tools
and some applications of exchanging partial building models. However,
due to the large sizes of typical building models, this format is less com-
monly practiced. Our algorithm can be regarded as a schema-dependent
compression algorithm (only for IFC files), which specifically utilizes the
IFC schema information to go through the compression process. It is of
interest to extend our algorithm to ifcXML compression with the help of
the IFC schema, and we leave this for future work.

1.2. Contributions

Our main contributions can be summarized as follows.

− A content-based compression algorithm, named IFCCompressor, is
presented for optimizing an individual IFC file. In essence, our algo-
rithm is a schema-dependent compression algorithm, which utilizes
the IFC schema information to complete the compression process.
Our algorithm can decrease the IFC file size considerably and reliably.
The compression rate with our algorithm is generally very high (the
average is 40.32%) for tested cases.

− Comparedwith pure plain text compression techniques (e.g. ZIP) that
are regardless of information content of IFC models, our algorithm
starts with a comprehensive analysis of the structure and content of
an IFCdatafile and then eliminates its redundant informationwithout
changing the original IFC file format.

− Unlike partial model extraction methods that produce an incomplete
sub-model with respect to specific application requirements, our
algorithm results in a complete IFC model but with a more compact
IFC physical file.

− In contrast with Solibri IFC Optimizer, our algorithm can make the
size of IFC files smaller. Our optimization procedure can be lossless
or be constrained by an error bound.

2. Structure of the IFC data file

IFC specifies a conceptual data schemaand anexchangefile format for
BIM data, which is an official International Standard ISO 16739:2013. In
this paper, we typically choose the IFC2 × 3 specification that contains
653 entities and over 300 supplementary data types aswell as extensible
property sets. Themost commonway of exchanging data using IFC today
is in a file format with the extension “*.ifc”, called IFC-SPF. Here SPF
stands for STEP Physical File defined by ISO 10303-21 [29] using the
clear text encoding of the exchange structure, inwhich each line typically
consists of a single object record. It has the advantage of resulting in
compact size yet readable text. For convenience, the IFC-SPF file is simply
referred to as IFC data file (or IFCfile) in this paper. Each IFC datafile, using
the STEP Physical File format (or ISO 10303-21 structure), is split into
two sections: header section and data section [30], following the initial
keyword ISO-10303-21.

2.1. Header section

The header section has information on the file description, the date
and timewhen the file was done, the name of company and authorizing
person of the file, the IFC version used, etc. (see Fig. 1). The head section
chooses the keyword “HEADER” as the beginning and “ENDSEC” as the
end. The header section has a fixed structure consisting of 3 to 6 groups
in the given order, which is very short relative to the data section, so the
header section would not be compressed in our work.

2.2. Data section

The data section contains the main data of building information
model described in the IFC data file, which includes the geometric and
semantic information of building objects as well as their relationships.
The data section chooses the keyword “DATA” as the beginning and
“ENDSEC” as the end (see Fig. 1). The data section is formed by numer-
ous entity instances (or named data instances), where each entity
instance takes “#” as the beginning of the sentence, followed by three
parts: instance name, entity name and a list of attribute values. Many
entity instances of an IFC entity with the same entity name can exist in
one model file. An instance name (e.g. “#80693”) shall be encoded as a
number sign, “#”, followed by a sequence of DIGIT, LOWER and UPPER
characters. The instance name can also be used as a reference id cited
by other entity instances. In the IFC file, the instance name is generally
encoded by digits. Note that evenwithout this assumption our algorithm
is still working due to the uniqueness of the instance name. Several
remarks for instance name should be mentioned below [30].

− The instance name is unique within the scope of an IFC file.
− The instance name is only valid for a single exchange. If the same

user's project is exported for the second time, the instance name
may be inconsistent.

− The instance name's order within the data section is not important.

Fig. 1 gives an example for the structure of IFC data file and some
basic terms used throughout this paper. We refer the readers to the
comprehensive introduction of IFC data file structure from Ref. [30].



Fig. 1. An example for the structure of IFC data file and some basic terms used throughout this paper. The IFC file is split into two sections: header section and data section, and the basic
terms are highlighted including instance name, entity name, attribute value and reference id.

4 J. Sun et al. / Automation in Construction 50 (2015) 1–15
3. The content-based IFC compression algorithm

Redundancy in information theory is the number of bits used to
transmit a message minus the number of bits of actual information in
the message. Informally, it is the amount of wasted “space” used to
transmit certain data. Data compression is a way to reduce or eliminate
redundancy. Complyingwith information theory, ourmethod solves the
problem of redundancy existing in IFC files in AEC field.

An IFC file exported through different IFC-supported software often
includes a number of identical data instances [20] (i.e. multiple instances
of the same entity with the same entity name and attribute values, but
with different instance names). The identical data instances are the
Fig. 2. The flow diagram of the content
typical redundancy that should be removed from the IFC file in an
ideal situation [12,20]. For example, duplicated instances of the
IfcDirection entity with the same value are one common example of
such cases. An ideal IFC file-size compressor/optimizer should be able
to efficiently identify those duplicated instances and remove them
from the IFC file.

To achieve the content-based IFC compression algorithm, the main
problem lies on how to identify all identical data instances and remove
the duplicated ones. However, it is difficult to check all redundant in-
stances for a large IFC file in one step, since there are often tens or
even hundreds of thousands of data instances with the complex
referencing and inheritance structure within the large IFC file. This
-based IFC compression algorithm.



5J. Sun et al. / Automation in Construction 50 (2015) 1–15
paper presents an iterative compression algorithm for locating all
identical data instances and removing the duplications. This is achieved
through an iterative procedure with the aid of IFC model's tree
structure. Fig. 2 shows the main procedure of our algorithm. Starting
with an IFC data file as input, our algorithm mainly consists of the
following four steps.

Step 1 Preprocess the data instance sentences within the input IFC file.
This step removes redundant information (e.g. blank spaces and
multi-lines) in the sentence of each data instance and extracts
the basic terms for further utilization. It aims to obtain a compact
expression for each data instance to be saved in memory (see
Section 3.1).

Step 2 Identify the identical data instances and remove the redundant
instances. This step first collects all the data instances on the
terminal nodes of IFC model's tree (see Section 3.2 for details).
Among all the terminal nodes, the identical data instances are
identified and clustered into multiple groups. Only one data
instance for each group is kept, while the others in the group
are regarded as redundancy and removed.

Step 3 Repeat Step 2 for further compressing the remaining data in-
stances in the IFC file. Step 3 is a recursive and iterative process
and itwill be terminated until all the data instances are complete-
ly processed or all redundancies removed (see Section 3.3).

Step 4 Finally, reassign the instance name (the number) for each data in-
stance in the IFC file. This step first ranks all data instances based
on their cited times, and then assigns a small instance name to
the data instances with large cited times (see Section 3.4).

3.1. Step 1: preprocess data instance sentences within the input IFC file

The first step of our algorithm is to preprocess data instances in the
input IFC file. Its goal is to remove redundant information in each data
instance sentence and extract the basic terms for further utilization.
The main procedure is as follows.

(1) First, the sentence of data instance with multi-lines is converted
into a single line.

(2) Then, the content of three basic terms (i.e. instance name, entity
name and attribute values) of each data instance sentence are
extracted.
Fig. 3. Illustration of preprocessing data in
(3) Next, redundant information, such as blank spaces, within the
extracted attribute values is removed.

After the above preprocessing, we can obtain a compact expression
for each data instance sentence to be saved in memory. Fig. 3 depicts
the above procedure with an example.

3.2. Step 2: identify identical data instances and remove redundant instances

The second step of our algorithm is to identify the identical data
instances and remove the duplications. As mentioned above, the identi-
cal data instances are multiple instances of the same entity with the
same entity name and attribute values but with different instance
names [20]. The main procedure is given below.

Firstly, we collect all data instances on the terminal nodes of IFC
model's tree. An IFCmodel's tree [8] is a data structure, with the IfcProject
entity as the root node, or level 1. All the entities with a containment
relationship specified in the IFC schema with level n entities are struc-
tured as level n + 1 nodes, or the children of level n nodes in the tree.
The basic IFC entities, which cannot hold or contain other entities, are
always placed as the leaves of the tree, called the terminal nodes in
this paper. A terminal node (e.g. the IfcCartesianPoint entity) can be
simply located as the data instance that does not include any reference
id in its attribute values. Fig. 4 shows a sample of IFC file fragment, in
which the data instances (e.g. “#3”, “#4”, “#5” and “#6”) are recognized
as the terminal nodes. The partial tree structure corresponding to the
file fragment is shown in Fig. 5(a).

Secondly, we compare the collected terminal nodes and locate the
identical data instances to be clustered into multiple groups. After pre-
processing data instance sentences in Step 1, we can simply compare
the values of two data instances (i.e. their entity names and the attribute
values) in terms of string comparison. Here the terminal nodes with the
same value are clustered into one group. Consequently, we can obtain
multiple groups. In Fig. 5(a), the light gray nodes (i.e. data instances
#3, #4, #5 and #6) denote one group of identical data instances.

Thirdly, only one data instance of each group is kept with all other
redundant instances removed. Meanwhile, the reference id of attribute
values in the remaining data instances is updated accordingly. As is
shown in Fig. 5(b), the data instance #3 in the group is kept, while the
other data instances (#4, #5 and #6) are removed. In addition, the
stance sentences within the IFC file.



Fig. 4. A sample of IFC file fragment for depicting the iterative compression algorithm.

6 J. Sun et al. / Automation in Construction 50 (2015) 1–15
upper parent nodes (i.e. data instances #1422718, #1772910 and
#1772907) are respectively relocated to data instance #3. After
the above process, we achieve an initial compression for these data
instances on the terminal nodes in the IFC model's tree.

3.2.1. Handle float-point rounding (FPR) error
The problem of float-point rounding (FPR) error might be caused

during IFC data storage and exchange between various software
platforms. For instance, one of the attribute values in the entity
IfcCartesianPoint is the float-point number, but it might go wrong (e.g.
from 0.560000 to 0.559999) after file exchange between two different
platforms. To solve this problem, our algorithm also offers an error
bound for identifying identical data instances. See Section 4.3 for the
detailed introduction and experimental results with FPR error bound.

3.3. Step 3: repeat the iterative compression process

Due to the complex inheritance and referencing relationships in
large IFC files, it is not enough to obtain a compact IFC file only by
removing the redundant instances on the terminal nodes in the IFC
model's tree. Therefore, we make use of an iterative strategy for mark-
ing out all identical data instances hidden in the tree and removing
the duplications. The main procedure is given below.

We first collect all the data instances which cite the terminal nodes
mentioned in Section 3.2, while the collected data instances will be
treated as the new terminal nodes instead of the previous ones. As is
shown in Fig. 5(b), the data instances (i.e. #1422715, #1422718,
#1772910 and #1772907) are becoming the new terminal nodes
instead of the previous terminal node #3.

Similar to Step 2, we locate the identical data instances on the new
terminal nodes, cluster them into multiple groups, and remove the re-
dundant data instances in each group. As is shown in Fig. 5(b), the light
gray nodes (i.e. data instances #1422715, #1422718, #1772910 and
#1772907) denote one group of identical data instances. In Fig. 5(c),
data instance #1422715 in the group is kept, while the others in the
group are removed. Meanwhile, the upper parent nodes (i.e. #1422719
#1772911#1772908) are respectively relinked to the samedata instance
#1422715.
We repeat the above procedure for further compressing the remain-
ing data instances. If all the terminal nodes reach the tree's root node
(e.g. IfcProject) or no more identical data instance is found, the proce-
dure is terminated. Fig. 5(c), (d) and (e) shows the above compression
procedure in several iterations. The final tree is given in Fig. 5(f), where
no more identical data instance remains.

Fig. 6 shows the compressed IFC file fragment with our algorithm.
For the specific IFC file fragment, 11 redundant data instances are
identified and removed among the original 20 ones, resulting in
about 50% compression rate.

3.4. Step 4: reassign the instance name

The last step of our algorithm is to reassign the instance name for
obtaining a smaller IFC file. Every data instance in the IFC file is given
a unique instance name in the form, e.g. “#1422719”. The instance
name must consist of a positive integer that is typically less than 263

[29]. However, unnecessary large integers assigned to instance name
will also increase the IFC file size due to numerous references to these
large integers. This casemay happen to many IFC files when exchanged
between different commercial BIM platforms several times. As is men-
tioned before, the instance name is only meaningful to the IFC file and
its specific order does not matter [30], so we can reorder the instance
name and reassign a small unique integer to it. This can be done in the
process as follows.

(1) Count the cited times of each data instance within the IFC file.
For example, the cited times of data instance #3 in Fig. 6 is the
number of all other data instances with reference to #3.

(2) Rank all data instances based on their cited times.
(3) The instance namewith the large cited timeswill be reassigned a

small unique integer.

We apply the above process to reassign the instance name within
the complete IFC file whose sample file fragment has been shown in
Fig. 6. Before reassigning the instance name, the complete IFC file size
is about 81.2 MB. In contrast, after reassigning all instance name, the file
size is reduced to 78.5MB. The correspondingfile fragment after updating
is shown in Fig. 7. Here the large instance name (e.g. #1772919 in Fig. 6) is



Fig. 5. The illustration of the algorithm procedure for compressing the sample of IFC file fragment in Fig. 4, where the partial tree corresponds to the IFC file fragment. (a) Grouping the
identical data instances (light gray nodes) on the terminal nodes of the tree. (b) Removing the redundant instances and updating the corresponding reference id, and grouping the
upper parent nodes of the tree again. (c), (d) and (e) Repeating the above compression procedure in several iterations. (f) The final result.

7J. Sun et al. / Automation in Construction 50 (2015) 1–15
reassigned to the small one (e.g. #8596 in Fig. 7) and the corresponding
reference id in attribute values is also updated. Note that the last two
data instances #998625 and #998626, being cited just once, are assigned
to a relatively large number (see Fig. 7).
3.4.1. Computational complexity
Let n be the number of all data instances in the original IFC file. First,

it takes O(n) to preprocess all data instances in Step 1. Then, it mainly
includes node sorting O(nlog(n)) and node searching O(log(n)) in the



(a)

(b)

0

Fig. 6. Illustrating the compressed IFC file fragment corresponding to the one in Fig. 4 using our algorithm. (a) The redundant data instances in Fig. 4 are highlighted by strikethrough.
(b) The correspondingly compressed IFC file is displayed after our iterative compression process.

8 J. Sun et al. / Automation in Construction 50 (2015) 1–15
IFC model's tree structure from Step 2 to Step 4. If using hash map data
structure to save the data instances, the data instances can be directly
accessed through their instance names without node searching. As a
Fig. 7. Illustration for reassigning the instance name of the IFC
result, an upper bound of running time, processing the whole iterative
compression process, is O(n2log(n)) (normal sort and search) or O(n2)
(using hashmap) for n nodes. Amore detailed analysis for computational
file, whose sample file fragment has been shown in Fig. 6.



9J. Sun et al. / Automation in Construction 50 (2015) 1–15
complexity depends on the tree structure, andwe leave it for futurework.
In our implementation, we typically use hash map to save the data
instances.

4. Experimental results and discussions

The above-mentioned algorithm has been implemented in a content-
based IFC compression tool, called IFCCompressor, in Visual C++ 2012
underWindows 7. All the experiments are run on an Intel i5-3210M pro-
cessorwith 8GBmemory. Fig. 8 showsa screen shot of the IFCCompressor
tool. On the left, the user should first select an IFC file and then click the
button “Start” to perform the content-based compression algorithm.
After the compression, the compressed IFC file is automatically saved in
the same directory. Alternatively, one can choose the option “Float-
Point Rounding (FPR)” to obtain a compression constrained by an error
bound, where the final compression result is displayed in the “Compres-
sion Status” area. On the right, the comparison of file sizes between the
original file and the compressed one is displayed.

4.1. Metrics for quantifying compression and similarity

We use two metrics to quantify the experimental results between
the original file and its compressed file, which are the compression
rate and the similarity rate.

4.1.1. Compression rate (CR)
The compression rate [12] is used to quantify the reduction in data

instances relative to the original data instances. It is defined as:

Compression rate %ð Þ ¼ n−m
n

; ð1Þ

where n is the total number of data instances in the original IFC file and
m is the number of data instances in the compressed IFC file. The
compression rate is often notated as a percentage. The more redundant
instances an IFC file has, the higher compression rate our algorithm has.

4.1.2. Similarity rate (SR)
The similarity rate presented by Lee et al. [20] is used to quantify the

similarity between the original IFC file and its compressed file. It is
defined as the rate of the number of matching instances in File A to
Fig. 8. A screen shot of the
the instances in File B divided by the total number of instances in File
A, i.e.

Similarity rate %ð Þ ¼ Number of matching instances in File A to File B
Total number of instances in File A

;

ð2Þ

where “Number of matching instances” denotes the number of instances
in File A that are identical to the instances in File B while ignoring the
instance name. This similarity rate has been developed to show how
much information in File A is preserved in File B during thedata exchange.
It defines the percentage of information in the comparing file that is the
same as the information in the compared file. The similarity rate is
less than or equal to 100%. As adopting the similarity rate to our eval-
uation, the original and compressed IFC files should be “flattened”
first, i.e., making each IFC file in a structure that does not include any
referencing or inheritance structure by replacing the reference id with
its actual property values [20]. This overcomes the difference of reference
id included in attribute values when comparing pairs of data instances.

4.2. Test cases

To evaluate the performance of the content-based IFC compression
algorithm, we test the presented algorithm on six different IFC files.
The IFC files were exported through several commercial BIM modeling
software platforms (including Autodesk Revit Architecture and Graphisoft
ArchiCAD) without any manual modification to the files. The corre-
sponding IFC models are visualized in Fig. 9, which are referred to as
M1–M6. Table 1 gives the details of test case files used in the section,
where “Size(MB)” is the size of the original IFC file, “#instances” is the
number of data instances within the original IFC file, and “Exporter”
indicates the specific software and its system version which exports
the corresponding file.

Our algorithm is tested on the six IFC files in Table 1 using the two
metrics in Eqs. (1) and (2). Table 2 shows the compressed IFC file size,
compression rate and similarity rate. In this table, all the compressed
files are acquired by our algorithm without FPR error bound, so the
similarity rate of each file is 100%. The compression rate is generally
very high (the average is 40.32%), with a maximum of 61.96% in the
M6 file and a minimum of 14.17% in the M2 file.
IFCCompressor tool.



Fig. 9. Visualizing the models of six IFC files tested in the experiments.

10 J. Sun et al. / Automation in Construction 50 (2015) 1–15
The reason for such a big difference in compression rate mainly lies
in two factors. One factor relates to the shape/structure of the original
IFCmodel. If themodel itself contains a large number of duplicated com-
ponents, there may be many redundant data instances in the original
file. For instance, the case with the second high compression rate
(55.19%) in the M1 file is an apartment building, which includes many
repeated data instances such as many staircases with regular shapes.

The other factor is the exporting software. The software and its
system version which produced the original IFC file mainly determine
the quantity of the redundancy. If an exporting software has beendevel-
oped for solving this redundancyproblem, therewill be less redundancy
information in the exported IFC file, which will lead to a low compres-
sion rate using our algorithm. Unfortunately, it seems that the older
versions Revit 2009 and ArchiCAD 11 used in our experiments rarely
take into account the IFC exporting optimization,while thenewversions
may havemade some optimizations and can export a more compact IFC
file. For instance, the two cases with low compression rates are the
M2 (14.17%) and M4 (24.56%) files, which are exported through the
relatively new versions Revit 2012 and ArchiCAD 14, respectively. The
IFCCompressor presented in this paper can be considered as a comple-
mentary tool for the existing IFC exporters.
Table 1
The details of six IFC files tested in the experiments.

Models Figure Size(MB) #instances Exporter

M1 9(a) 55.8 853,186 Revit 2011
M2 9(b) 25.7 453,586 Revit 2012
M3 9(c) 7.1 117,553 Revit 2009
M4 9(d) 4.0 82,226 ArchiCAD 14
M5 9(e) 3.2 62,667 ArchiCAD 11
M6 9(f) 2.7 49,664 ArchiCAD 11
In addition to the compression rate in Table 2, we also analyzed the
compressed contents of the files. Table 3 lists the top six IFC entities
included in each test model with the largest number of redundant
instances. In this table, we found that the IFC entities named
IfcCartesianPoint, IfcAxis2Placement3D and IfcPropertySingleValue are
the highest redundant entities in almost every model. In the IFC specifi-
cation, the entity IfcCartesianPoint defines the coordinates of a point in
2D/3D space, IfcAxis2Placement3D denotes the location and orientation
in 3D space, and IfcPropertySingleValue defines a property object which
has a numeric or descriptive value assigned. The results in Table 3 sug-
gest that the geometry coordinates/location/orientation and properties
ofmodels often carry the largest number of redundant instances. Further-
more, the geometry shapes of complex models may also affect the com-
pression rate of redundant entities. For example, the entity IfcPolyLoop
(bounding loop of planar region in space) is ranked as a high redundant
entity in some models (e.g. M1, M2, M4 and M5), while it is ranked as
relatively low in others (e.g. M3 and M6).
Table 2
The experimental results using our algorithm.

Models Size1a(MB) Size2b(MB) CRc SRd Time(s)

M1 55.8 28.2 55.19% 100% 17.7
M2 25.7 21.7 14.17% 100% 6.6
M3 7.1 4.8 30.93% 100% 2.2
M4 4.0 2.7 24.56% 100% 1.1
M5 3.2 1.4 55.13% 100% 1.0
M6 2.7 1.2 61.96% 100% 1.1

a “Size1” is the original IFC file size.
b “Size2” is the compressed IFC file size using our algorithm without FPR.
c “CR” is the compression rate computed by Eq. (1).
d “SR” is the similarity rate computed by Eq. (2).



Table 3
The top six IFC entities included in each test model with the largest number of
redundant instances.

IFC entities M1 M2 M3 M4 M5 M6

IfcFace ✓ ✓ ✓ ✓

IfcPolyLoop ✓ ✓ ✓ ✓

IfcPolyLine ✓

IfcDirection ✓

IfcSurfaceStyle ✓

IfcCartesianPoint ✓ ✓ ✓ ✓ ✓ ✓

IfcFaceOuterBound ✓ ✓ ✓ ✓

IfcAxis2Placement2D ✓

IfcAxis2Placement3D ✓ ✓ ✓ ✓ ✓

IfcPropertySingleValue ✓ ✓ ✓ ✓ ✓

IfcShapeRepresentation ✓

Table 4
Comparing the compression rate for six test models compressed using our algorithm
(with or without FPR) and Solibri IFC Optimizer, respectively.

Model's name CR without FPR CR with FPR (10 − 2) CR using Solibri

M1 55.19% 60.07% 50.12%
M2 14.17% 27.79% 12.86%
M3 30.93% 37.29% 26.50%
M4 24.56% 40.48% 23.30%
M5 55.13% 59.87% 52.71%
M6 61.96% 62.81% 55.88%

11J. Sun et al. / Automation in Construction 50 (2015) 1–15
4.3. Result comparison with FPR error bound

The problemoffloat-point rounding (FPR) errormight be caused dur-
ing IFC data storage and exchange between various software platforms. A
typical example is that the coordinates of many IfcCartesianPoint data
instances may be exported as the results that appear to be incorrect by
very small amounts [12]. For example, the geometry coordinates of a 3D
point (0.0, − 0.560000, 0.0) may be exported as (0.0, − 0.559999, 0.0)
instead of− 0.560000. This is not a problemor a limitation of the existing
IFC exporters, and it occurs because the Institute of Electrical and Elec-
tronics Engineers (IEEE) 754 floating-point standard requires that deci-
mal numbers should be stored in binary format. To minimize the effects
of floating point arithmetic storage inaccuracy, our algorithm also offers
FPR error bound for identifying identical data instances, which can
achieve a higher compression rate than the previous lossless compression
algorithm.

Our IFCCompressor tool provides the “Float-Point Rounding (FPR)”
option, which processes the FPR errors of decimal numerical values of
attribute values and in this way contributes to the IFC optimization.
We deal with the FPR problem mainly for the geometry coordinates
of 2D or 3D points represented in the entity IfcCartesianPoint, and in
this way correct the rounding errors with the predefined precision. In
practice, the users can set an error bound on the FPR option to round
the values of geometry coordinates.

Fig. 10 compares the file sizes for six test models compressed
using our algorithm (with or without FPR). Here we typically set
the FPR error bound as 10−2. As a result, we found that the contribu-
tion to compression rate using FPR is very limited when compressing
Fig. 10. Comparing the file sizes for six test models compressed using our algorithm (with
or without FPR), where the FPR error bound is typically set as 10−2.
small models, but usually increases with large and complex models.
Table 4 shows the corresponding compression rates for test cases using
our algorithmwith or without FPR, where the file sizes of small models
(e.g. M6) are rarely changed during compressing with FPR, in contrast
to large models (e.g. M2). Furthermore, unlike the results of compres-
sion by the Solibri IFC Optimizer (see the right column in Table 4), our
algorithm (with or without FPR) canmake the file sizes smaller, leading
to higher compression rate for all models.

Fig. 11 shows the relative compression rate for six test models in dif-
ferent FPR precisions. The relative compression rate is the absolute
value of difference between the current compression rate and the
minimal compression rate (i.e. FPR precision is set as 10−6). The result
in Fig. 11 shows that the compression rate of all models increases as
the FPR precision decreases (from 10−6 to 100).
4.4. Comparison with Solibri IFC Optimizer

Solibri IFC Optimizer (or named Solibri for short) [19] is a well-
known content-based IFC compression tool. Based on this commercial
tool, Pazlar and Turk [12] have examined and discussed the compres-
sion results of some simple models. This subsection will compare our
work with Solibri for the six test models. Table 4 shows the comparison
result of compression rate between our algorithm and Solibri. The result
suggests that our algorithm, evenwithout FPR error bound, still achieves
higher compression rate than Solibri for all models.
Fig. 11. Illustrating the relative compression rate for six test models at different FPR
precisions. As the FPR precision decreases (from 10−6 to 100), the compression rate of
all models increases.



Table 5
Illustrating the number of some redundant instances that are not eliminated by Solibri,
but are re-compressed by our algorithm (without FPR), where “#Mi” is the number of
redundant instances re-compressed by our algorithm for the model Mi.

IFC entities #M1 #M2 #M3 #M4 #M5 #M6

IfcLocalPlacement 1988 2020 219 290 0 109
IfcMappedItem 2005 1170 1426 51 183 535
IfcProductDefinitionShape 11,983 1041 1487 67 487 1040
IfcShapeRepresentation 20,288 1437 2003 75 612 1150
IfcStyledItem 7031 277 77 551 231 184

12 J. Sun et al. / Automation in Construction 50 (2015) 1–15
However, since Solibri does not provide its compression process in
detail, we cannotfind out how and howmany redundant data instances
are eliminated during the process. To analyze the difference between
our algorithm and Solibri, we first compress each of the six models
(from M1 to M6) using Solibri and export the compressed IFC file.
Then the compressed file is re-compressed using our algorithm. The
process can checkwhether the file compressed by Solibri can be further
optimized by our algorithm. Based on the above process, Table 5 shows
some redundant instances that are not eliminated by Solibri, but are re-
compressed by our algorithm (without FPR). In another way, we
compress each original model first with our algorithm, and then export
the compressed IFC file into Solibri for re-compression. The result is that
no redundancy is found with Solibri, which shows that our algorithm
obtains a more compact IFC file than Solibri.
4.5. Case study

In order to test the performance of our algorithm in large projects, the
BIM model of an apartment building in Yunnan province in China is se-
lected as a case study. The architectural design model was generated in
Fig. 12. Visualizing the IFC mod
Revit Architecture 2011, and brought into our tool by the IFC format.
The IFC model was also used for our previous studies on IFC-based
path planning for 3D indoor spaces [10]. The original IFC file includes
more than 2.8 million data instances and its file size is about 156.0 MB.
The corresponding model is visualized in Fig. 12.

In the case study, we first apply our algorithm to the original IFC file
through the iterative compression procedure, which eliminates the re-
dundant data instances. The compression rate without FPR is 48.86%,
and that with FPR (precision is set as 10−2) is 72.13%. The time cost of
compression process is 40.2 s, which is almost the same as that by
Solibri (about 40s). In contrast to the compression rate (46.89%) using
Solibri for optimizing the same file, our algorithm (with FPR or without
FPR) canmake the file size smaller, leading to a higher compression rate
for the same model.

To analyze the compressed content of the model in the case study,
we did two experiments, as shown in Figs. 13 and 14. In the first exper-
iment, we first count the number of removed data instances for each IFC
entity, and then compute the corresponding proportion of all removed
data instances. For example, the total number of removed data instances
for all entities is about 1352 K, of which 161 K instances belongs to
IfcFace, so the proportion of removed IfcFace's instances to the total re-
moved instances is 11.9%. Fig. 13 shows these IFC entities which have
the high redundant instances included in the original model. The result
suggests that the geometry related entities (95.2%) have a higher pro-
portion to removed instances than non-geometry related entities
(4.8%) in the case study. For the geometry related entities, the four enti-
ties (i.e. IfcCartesianPoint, IfcPolyLoop, IfcFaceOuterBound and IfcFace)
have a higher proportion than others. For the non-geometry entities,
the proportion to removed instances for IfcPropertySingleValue is 2.4%
(i.e. half of 4.8%), but far less than the geometry related entities.

In the second experiment, we count the number of removed data
instances only for building element entities used in the model, and
el used in the case study.



F

Fig. 13. Analyzing the compressed content of the model in case study when using
our algorithm.

13J. Sun et al. / Automation in Construction 50 (2015) 1–15
analyze their compression rate. The building element, named
IfcBuildingElement in IFC specification, comprises all elements that
are primarily part of the construction of a building, i.e. its structural
and space separating system. The building elements such as walls,
beams or doors, are all physically existent and tangible objects. As the
main part of IFC entities, any IfcBuildingElement (e.g. its subtype IfcDoor)
can be represented by one or several geometric representations, where
the data instances of IfcBuildingElementwill indirectly cite the geometry
related entities (e.g. IfcCartesianPoint).

In order to analyze how much redundant information has been
removed for each of the building elements (e.g. IfcWall, IfcWindow and
IfcDoor), we define a new metric for quantifying the compression rate
of the individual entity, especially for building element's entity. Given
an IFC entity as X, the compression rate of entity X is defined as the rate
0.00% 10.00% 20.00% 30.00

IfcSlab
IfcDoor

IfcCurtainWall
IfcStair

IfcWindow
IfcRailing
IfcPlate

IfcColumn
IfcWallStandardCase

IfcBuildingElementProxy
IfcWall
IfcRoof
IfcRamp

Comp

Fig. 14. Comparing the compression ra
of thenumber of data instances to entityX in the compressedfile divided
by the number of data instances to entity X in the original file, i.e.

Compression rate of entity X %ð Þ
¼ Number of data instances to entity X in compressed file

Number of data instances to entity X in original file
:
ð3Þ

Fig. 14 shows the compression rate of entity in building elements
used in the model. From this figure, we can see that the compression
rate of many entities (e.g. IfcSlab, IfcDoor, IfcCurtainWall, IfcStair,
IfcWindow, IfcRailing and IfcPlate) is very high and even more than
40%, while the compression rate of several other entities (e.g. IfcRamp,
IfcRoof and IfcWall) is very low— close to zero. The average rate reaches
32.9%. The result of analysis indicates that the compression rate of
different entities highly depends on the shape representation/complex-
ity of the model, which may have great differences even within one
model file. Note that the model tested in the case study is a multi-
storeyed residential building, which has a large number of duplicated
building components. For example, many doors and windows in every
storey have the consistent geometrical representation, but with differ-
ent local placements, where these consistent geometrical representa-
tions can be compressed. Thus, the result indicates that our algorithm
is very effective for this kind of office/residential building models
whose IFC files may have large numbers of redundancies.

4.6. IFC importing performance comparison

The original IFC file and its compressed file in Section 4.5 are reused
for checking the performance of IFC importing, which aims to show
whether our compression algorithm can offer faster loading for IFC
applications. For convenience, the original IFC file in the previous case
study is named R1.

We check the loading performance improvement by importing the
original IFC file (R1 file) and its compressed one (using our algorithm
without FPR) to the three most widely used IFC-supported software,
i.e. Autodesk Revit 2014 (Revit), ArchiCAD 17 (ArchiCAD) and Solibri
Model Viewer V9 (Solibri). After loading the R1 file and its compressed
file into each of these software, we find that there is no distinct differ-
ence in terms of memory consumption.

In Table 6, the result shows that the compressed R1 file indicates
shorter loading time compared with the original R1 file. In Revit 2014, it
takes about 32min to load the original R1file and30min to load the com-
pressed file. In ArchiCAD 17, the compressed R1 file is loaded in 2.19 min,
while the original R1 file is loaded in 3.28 min. In Soliri Model Viewer, it
takes only 0.52 min to load the compressed IFC file, compared against
1.04 min to load the original IFC file. The result shows that our
% 40.00% 50.00% 60.00% 70.00% 80.00%
ression ratio of entity

te of entities in IfcBuildingElement.



Table 7
The comparison of compression rate between ZIP alone and combination of ZIP and our
algorithm.

Models ZIPa ZIP + Oursb

M1 79.86% 88.71%
M2 80.32% 84.62%
M3 81.46% 87.41%
M4 81.41% 87.19%
M5 79.65% 90.25%
M6 78.48% 88.80%

a The compression rate using ZIP alone to the original IFC files.
b The compression rate using ZIP to the optimized IFC files processed after our al-

gorithm (i.e. ZIP + our algorithm).

14 J. Sun et al. / Automation in Construction 50 (2015) 1–15
compression algorithm can significantly reduce the loading time in both
ArchiCAD and Solibri, and slightly reduce the loading time in Revit. Here,
the memory consumption of the original R1 file and that of the
compressed file are almost same. The reason for this result is that no
matter what IFC toolkit or software is used, there are at least three stages
to help reducing processing time for the compressed IFC file.

− Stage 1: Reading the IFC file from local disk/web server. During this
stage, our algorithm can definitely decrease reading time, since a
smaller number of data instances are read after redundant data
instances are removed.

− Stage 2: Parsing the IFC file in memory. Our algorithm can also
reduce the parsing time for IFC file due to the smaller search space
for the data instances' attribute values containing reference id.

− Stage 3:Mapping the IFC file to the internal data structure of the BIM
system and visualizing the IFCmodel. This stage always occupies the
most loading time when importing an IFC file, and it will affect the
improvement of loading time of compressed IFC file.

By removing redundant data instances in the original IFC file, our
algorithm provides a possibility for those IFC toolkits to identify the
instances whose attribute values share the same content, such as the
two IfcDoor instances that share the same geometrical shape and attri-
bute values. If the IFC toolkit can utilize this feature and avoid handling
the same content repeatedly, itwill save a lot of time. Solibri andArchiCAD
are probably such software, which take less time loading the compressed
IFC file than the original. However, compared with Solibri and ArchiCAD,
we have found that the IFC importer in Revit is not as optimized but
takes more time to load the compressed IFC file and the original in our
test.

The IFC file compressed by our algorithm can reduce the time cost
when a software tries to read the IFC file from local disk or web server.
Our algorithm also provides the possibility that can help IFC importer
identity the instances having the same content, which avoids handling
for many times. However, the practical effect highly depends on the
utilized IFC toolkit itself.

4.7. Comparison with ZIP compression

Our algorithm does not compete with ZIP or other ZIP-related
algorithms. Instead of focusing on how to encode the original IFC file
or generating a new archive file format, we mainly focus on how to
reduce redundant data instances by analyzing the content within the
original IFC file. After the original IFC file is optimized by our algorithm,
thefile still remains an IFC file format (not ZIP or IFC-ZIP). Therefore, the
ZIP or other ZIP-related algorithms are still applicable to the compressed
IFC file. By combining ZIP and our algorithm, it is expected to achieve
higher compression rate than ZIP alone.

Table 7 shows the compression rates of ZIP alone and of combination
of ZIP and our algorithm, where “ZIP” denotes the compression rate
using ZIP alone to the original IFC files, and “ZIP + Ours” denotes the
compression rate using ZIPto the optimized IFC files processed after
our algorithm. Here the compression rate is typically computed as the
rate of reduction in file size relative to the uncompressed size, i.e.

Compression rate %ð Þ ¼ 1− Size of compressed file using ZIP
Size of uncompressed file

:

Table 6
IFC importing performance comparison.

Files Size Revit 2014 ArchiCAD 17 Soliri

R1 156.0 MB 32 min 3.28 min 1.04 min
Compressed R1 82.6 MB 30 min 2.19 min 0.52 min
In the test, we select the sixmodels fromTable 1. The result in Table 7
shows that the combination of ZIP and our algorithm can achieve higher
compression rate than ZIP alone. In addition, we also use gzip to conduct
the compression experiment, and the result tends to be similar to that of
the ZIP.

5. Conclusion and future work

Since large IFC file size has been an issue in the data exchange
process, this paper introduces a content-based compression algorithm
and develops a software tool named IFCCompressor for optimizing IFC
files. The algorithm is achieved through an iterative compression proce-
dure based on an IFCmodel's tree structure. The optimization procedure
can be lossless or be constrained by float-point rounding (FPR) error
bound. Compared with pure ZIP compression methods, our algorithm
is based on comprehensive analysis of the structure and content of IFC
data file without changing the file format. Unlike partial model extrac-
tion methods, our algorithm results in a complete IFC model but with
a more compact IFC physical file. In contrast with Solibri IFC Optimizer,
our algorithm can make the size of IFC files smaller. To evaluate the
performance of our algorithm, the presented algorithm is tested on
some large IFC files exported through several commercial BIM software
platforms. The experimental results demonstrate that the presented
algorithm is able to obtain higher compression rates than Solibri. In ad-
dition, an apartment BIM model in Yunnan province, China, is selected
as a case study, which indicates that our algorithm is very effective for
this kind of office/residential building models with a large number of
duplicated components.

Our compression tool offers several potential benefits including suit-
ablemodel size for data transmission, faster loading for IFC applications,
smaller memory occupation and lower data storage costs for data man-
agement. The presented IFCCompressor tool is developed to relieve the
redundancy problem. However, in the long run a redundancy check
should be included in a normal IFC development procedure. Therefore,
the IFCCompressor can be considered as an alternative and complemen-
tary tool for the existing IFC exporters. In addition, although the pro-
posed algorithm was tested on IFC Version 2 × 3 case files, it could
be applied to higher version (e.g. IFC4). Some other future work is
addressed below.

− The IFCCompressor tool has been tested by the authors in many
cases (and also tested by the anonymous reviewers), and it will be
available to the designers around the world using BIM in actual/
complex projects. As potential end users or beneficiaries, we hope
that the designers take interest in testing the tool and give valuable
further feedback, validation and confidence.

− In addition, although we have explained that our algorithmwithout
FPR will not change the IFC model itself, we will do more tests to
check if the use of this tool will have unintended consequences
(i.e. data loss) during the generation of COBie data (extracted
from IFCs) in the future.

− To make our algorithm more useful, we also plan to design some
plugins embedded into somewidely utilized software such as Revit.



15J. Sun et al. / Automation in Construction 50 (2015) 1–15
The sources of this redundancymight bemany, such as differences of
model mapping mechanism, various possibilities offered by IFC specifi-
cation, and even modeling methods in BIM software. Since the IFC files
are mainly exported through different IFC toolkits or BIM software, the
redundancy heavily depends on IFC translator development in
these software. A possibly better way to tackle redundancy in the
data representation is to provide IFC translator developers with
very specific development guidelines. The proposed compression algo-
rithm and the developed tool can also be used to analyze redundancy in
IFC files.We expect that the proposed compression algorithmwill open
up a perspective for developing a formal and standard approach to
removing redundancies.

Supplementary material

The online IFCCompressor tool and its demonstration can be accessed
at: http://cgcad.thss.tsinghua.edu.cn/liuyushen/IFCCompressor/ http://
dx.doi.org/10.1016/j.autcon.2014.10.015.

Acknowledgments

The authors appreciate the comments and suggestions of all anony-
mous reviewers, whose comments significantly improved this paper.

The research is supported by the National Science Foundation of
China (61472202, 61272229, 61003095) and the National Technological
Support Program for the 12th-Five-Year Plan of China (2012BAJ03B07).
The second author is also supported by the Chinese 973 Program
(2010CB328003). The third author is also supported by the Chinese
863 Program (2012AA040902).

References

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building
Information Modeling for Owners, Managers, Designers, Engineers and Contractors,
2nd edition John Wiley and Sons, NJ, 2011.

[2] BuildingSMART, Industry Foundation Classes (IFC)Available from: http://www.
buildingsmart-tech.org/specifications/ifc-overview/2014.

[3] BuildingSMART, The IFC-Compatible Implementations DatabaseAvailable from:
http://buildingsmart-tech.org/implementation/implementations2014.

[4] C. Eastman, J. Lee, Y. Jeong, J. Lee, Automatic rule-based checking of building designs,
Autom. Constr. 18 (8) (2009) 1011–1033.

[5] S. Jeong, Y. Ban, Computational algorithms to evaluate design solutions using space
syntax, Comput. Aided Des. 43 (6) (2011) 664–676.

[6] Z. Ma, Z. Wei, W. Song, Z. Lou, Application and extension of the IFC standard in
construction cost estimating for tendering in China, Autom. Constr. 20 (2) (2011)
196–204.
[7] Z. Hu, J. Zhang, BIM- and 4D-based integrated solution of analysis and management
for conflicts and structural safety problems during construction: 2. Development
and site trials, Autom. Constr. 20 (2) (2011) 167–180.

[8] L. Zhang, R. Issa, Ontology based partial building information model extraction,
J. Comput. Civ. Eng. 27 (6) (2013) 576–584.

[9] J. Won, G. Lee, C. Cho, No-schema algorithm for extracting a partial model from an
IFC instance model, J. Comput. Civ. Eng. 27 (6) (2013) 585–592.

[10] Y.-H. Lin, Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, M. Gu, The IFC-based path planning for
3D indoor spaces, Adv. Eng. Inform. 27 (2) (2013) 189–205.

[11] Y. Adachi, Overview of Partial Model Query LanguageAvailable from: http://cic.vtt.fi/
projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf2002.

[12] T. Pazlar, Ž. Turk, Evaluation of IFC optimization, Proceedings of CIBW78 Conference
on Bringing ITC Knowledge to Work, 2007, pp. 61–66.

[13] T. Pazlar, Ž. Turk, Interoperability in practice: geometric data exchange using the IFC
standard, ITcon 13 (2008) 362–380.

[14] E.William East, N. Nisbet, T. Liebich, Facility management handover model view,
J. Comput. Civ. Eng. 27 (1) (2013) 61–67.

[15] J. Won, G. Lee, Algorithm for efficiently extracting IFC building elements from an IFC
buildingmodel, Proceedings of ASCE InternationalWorkshop on Computing in, Civil
Engineering, 2011, pp. 713–719.

[16] S. Backas, SPADEX Final ReportAvailable from: from http://cic.vtt.fi/vera/Documents/
spadex-final-report.pdf.

[17] C. Kam, M. Fischer, Capitalizing on early project decision-making opportunities to
improve facility design, construction, and life-cycle performance — POP, PM4D,
and decision dashboard approaches, Autom. Constr. 13 (1) (2004) 53–65.

[18] BuildingSMART, IFC Data File Formats and IconsAvailable from: http://www.
buildingsmart-tech.org/specifications/ifc-overview/ifc-overview-summary2014.

[19] Solibri, Solibri IFC OptimizerAvailable from: http://www.solibri.com/solibri-ifc-opti-
mizer.html2014.

[20] G. Lee, J. Won, S. Ham, Y. Shin, Metrics for quantifying the similarities and differ-
ences between IFC files, J. Comput. Civ. Eng. 25 (2) (2011) 172–181.

[21] P. Demian, P. Balatsoukas, Information retrieval from civil engineering repositories:
importance of context and granularity, J. Comput. Civ. Eng. 26 (6) (2012) 727–740.

[22] J. Beetz, J. Leeuwenand, B. Vries, IfcOWL: a case of transforming EXPRESS schemas
into ontologies, Artif. Intell. Eng. Des. Anal Manuf 23 (1) (2009) 89–101.

[23] L. Zhang, R. Issa, Development of IFC-based construction industry ontology for
information retrieval from IFC Models, Proceedings of the 2011 EG-ICE Workshop,
2011.

[24] H. Ma, K. Ha, C. Chung, R. Amor, Testing semantic interoperability, Proceedings of
Joint International Conference on Computing and Decision Making in Civil and
Building, Engineering, 2006, pp. 1216–1225.

[25] G. Lee, What information can or cannot be exchanged? J. Comput. Civ. Eng. 25 (1)
(2011) 1–9.

[26] BuildingSMART, ifcXML OverviewAvailable from: http://www.buildingsmart-tech.
org/specifications/ifcxml-releases2014.

[27] N. Nisbet, T. Liebich, ifcXML Implementation Guide (Version 2.0), 2007.
[28] S. Sakr, Investigate state-of-the-art XML compression techniquesAvailable from:

http://www.ibm.com/developerworks/library/x-datacompression/index.html2011.
[29] ISO 10303-21:2002, Industrial Automation Systems and Integration – Product Data

Representation and Exchange – Part 21: Implementation Methods: Clear Text
Encoding of the Exchange Structure, 2002.

[30] T. Liebich, IFC 2× Edition 3 Model Implementation Guide (Version 2.0), 2009..

http://cgcad.thss.tsinghua.edu.cn/liuyushen/IFCCompressor/
http://dx.doi.org/10.1016/j.autcon.2014.10.015
http://dx.doi.org/10.1016/j.autcon.2014.10.015
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0005
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0005
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0005
http://www.buildingsmart-tech.org/specifications/ifc-overview/
http://www.buildingsmart-tech.org/specifications/ifc-overview/
http://buildingsmart-tech.org/implementation/implementations
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0010
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0010
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0015
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0015
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0020
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0020
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0020
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0025
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0025
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0025
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0030
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0030
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0035
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0035
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0040
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0040
http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf
http://cic.vtt.fi/projects/ifcsvr/tec/VTT-TEC-ADA-12.pdf
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0155
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0155
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0045
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0045
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0050
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0050
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0095
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0095
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0095
http://cic.vtt.fi/vera/Documents/spadex-final-report.pdf
http://cic.vtt.fi/vera/Documents/spadex-final-report.pdf
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0055
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0055
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0055
http://www.buildingsmart-tech.org/specifications/ifc-overview/ifc-overview-summary
http://www.buildingsmart-tech.org/specifications/ifc-overview/ifc-overview-summary
http://www.solibri.com/solibri-ifc-optimizer.html
http://www.solibri.com/solibri-ifc-optimizer.html
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0060
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0060
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0065
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0065
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0070
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0070
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0115
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0115
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0115
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0120
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0120
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0120
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0125
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0125
http://www.buildingsmart-tech.org/specifications/ifcxml-releases
http://www.buildingsmart-tech.org/specifications/ifcxml-releases
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0135
http://www.ibm.com/developerworks/library/x-datacompression/index.html
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0145
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0145
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0145
http://refhub.elsevier.com/S0926-5805(14)00226-X/rf0150

	IFCCompressor: A content-�based compression algorithm for optimizing Industry Foundation Classes files
	1. Introduction
	1.1. Related work
	1.1.1. Pure ZIP compression
	1.1.2. Partial model extraction
	1.1.3. Content-based compression/optimization
	1.1.4. XML compression

	1.2. Contributions

	2. Structure of the IFC data file
	2.1. Header section
	2.2. Data section

	3. The content-based IFC compression algorithm
	3.1. Step 1: preprocess data instance sentences within the input IFC file
	3.2. Step 2: identify identical data instances and remove redundant instances
	3.2.1. Handle float-point rounding (FPR) error

	3.3. Step 3: repeat the iterative compression process
	3.4. Step 4: reassign the instance name
	3.4.1. Computational complexity


	4. Experimental results and discussions
	4.1. Metrics for quantifying compression and similarity
	4.1.1. Compression rate (CR)
	4.1.2. Similarity rate (SR)

	4.2. Test cases
	4.3. Result comparison with FPR error bound
	4.4. Comparison with Solibri IFC Optimizer
	4.5. Case study
	4.6. IFC importing performance comparison
	4.7. Comparison with ZIP compression

	5. Conclusion and future work
	Supplementary material
	Acknowledgments
	References


