Automation in Construction 86 (2018) 53-68

journal homepage: www.elsevier.com/locate/autcon

Contents lists available at ScienceDirect

Automation in Construction

UTOMATION IN
CONSTRUCTION

IFCdiff: A content-based automatic comparison approach for IFC files

@ CrossMark

Xin Shi®, Yu-Shen Liu™"“", Ge Gao”, Ming Gu®, Haijiang Li‘

2 School of Software, Tsinghua University, Beijing 100084, China

® Key Laboratory for Information System Security, Ministry of Education of China,China
€ Tsinghua National Laboratory for Information Science and Technology (TNList), China
4 BRE Institute of Sustainable Engineering, Engineering School, Cardiff University, UK

ARTICLE INFO ABSTRACT

With the growth in popularity of the IFC (Industry Foundation Classes) format used in construction industry, it
often requires effective methods of IFC comparison to keep track of important changes during the lifecycle of
construction projects. However, most IFC comparisons are based on a visual inspection, a manual count and a
check of selective attributes. Although a few techniques about automatic IFC comparisons have been developed
recently, they are usually time-consuming, and are sensitive to the GUID change or redundant instances in IFC
files. To address these issues, we propose a content-based automatic comparison approach, named IFCdiff, for
detecting differences between two IFC files. The proposed approach starts with a comprehensive analysis of the
structure and content of each IFC file, and then constructs its hierarchical structure along with eliminating
redundant instances. Next, the two hierarchical structures are compared with each other for detecting changes in
an iterative bottom-up procedure. Our approach fully considers the content of IFC files without the need of
flattening instances in IFC files. In contrast with previous methods, our approach can greatly reduce the com-
putational time and space, and the comparison result is not sensitive to redundant instances in IFC files. Finally,
we demonstrate a potential application to incremental backup of IFC files. The software can be found at: http://

Keywords:

Building Information Modeling (BIM)
Industry Foundation Classes (IFC)
IFC comparison

Change detection

Similarity and difference

cgcad.thss.tsinghua.edu.cn/liuyushen/ifediff/.

1. Introduction

During the last decade, Building Information Modeling (BIM) has
received a considerable amount of attention in the domain of
Architecture, Engineering and Construction (AEC) to support lifecycle
data sharing [1]. As an open and neutral data format specification for
BIM, Industry Foundation Classes (IFC) [2] plays a crucial role to fa-
cilitate interoperability between various software platforms. The IFC
data format has been widely supported by the market-leading BIM
software vendors. Many recent studies also demonstrate the IFC viabi-
lity in various applications, such as evaluation of design solutions [3],
virtual construction [4], construction management [5], model
checking [6,7], path planning [8], file optimization [9], semantic an-
notation [10] and information retrieval [11,12].

With the growth in popularity of the IFC format used in construction
industry, it often requires an effective IFC comparison method to keep
track of important changes during the lifecycle of construction projects.
The IFC comparison aims to analyze and identify the differences and
similarities between two IFC files. It is a fundamental problem which

” Corresponding author at: School of Software, Tsinghua University, Beijing 100084, China.

may arise in many BIM-based applications, such as collaborative
building design [13], incremental backup of files, construction project
management [5], product data exchange [14-16], conformance
checking [15], handover for operation and maintenance [15]. Previous
IFC comparisons are usually based on a visual inspection, a manual
count and a check of selective attributes [15,17-19]. However, due to
the large file sizes, the complex inheritance and referencing relation-
ships of IFC files, such a way of manual inspection is often time-con-
suming and error-prone; furthermore, it can only report a partial and
illustrative view of the compared files [14]. Although a few recent
studies have been developed for automatic IFC comparison [14,18,20],
their methods are usually very time-consuming, and are sensitive to the
globally unique identifiers (GUID) change [18,20] or redundant in-
stances [14] within IFC files.

To address these issues, we propose a content-based automatic IFC
comparison approach, named IFCdiff, for tracking differences or de-
tecting changes between two IFC files. Our approach starts with a
comprehensive analysis of structure and content of each IFC file, and
then constructs its hierarchical structure along with eliminating

E-mail addresses: coolstone712@126.com (X. Shi), liuyushen@tsinghua.edu.cn (Y.-S. Liu), gg07 @mails.tsinghua.edu.cn (G. Gao), guming@tsinghua.edu.cn (M. Gu),

lih@Cardiff.ac.uk (H. Li).
URL: http://cgcad.thss.tsinghua.edu.cn/liuyushen/ (Y.-S. Liu).

https://doi.org/10.1016/j.autcon.2017.10.013

Received 29 June 2016; Received in revised form 17 August 2017; Accepted 17 October 2017

0926-5805/ © 2017 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2017.10.013
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/
https://doi.org/10.1016/j.autcon.2017.10.013
mailto:coolstone712@126.com
mailto:liuyushen@tsinghua.edu.cn
mailto:gg07@mails.tsinghua.edu.cn
mailto:guming@tsinghua.edu.cn
mailto:lih@Cardiff.ac.uk
http://cgcad.thss.tsinghua.edu.cn/liuyushen/
http://dx.doi.org/10.1016/j.autcon.2017.10.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2017.10.013&domain=pdf

X. Shi et al.

redundant instances at each level. Next, the two hierarchical structures
are compared with each other for detecting changes in an iterative
bottom-up procedure. Our approach fully takes into account the content
of IFC files and makes good use of the hierarchical structure of IFC files.
First, our approach can significantly reduce the computational time and
space. Furthermore, the comparison result using our method is not
sensitive to redundant instances within IFC files. In addition, we also
demonstrate a potential application of our approach to incremental
backup of IFC files.

The paper is organized as follows. Section 2 reviews the related
work and summarizes the existing problems. Section 3 introduces some
basic concepts and terms of IFC files. Section 4 gives a detailed de-
scription of our approach. Section 5 demonstrates the experimental
results and a potential application to incremental backup of IFC files.
Finally, Section 6 concludes this paper, summarizes our contributions
and discusses some future work.

2. Related work

Early studies of IFC comparison mainly conducted a visual inspec-
tion of models and a check of selective attributes in the original and
exchange models [15,17-19]. The visual inspection can be done with
various IFC viewers that are available, while the attribute analysis is
usually a manual check for building elements. However, only using a
visual and manual way for comparing IFC files is inaccurate and in-
complete due to the complex referencing and inheritance structure of
IFC files [14]. The manual way is useful for only small and simple IFC
models, whereas it is not practical for large and complex models in the
actual construction projects. Consequently, there is an urgent need for
developing automatic IFC comparison tools in the scenario of IFC-based
data management.

2.1. Plain text comparison

There are various approaches in use for performing automatic
comparison of IFC files. An IFC file is a plain text (ASCII) format with
the extension “*.ifc”, which is specified by IFC and ISO 10303-21 [21]
(also known as “STEP physical file”). Therefore, a direct approach is to
use plain text comparison tools for directly comparing two IFC files,
regardless of information content of models. Some widely used text
comparison tools [22], such as diff, DiffMerge, cmp, FileMerge, SVN, CVS
and BCompare, can be conducted for this purpose. These tools usually
compute the longest common subsequence and highlight the differences
between textual files. However, pure text comparison does not consider
the specific data organization and representation of an IFC file.
Therefore, the traditional text comparison tools are not suitable for IFC
file comparison.

2.2. GUID-based IFC comparison

Another kind of approaches is based on the globally unique iden-
tifier (GUID) [18,20] which is an unique identifier for object instances
across applications and systems. The general strategy of GUID-based
comparison is as follows. If there is an instance in one IFC file which has
the same GUID as an instance in another IFC file, they can be con-
sidered as the same instance; otherwise, they are considered to be dif-
ferent instances even with the same attributes of the entity or of its
reference entities. The GUID-based comparison is widely adopted by
many commercial BIM platforms such as Autodesk Revit, Navisworks and
Graphisoft ArchiCAD. Some research articles [14,20] also discussed how
to use the GUIDs for measuring the differences between IFC files.

However, in the IFC specification, only the entities inherited from
IfcRoot have GUIDs in their attributes, while many other entities (e.g.
IfcPropertySingleValue) not inherited from IfcRoot have no
GUID [14,20]. In addition, the GUIDs of instances are often changed
during the data exchange between different systems even without any

54

Automation in Construction 86 (2018) 53-68

modification to the model itself. Therefore, the GUID-based comparison
is not a reliable approach to distinguish two IFC files even if it is quite
simple and fast for comparison.

2.3. Graph-based IFC comparison

A third type of approaches was proposed by Arthaud and
Lombardo [13] in the co-design scenario, which compares two oriented
graphs generated by two IFC files. From this, it is possible to track the
differences between two IFC models. However, the matching process of
nodes between two oriented graphs still complies with the GUID com-
parison, where the instances without GUIDs are ignored in the com-
parison process. More recently, Oraskari et al. [23] presented RDF-
based signature algorithms for computing differences of IFC models.
They convert each IFC model into an RDF graph, in which anonymous
nodes (i.e. those instances that do not have any GUID) are assigned
GUIDs using a novel signature-based algorithm. As a result, compar-
isons of IFC models are reduced to graph matching. However, node
comparison in the last step is still based on GUID comparison.

It is noteworthy that such graph-based IFC comparisons are non-
trivial and time-consuming for large models. Furthermore, they do not
handle duplicate data instances in IFC files. In practice, the IFC files
generated by various software platforms often include a large number
of duplicate data instances [9,14], which should be processed in the
procedure of IFC comparison. We will discuss this issue in Section 2.5.2
in detail.

2.4. Flattening-based IFC comparison

The fourth type of approaches, presented by Lee et al. [14], utilizes
a recursive strategy to flatten the instances in two IFC files, and then
compares the flattened data instances instead of the original ones. The
“flattening” process is to replace all the reference numbers with their
actual values in each IFC file, which makes an IFC file into a structure
that does not include any referencing or inheritance structure [14]. This
overcomes the difference of reference numbers included in attribute
values when comparing pairs of data instances. As a result, IFC com-
parison is simplified to pure string comparison after flattening.

This flattening-based method firstly reads two IFC files and parses
data into instance name, entity name, and attribute values before
comparison. In the following example of one data instance, #90 is the
instance name, IFCSLAB is the entity name, and the remaining in-
formation within parentheses is the attribute values.

#90=IFCSLAB(2VLPPLMIR7fBUKZNOXN2MZ,
SLAB_006, , $, #335, #320, $, FLOOR.)

#13,

Since different BIM modeling systems might export IFC files in

various ways, the instance names and reference numbers might be
different. To overcome this difference in referencing mechanisms, the
files should be “flattened” first, i.e., making files in a structure that does
not include any referencing or inheritance structure by replacing the
reference identifier numbers with their actual attribute values. The
following shows the flattened data instance of #90.
#90=IFCSLAB (2VLPPLMIR7VLPPLMIR7fBUKZNOXN2MZ,
$, UNDEFINED, $, $, $, $, $, $, $, ORGANIZATIONNAME, §,
$, $, $, GS, GRAPHISOFT, GRAPHISOFT, $, $, 9.0, ACAD9.0,
ARCHICAD, $, .NOCHANGE., $, $, $, 1149148841, SLAB_006, ,
$, $, (0.,0.,0.), (0.,0.,1.), (1.,0.,0.), (0.,0.,0.), (0.,0.,1.), (1.,0.,0.),
(.43500.,14500.,_200.), (0.,0.,1.), IFCPARAMETERVALUE(0.)),
((0.,0.), IFCPARAMETERVALUE(90.)), .T., .CARTESIAN.), .F.,
(0.,0.,0.), (0.,0.,1.), (1.,0.,0.), (0.,0.,1.), 200.)), $, .FLOOR.)

Such a flattening process overcomes the difference of reference
numbers included in attribute values when comparing pairs of data
instances. As a result, IFC comparison is simplified to pure string
comparison after flattening.



X. Shi et al.

The process of file comparison in [14] consists of three main steps:
(1) first parsing all data instances and flattening them, and then (2)
comparing the flattened instances while ignoring their GUIDs, finally
(3) computing the similarity. One main advantage of the flattening-
based comparison approach is that it is insensitive to the change of
GUIDs of data instances in IFC files. However, the flattening-based file
comparison is usually time-consuming for large models, and it is also
sensitive to redundant instances appearing in IFC files. In addition, this
approach does not deal with the order changes of the properties in
property sets in data instances. For example, a data instance IfcPro-
pertySet is given below.
#145=IFCPROPERTYSET(‘3wesF7dHX9B9kkD2hgAhST’, #33,
‘PSet_Revit’, $, (#133, #134, #135, #136, #137, #138));

In the instance #145, the last attribute is a collection of attribute
instances, i.e. (#133, #134, #135, #136, #137, #138), in which each
attribute instance (e.g. #133) is an IfcPropertySingleValue indicating an
attribute value. In this collection, the order of these attribute instances
might change during data exchange between different BIM software.
The previous flattening-based IFC comparison [14] does not deal with
the problem of the order changes of the properties in property sets. As a
result, the same data instances but with different orders of properties
will be considered to be different.

2.5. Summarizing the existing problems

After reviewing the existing approaches [13,14,18,20], we sum-
marize the existing problems as follows.

2.5.1. Sensitivity for GUID changes

Although the GUID-based approach [18,20] is simple and fast
without comparing all attribute values, the GUIDs of data instances are
often changed in data exchange from different systems. Therefore, it is
not an appropriate way for identifying the differences between IFC files.
The graph-based comparison [13] is time-consuming for large models,
and it still complies with the GUID comparison during node matching.
In addition, this approach is also sensitive to the redundant instances.

In contrast, our method compares the contents and structures of IFC
files through an iterative procedure, which does not rely on GUIDs.

2.5.2. Sensitivity for redundant instances

Redundancy in information theory is the number of bits used to
transmit a message minus the number of bits of actual information in
the message. Informally, it is the amount of wasted “space” used to
transmit certain data [9]. Many previous studies (e.g. [9,14,17,20])
have introduced that the exported IFC files in practice often contain a
large amount of redundant information. Our recent paper [9] also il-
lustrated several possible reasons for an abundance of redundancy in
the exported IFC files. For instance, differences of model mapping me-
chanism between various BIM software platforms and the standard IFC
data may produce a great deal of redundancy, and various possibilities
offered by the IFC specification can cause redundancy too [9].

One typical example of redundancy in IFC files is the identical data
instances [9,14], which are roughly defined as multiple instances of the
same entity with the same entity name and attribute values, but pos-
sibly with different instance names. For example, the duplicate in-
stances of the IfcCartesianPoint entity with the same value are one
common example of redundant information. The identical data in-
stances are the representative of the redundancy that should be dealt
with in the process of IFC comparison. Complying with information
theory, our approach eliminates the problem of redundancy existing in
IFC files before comparison in order to remove the influence on the
similarity caused by the redundant instances.

In [14], the authors proposed a metric of the similarity rate, which is
defined as the rate of the number of matching instances in File A (the

55

Automation in Construction 86 (2018) 53-68

target file) to the instances in File B (the source file) divided by the total
number of instances in File A, i.e.

Number of matching instances in File A to File B

Similarity rate (%) =

5

(€]
where “Number of matching instances” denotes the number of instances
in File A that are identical to the instances in File B while ignoring the
instance name after flattening. However, the metric computation based
on flattening the instances in [14] is sensitive to redundant instances in
IFC files. In Eq. (1), the number of matching instances is highly de-
pendent to the number of redundant instances in the IFC files. Assuming
that there are a large number of duplicate instances in File A matched to
data in File B, the similarity rate in Eq. (1) will be high, even close to
100%. A robust similarity rate computation should be insensitive to the
number of redundant instances in IFC files. Although Lee et al. [14] also
presented the matching rate for indicating how often instances in File A
are redundantly produced in File B, it cannot improve the similarity
rate computation in essence.

Being different with the flattening-based comparison approach, our
approach constructs the hierarchical structures of IFC files along with
eliminating redundant instances. Then the two hierarchical structures
are compared with an iterative bottom-up procedure instead of the
original IFC files. By removing the redundant instances while keeping
the complete IFC models, the approach can overcome the influence
arising by redundant instances in IFC files. Consequently, our approach
can obtain a stable and reliable similarity rate compared with the
flattening-based approach [14].

Total number of instances in File A

2.5.3. Time-consuming to calculation

The flattening-based approach [14] is also time-consuming for
comparison of large IFC files. On the one hand, the comparison between
a large number of duplicate instances existing in IFC files will take a lot
of time; while it is in fact unnecessary. On the other hand, after all
instances in an IFC file are flattened, the generated strings of flattened
instances become quite long due to the complex referencing and in-
heritance structure of IFC. It will cost a lot of time and space to com-
plete the process of instance matching. In general, the flattening process
will increase the size of an IFC file several times or even dozens of
times. For example, a 10 M IFC file in our test cases is increased to 70 M
after flattening.

Compared with the flattening-based approach in [14], our approach
bypasses the procedure of flattening instances and is able to gain the
similarity rate in a much shorter time. Furthermore, since the re-
dundant instances are removed from the original files when using our
approach, the number of data instances to be compared is decreased
significantly. This greatly improves the comparison efficiency.

A more formal investigation is given in Appendix A for discussing
the complexities of the mentioned algorithms.

2.5.4. Other issues

In the previous work, the order problem of aggregation attributes
was not considered in the process of IFC comparison. In IFC, a lot of
attributes are in the form of a collection of reference numbers. For
example, the relationship object associates one object with several
other objects or attributes, and these objects or attributes are recorded
as reference numbers in a set. Another example is the property set
which includes some reference numbers and each of them stands for
one property. Since different systems export data in different ways, the
order of aggregation attributes might change during data exchange.
However, the previous approaches (also including flattening-based
approach [14]) regard this case, i.e. that those instances with the same
attribute sets but in different order, as different instances. In contrast,
our approach handles the order problem of attributes, which produces a
stable similarity rate.

The GUID-based and flattening-based approaches mainly focus on



X. Shi et al.

textual comparison between two IFC files. However, since the read-
ability of IFC text file is poor, it is non-trivial for users to find the dif-
ferences between geometric models only through text comparison. In
fact, each IFC file includes geometric information which represents a 3D
building model. If the textual comparison results can be associated with
the 3D model, it will enable users to intuitively understand the differ-
ences and changes between models. This paper develops a prototype
IFCdiff viewer specifically designed to highlight the different geometric
objects between models.

2.6. Tree compression

In computer science, tree compression (or named tree compaction)
is a common and well-studied task. Given a tree, the task is to map it as
compactly as possible to memory [24], where the range of the mapping
depends on specific applications. Many methods such as arithmetic
coding and Huffman coding can be used for encoding and decoding
trees on data compression. There have been some typical applications
of the tree compression methods such as the compression of pixel trees,
syntax compression of program files, and the compression of XML
document trees [25].

In this paper, we simplify each IFC file as a tree structure and re-
move the redundant data instances from this tree, which can be re-
garded as an application of tree compression to IFC files. Then, the
compressed tree structures derived from two IFC files are compared
instead of comparing the original IFC files. When the compression of
tree structures is considered, two objectives are often involved. The first
objective is to reduce the space needed for storing a tree itself, and the
second one is to reduce the operation time on the specific application.
Our method meets both of the requirements because the space can be
saved through removing the redundant nodes while accelerating the
functionality of the operations (i.e. IFC comparison).

3. Basic terms and IFC hierarchical structure

This section introduces some basic terms used in this paper and IFC
hierarchical structures.

3.1. Basic terms used in the IFC file

As the ISO 16739 standard, IFC defines a conceptual data schema
and an exchange file format of building information models. An IFC
data file is in an ASCII text format with the extension “*.ifc”, which uses
the STEP physical file structure according to ISO 10303-21 [21]. The
IFC file is composed of a header section and a data section [26], as shown
in Fig. 1. The header section describes basic information including the
file description, the date and time, the schema version, etc. The data
section defines the BIM data including a large number of entity instances
(or named data instances). Each entity instance takes “#” as the be-
ginning of the sentence and has instance name, entity name and a list of
attribute values. The instance name (e.g. “#3967”) is unique within the
scope of an IFC file, which can also be used as a reference id cited by
other entity instances. An example IFC file is shown in Fig. 1, where
some basic terms are illustrated.

Note that the instance names in two IFC files are independent of
each other, so they cannot be used as a feature to distinguish two data
instances. In our approach, the entity name and attribute values are
considered for instance comparison.

3.2. Hierarchical structure of the IFC file

IFC divides all entities into rooted and non-rooted entities. Rooted
entities derive from the most abstract class IfcRoot and each one has a
GUID along with attributes. Non-rooted entities have no GUID, and data
instances only exist if referenced from a rooted data instance directly or
indirectly.

56

Automation in Construction 86 (2018) 53-68

ISO-10303-21;

HEADER;
FILE DESCRIPTION(('ArchiCAD 11.0 generated ',2;1");
header : e . o .
. = FILE NAME ('IEC Engine', 2006, (‘Architect'), ('Building Designer
section Office"), 'FileA', 'Windows System', 'The authorising person.');
FILE_SCHEMA(('IFC2X3"));
— ENDSEC;
entity instance
DATA;
[:3950-1FC — reference id
#3959=IFCDIRECTLO) bhifm] - L
data - 3 ()3—1])(;‘(?@1LS[;\,\H’O[I\'I'(13.32044()( LN.Q.O."5)1
section IFCAXIS2PLACEMENT2D(#3963,#3959);
#397 I]'('Rl'('T.’\,\](11.1‘.PR()]"][,]:I)Ii["”r\le/\ 1 1.5);
— F\]DS‘_& entity name T

instance name
END-ISO-10303-21;

attribute value

Fig. 1. The basic terms used in the IFC file.

The IFC data model is essentially constructed in a hierarchical
structure, generally with the rooted entity IfcProject as the root node.
This structure is named IFC hierarchical structure in this paper. The data
instances (e.g. non-rooted entities IfcDirection and IfcCartesianPoint)
that do not include any reference id in their attributes are considered as
the terminal nodes, or level 0. The data instances that directly cite the
level 0 nodes are their parent nodes, or level 1. Consequently, the data
instances are structured as the level n nodes, if they are the parent
nodes of level n — 1. The similar hierarchical representation of IFC file
was also used in other IFC-based applications including IFC compres-
sion [9] and partial model extraction [27].

Fig. 2 shows a partial IFC hierarchical structure corresponding to
the file fragment in Fig. 1. In Fig. 2, the data instances (e.g. “#3959”
and “#3963”) are recognized as the terminal nodes (i.e. level 0), whose
parent node is the data instance “#3967” (i.e. level 1). The data in-
stance “#3970” (i.e. the parent node of “#3967”) is recognized as the
level 2.

4. The content-based IFC comparison approach

To achieve a fast and redundancy-insensitive IFC comparison, this
section introduces a content-based automatic comparison approach for
detecting changes between two IFC files. By analyzing the content of
each IFC file, the approach first constructs the IFC hierarchical structure
along with eliminating duplicate data instances. Then these two

IFCRECTANGLEPROEH.EDEF

IFCAXIS2PLACEMENT2D
IFCDIRECTION ARTESIANPOINT

D

Fig. 2. A partial IFC hierarchical structure corresponding to the file fragment in Fig. 1,
where each node also indicates its corresponding entity name.



X. Shi et al.

Input: two IFC files

|

Step 1:
Preprocess and construct

Start iteration

Automation in Construction 86 (2018) 53-68

Fig. 3. The flow diagram of our content-based IFC comparison
approach.

the IFC hierarchical structures

l

Step 2:

Collect all data instances
in the current level nodes

Compare the terminal nodes along
with removing redundant instances

|

]

Step 3:

Compare pairs of nodes
along with removing

redundant instances

Repeat Step 2 for iterative
and level-by-level comparison

|

Step 4:
Compute the similarity rate

!

Output:
the comparison result

< End )
hierarchical structures are compared with an iterative bottom-up pro-
cedure. The main procedure of our approach is illustrated in Fig. 3.

Starting with two IFC files as input, our approach contains four steps as
follows.

End iteration

Step 1: Preprocess the data instances and construct the IFC hierarchical
structures (see Section 4.1). This step first removes redundant
information in each data instance, and then extracts three basic
terms(i.e. instance name, entity name and attribute values)
from each data instances. Next, based on the extracted terms
and their referencing relationships, the hierarchical structures
of two IFC files are constructed for further comparison.
Compare the terminal nodes between two IFC hierarchical
structures along with removing redundant instances (see
Section 4.2). This step first identifies and groups identical data
instances in the terminal nodes. Then only one data instance of
each group is kept, while all other duplicate instances are re-
moved from this group. Next, we compare the updated terminal
nodes and find the matching instances between two hier-
archical structures.

Repeat Step 2 for iterative and level-by-level comparison for the
remaining data instances between two files (see Section 4.3).
Step 3 is a recursive and iterative process terminated until the
comparing nodes reach the root node in any one of two files.
The matching instances between two files are recorded in a
hash table.

Finally, compute the similarity rate between two IFC files (see
Section 4.4). The similarity rate is defined as the rate of the

Step 2:

Step 3:

Step 4:

57

number of matching instances between two files divided by the
total number of instances in the target file. In addition, all
matching instances between two files are saved in the hash
table, and the differences between files are also recorded for
further applications (e.g. incremental backup of IFC files in
Section 5.6).

For the reader's convenience, the target file and the source file will
be referred to as File A and File B in this paper, respectively.

4.1. Step 1: preprocess data instances and construct the IFC hierarchical
structures

We preprocess data instances within each input IFC file, and then
construct the IFC hierarchical structures. The preprocessing will remove
redundant information (e.g. blank spaces and multi-lines) from each
data instance within each IFC file. Especially, the data instance with
multi-lines is converted into a single line. Then, the contents of three
basic terms (i.e. instance name, entity name and attribute values) are
extracted from each data instance, as shown in Fig. 4. The above pre-
processing is similar to the strategy in [9]. Finally, based on the ex-
tracted terms and their referencing relationships, the hierarchical
structure of each IFC file (mentioned in Section 3.2) is constructed for
further comparison.

Fig. 5 shows an example of two file fragments from the target file
(File A) and the source file (File B), respectively. The corresponding IFC
hierarchical structures are displayed in Fig. 6.



X. Shi et al.

Automation in Construction 86 (2018) 53-68

#70 = IFCSHAPEREPRESENTATION( #27,"'Body u',
'MappedRepresentation', (#69));

Fig. 4. Illustration of preprocessing data instances within each
IFC file, where three basic items will be extracted from each data
instance.

U

‘ #70 = IFCSHAPEREPRESENTATION( #27,' Body', 'MappedRepresentation', (#69));

U

‘ #70‘ ‘ IFCSHAPEREPRESENTATION‘ ‘(#27,'Body','MappedRepresentation',(#69)) ‘

1 1 1

instance name entity name

4.2. Step 2: compare the terminal nodes along with removing redundant
instances

The constructed IFC hierarchical structure is a tree-like data struc-
ture, so the comparison of two structures can be conducted in a similar
way of level-by-level comparison of two trees. To accomplish this goal,
we need to traverse two trees simultaneously, where this traversal visits
the nodes by levels from bottom to top. The second step of our approach
is to compare the terminal nodes between two hierarchical structures
along with removing redundant instances.

Firstly, for each file, we collect all data instances on the terminal
nodes which do not include any reference id in their attribute values.
For example, in File A, the data instances (#3, #5 and #40) are re-
cognized as the terminal nodes in the hierarchical structure (see Fig. 6
(a)). In File B, the data instances (#51, #53 and #52) are the terminal
nodes (see Fig. 6 (b)).

Secondly, for each file, we identify and group the identical data
instances in the terminal nodes by comparing their entity names and
attribute values, where the terminal nodes with the same value are
clustered into one group. Consequently, we can obtain multiple groups
of identical data instances. In Fig. 6, the light gray nodes (#3 and #5)
denote one group of identical data instances in File A, while #51 and
#53 are grouped together in File B.

Thirdly, only one data instance of each group is kept, while all other
duplicate instances are removed from this group. Meanwhile, the re-
ference id of attribute values in the remaining data instances in the
upper levels will be updated accordingly. As shown in Fig. 7, the data
instance #3 in the group is kept in File A, while #5 is deleted. Mean-
while, their upper parent nodes (i.e. #24 and #37) are respectively
relocated to the data instance #3. File B is processed similarly, where
#51 is kept and #53 is removed. After achieving the above process, we
can remove all redundant data instances from the terminal nodes both
in File A and in File B.

attribute values

Finally, we compare the new terminal nodes (without duplicate
instances) between the two hierarchical structures while ignoring the
GUIDs, and find the matching instances between them. Since the data
instances in the terminal nodes do not include any reference id, we only
compare the values of data instances (i.e. their entity names and at-
tribute values) in terms of string comparison. In Fig. 7, as for the
terminal nodes, #3 in File A is matched to #51 in File B, where #3 and
#51 are the same as “IFCCARTESIANPOINT((0.,0.,0.))” by checking the
original file fragments in Fig. 5. In addition, we record the pair of
matching instances (#3, #51) in a hash table (denoted by T) for the
upper level comparison.

4.3. Step 3: repeat the iterative comparison process

In a similar way to Step 2, we need to traverse all nodes of two IFC
hierarchical structures by levels from bottom to top. Therefore, we
make use of an iterative strategy for comparing the nodes of each level
along with removing duplicate instances. The procedure of iterative
comparison is described as follows.

Firstly, for each IFC file, these data instances which directly cite the
terminal nodes mentioned in Section 4.2 are collected, which will be
treated as the new terminal nodes instead of the previous ones. As
shown in Fig. 8, the data instances (#24, #37 and #41) on the level 1 in
File A become the new terminal nodes instead of the previous terminal
nodes (#3 and #40), while the data instances (#84, #63 and #57) in
File B are regarded as the new terminal nodes instead of #51 and #52.

Secondly, in a similar way to Step 2, we group the identical data
instances in the new terminal nodes (i.e. level 1), and then the duplicate
instances are removed from this level in each IFC file. In Fig. 8, the light
gray nodes (#24 and #37) denote one group of identical data instances
in File A, while the light gray nodes (#84 and #63) are another group
in File B. After removing the duplicate instances, the data instance #24
is kept in File A, while #84 is kept in File B, as shown in Fig. 9.

#3 = [IFCCARTESIANPOINT((0.,0.,0.)); ~_matching

#24 = IFCAXIS2PLACEMENT3D(#3, $, $)i\__matching

#37 = IFCAXIS2PLACEMENT3D(#5, 3, 9); —
#25 = [IFCLOCALPLACEMENT(S, #24); matdhing
#36=1FCBUILDING('1yz7A4a0TAOAbPSbdps9jg’,
#33,5,9,5,#25,5, 5, ELEMENT, §, 8, #35); |
#40 = IFCCARTESIANPOINT((0., 0., -150.);  matdhing
#41 = IFCAXIS2PLACEMENT3D(#40, 8, $);
#42 = IFCLOCALPLACEMENT(#38, #41);

—

|, #51 = IFCCARTESIANPOINT((0.,0.,0.));
#5 = IFCCARTESIANPOINT((0.,0.,0.)); < #52 = IFCCARTESIANPOINT((0., 0., -150.));
I\ 453 = IFCCARTESIANPOINT((0.0..0.)):
#57=IFCAXIS2PLACEMENT3D(#52, $, $);
#63 = IFCAXIS2PLACEMENT3D(#53, $, $);
#84 = IFCAXIS2PLACEMENT3D(#51, $, $);
#38 = IFCLOCALPLACEMENT(S, #37); —K #111 = IFCLOCALPLACEMENT(S, #84);
#163 = IFCLOCALPLACEMENT(S, #63);
#150 = IFCBUILDING('1yz7A4aOTAOAbP$bdps9jg’,
#33,5,8,8.#111,$,$, ELEMENT. $.,8.#35);

#189 =IFCLOCALPLACEMENT (#163, #57);

Fig. 5. Illustration of two file fragments from the target
file (File A) and the source file (File B), respectively. The
matching instances between two file fragments are high-
lighted.

File A

File B



X. Shi et al.

i,

(b) File B

(a) File A

Meanwhile, the upper parent nodes (i.e. level 2) are updated accord-
ingly (see Fig. 9), where the data instances (#25 and #38) are relinked
to #24 in File A and the data instances (#111 and #163) are relinked to
#84 in File B.

Thirdly, we compare the new terminal nodes (i.e. level 1) between
two hierarchical structures while ignoring the GUIDs, and find the
matching instances between them. Since the data instances in the level
1 include the reference id in their attribute values, we first compare the
reference id and then compare the remaining properties between the
two data instances. In Fig. 9, the data instance #24 in File A and #84 in
File B are accordingly updated as follows.

[#24=IFCAXIS2PLACEMENT3D (#3, $, $); |

[#84=IFCAXIS2PLACEMENT3D (#51, $, $); |

Since we have recorded the matching instances (#3, #51) in the
hash table T in the level O (see Section 4.2), the reference id of #24 is
the same as the one of #84. In addition, the entity names and other
properties between #24 and #84 are the same, so they are a pair of
matching instances in the level 1. Meanwhile, this pair of matching
instances (#24, #84) are continuously added into the hash table T for
the upper level comparison.

We repeat the above procedure for further comparing the remaining
data instances in two files. If the comparing nodes reach the root node
(i.e. IfcProject) of File A or File B, the iterative comparison procedure is
terminated. Figs. 10 and 11 show the above comparison procedure in
the level 2. Fig. 12 illustrates the pair of matching instances (#36,
#150) in the level 3.

4.4. Step 4: compute the similarity metric

The last step of our approach is to compute the similarity rate be-
tween two IFC files. Being similar to the similarity metric used in [14],

59

Automation in Construction 86 (2018) 53-68

Fig. 6. The two partial IFC hierarchical structures are dis-
played, which correspond to File A and File B (in Fig. 5), re-
spectively. Here the identical data instances (light gray nodes)
on the terminal nodes (i.e. level 0) in each file are identified and
grouped.

we define the similarity rate from File A to File B as the rate of the
number of matching instances between two files divided by the total
number of instances in File A.

|A N Bl

Similarity (A, B)(%) =
imilarity( (%) Al

’ (2)

where |A| is the total number of instances in File A after removing
redundant instances, and |A n B| is the number of matching instances
between File A and File B along with removing redundant instances
using our approach. In contrast with the previous flattening-based ap-
proach in [14], when using our approach, the number of matching
instances in File A compared to File B is the same with those in File B
compared to File A, i.e. |A n B| = |B n A|, even if the input files include
redundant data instances. Consequently, our approach can obtain a
stable and reliable similarity rate.

As for the example of two file fragments in Fig. 5 used in this sec-
tion, the similarity rate from File A to File B [14] is 70.0% (7/10) based
on the flattening-based approach, while the similarity rate is 57.1% (4/
7) with our approach.

Finally, all matching instances between two files are saved in the
hash table T, and the differences between them are also recorded for
further applications (e.g. incremental backup of IFC files in
Section 5.6).

4.4.1. Computational complexity

Let n and m (n = m) be the number of data instances in File A and
File B, respectively. First, as for IFC hierarchical structures, it takes O(mn)
(for File A) and O(m) (for File B) to preprocess all the data instances in
Step 1. Meanwhile, it takes O(nlog(n)) (for File A) and O(mlog(m)) (for
File B) to remove the redundant data instances and update the reference
id [9]. Finally, it takes O(nlog(m)) to compare pairs of data instances
between two files with an iterative bottom-up procedure. As a result,
the total complexity is about 20(n) + 20(nlog(n)) + O(nlog(m)), and
therefore an upper bound of running time is O(nlog(n)). A more

Fig. 7. Remove the duplicate instances from the terminal nodes
(i.e. level 0) in each file, and update the reference id of their
upper parent nodes. (a) #3 is kept in File A, while #5 is re-
moved. (b) #51 is kept in File B, while #53 is deleted.



X. Shi et al.

(a) File A

detailed analysis for computational complexity is dependent on the two
IFC hierarchical structures, and we leave it to the future work. In our
implementation, we use the hash table to save the matching instances
to accelerate the node searching and comparison.

4.5. Improvements of approach implementation

In order to address several issues mentioned in Section 2.5, we make
some improvements for the presented approach.

(1) Ignoring the change of GUIDs
During data exchange, initial GUIDs of data instances often get lost
or changed. Therefore, we compare pairs of data instances while
ignoring their GUIDs in Step 2 and Step 3 of our approach. This can
overcome the effects of GUID changes during data exchange.

(2) Ignoring the change of owner history information
The owner history information (IfcOwnerHistory) contains in-
formation about the author, create time, modeling software and so
on. This information will be changed whenever an IFC file is im-
ported and exported from a system, even if there is no change in the
model itself. Therefore, to identify the actual changes between two
models, the owner history information is ignored in the comparison
of instance attribute values.

(3) Ignoring the order change of property set
The previous comparison approach does not deal with the problem
of the order changes of the properties in property sets. As men-
tioned above,the attribute of IfcPropertySet may be a collection of
some attribute instances,which requires special treatment in the file
comparison process.When comparing two IfcPropertySet instances,
we compare all attribute instances in two collections and find the
matching data instances with the help of the hash table T.

Automation in Construction 86 (2018) 53-68

Fig. 8. Illustration of the iterative comparison process on the
level 1. Here we group the identical data instances (light gray
nodes) in the level 1 in each file. (a) The nodes (#24 and #37)
denote one group in File A. (b) The nodes (#84 and #63) are in
one group in File B.

5. Experimental results and discussions

Our approach has been implemented in a content-based IFC com-
parison tool, called IFCdiff, with Visual C+ + under Windows 8. All the
experiments were run on an Intel Pentium(R) Dual-Core 3.06 GHZ
processor with 6 GB memory. Fig. 13 shows the screenshot of the IFCdiff
tool. The user should first open two candidate IFC files (the target and
source files), and then click the button “Compare” to perform the
comparison procedure. The comparison results and the similarity me-
trics are displayed at the bottom. Alternatively, one can select multiple
checkboxes to ignore the GUIDs, owner history information and the
order of property set.

In order to visualize the compared models and their differences, we
also developed an IFCdiff viewer, as shown in Fig. 14. In the main in-
terface of the viewer in Fig. 14 (a), the corresponding differences of two
input IFC files are highlighted in the text boxes in the middle, the si-
milarity metrics and a summary of the analysis are given at the bottom,
and the matching data entities between two files are listed on the right.
By clicking the button “3DView” of each file in Fig. 14 (a), the viewers
of 3D models will pop up in Fig. 14 (b) and Fig. 14 (c), where the
matching building elements are highlighted with the same color. This
enables users to check the visual differences and changes between IFC
models quickly.

To evaluate the performance of the presented approach, this section
tests our approach on some selected IFC files, and the experiments are
conducted by comparing with other existing approaches. Finally, we
demonstrate a potential application to incremental backup of IFC files.

5.1. Comparison with plain text comparison methods

The first experiment compares our method with plain text com-
parison methods. Many plain text comparison tools [22] are able to
achieve file comparison to highlight the differences between files. Such
tools generally perform string comparison of string-by-string or line-by-

Fig. 9. Illustration of the iterative comparison process on the
level 1. Here we remove the duplicate instances from the nodes
of level 1 in each file, and update the reference id of their upper
parent nodes. (a) #24 is kept in File A, while #37 is removed.
(b) #84 is kept in File B, while #63 is deleted.



X. Shi et al.

(a) File A

line, and then highlight the differences and changes between two files.
Here we typically choose the tool DiffMerge to compare two IFC files
and show their differences. In the test case, a building model first was
built in Graphisoft ArchiCAD 16 and was exported as File A (Fig. 15 (a)).
Then the same model was slightly modified through removing a
window, and it was re-exported as File B (Fig. 15 (b)). Fig. 15 shows the
corresponding parts of file fragments with the same contents but with
different instance names. For example, #724 in File A and #674 in File
B are the identical data instances but with different instance names.
DiffMerge recognizes that the two parts are totally different while
highlighting their differences. The main reason is that plain text com-
parison methods cannot deal with specific data organization and re-
presentation of IFC files including the complex referencing and in-
heritance structures. In contrast, our approach recognizes the two parts
as the same.

5.2. Comparison with the flattening-based file comparison method

The second experiment compares our method with the flattening-
based file comparison method [14]. The IFC files were originally ex-
ported through ArchiCAD, which are referred to as M1 — M4. The cor-
responding models are visualized in Fig. 16. In the four test files, M1
contains a large number of duplicate data instances, while M2 is the
non-redundant file obtained by removing the duplicate data instances
from M1 (using our IFCCompressor tool [9]). M3 is obtained by deleting
the roof of M1 in ArchiCAD and exporting the file, while M4 is the non-
redundant file obtained by removing the duplicate data instances from
M3. Table 1 shows the number of data instances in each IFC file. For
instance, the original M1 file contains 106,438 instances, while the non-
redundant M2 file just includes 45,461 instances.

Table 2 shows the similarity rates computed by our method and the
flattening-based method [14]. M1 (with redundancy) and M2 (without
redundancy) are the same model but with a different number of data
instances; similarly, M3 (with redundancy) and M4 (without

2@

()
(#0)
(a) File A

)

(b) File B

61

Automation in Construction 86 (2018) 53-68

Fig. 10. Illustration of the iterative comparison process on the
level 2. Here we group the identical data instances (light gray
nodes) in the level 2 in each file. (a) The nodes (#25 and #38)
denote one group in File A. (b) The nodes (#111 and #163)
denote another group in File B.

redundancy) are the same model but with a different number of in-
stances. In general, a robust approach of IFC comparison should be
capable of obtaining a stable similarity rate between M3 (or M4) and
M1 (or M2). The results in Table 2 suggest that our approach is not
sensitive to redundant instances within IFC files, which can obtain the
consistent similarity rate (83.2%) between M3 (or M4) and M1 (or M2).
In contrast, the flattening-based method obtains two different similarity
rates (81.6% and 83.2%), because of the redundant instances within
IFC files. As for the flattening-based method, if there are a large number
of duplicate instances matched in two files, the similarity rate tends to
be high; otherwise, if there are a large number of duplicate instances
not matched in two files, the similarity rate tends to be low.

5.3. Experiments under different parameter conditions

The third experiment compares our method under different para-
meter conditions. In Figs. 13 and 14, one can select multiple checkboxes
to ignore the GUIDs, owner history information and the order in
property sets. This can explicitly improve the comparison results. We
select two IFC files (referred to as M5 and M6) for this test, as visualized
in Fig. 17. A building model was first generated in ArchiCAD and then
exported as M5. Next, M5 was imported into ArchiCAD and re-exported
as M6 without any modification. Before performing file comparison, the
duplicate instances of M5 and M6 have been removed using our IFC-
Compressor tool [9].

Table 3 shows the similarity rates using the IFCdiff with different
parameters. The similarity rate without any specific parameters is about
85.85%, which is the same as the similarity rate in the flattening-based
method [14]. The reason is that the two input files M5 and M6 have no
redundant instances; consequently, the flattening-based method [14]
can obtain the same result. In Table 3, the similarity rate with ignoring
the GUIDs is also 85.85%, which indicates that ArchiCAD preserves the
GUIDs well during data exchange. Another reason is that the building
model was built on ArchiCAD and was exported as M5 and M6 still

Fig. 11. Illustration of the iterative comparison process on the
level 2. Here we remove the duplicate instances from the nodes
of level 2 in each file and update the reference id of their upper
parent nodes. (a) #25 is kept in File A, while #38 is removed.
(b) #111 is kept in File B, while #163 is deleted.



X. Shi et al.

A IFCdiff B
[J1gnore GUID [IIgnore Owner History Info []Ignore Order Change of Property Set
Target File Source File
File Name: | FileA.ifc Open File Name: | FileB.ifc Open

Compare 0% 100%

# of Target File Total Items: 6780
# of Target File Match Items: 3863
Similarity Rate: 56.9764%.

# of Missing Items: 2917

Missing Rate: 43.0236%.

# of Added Items: 2923

Addition Rate: 43.1121%.

Fig. 13. The screenshot of our comparison tool IFCdiff.

through ArchiCAD. In other words, the GUIDs were generated and
maintained by the same system (i.e. ArchiCAD) itself. However, the
GUID preservation rate often is low when a model is imported and
exported in two different systems, as illustrated by Lee et al. [14].

In this table, the similarity rate with ignoring owner history in-
formation is about 95.12%, which is highest in this table. The reason is
that a large number of data instances cite the entity IfcOwnerHistory
which holds the modeler and modeling software information. The
owner history information changes whenever a file is imported and
exported from a system, even if no revisions are made to the model.
Therefore, when ignoring the changes of owner history information, the
similarity rate can be improved significantly.

Finally, we test the similarity rate while ignoring the order of
properties in property sets. The result is about 86.26%, which is better
than the default (i.e. 85.85%). This suggests that the orders of some
attribute instances have been changed during the data exchange pro-
cess, even if importing and exporting was done in the same system (i.e.
ArchiCAD). The reason is the difference of model mapping mechanism
between the internal models of BIM software platforms and the stan-
dard IFC data model, where the properties of some objects held in
ArchiCAD are in different order to that in the IFC data model.

5.4. Computational time and space

5.4.1. Computational time

The fourth experiment compares computational time and space
between our method and other methods [14]. In this test, four building
models were developed in Autodesk Revit 2014 and exported as the
initial IFC files (referred to as M7 — M10), as visualized in Fig. 18. Then
we import the four files into Revit and ArchiCAD, and export them as
new IFC files without making any changes to the models. The new IFC
files are renamed M7_R, M8_A, M9 R and M10_A, where “_ R” and “ A”
denote that the files are exported through Revit and ArchiCAD,

62

Automation in Construction 86 (2018) 53-68

Fig. 12. Illustration of the iterative comparison process on the
level 3. On the level 3, #36 in File A and #150 in File B are a
pair of matching instances.

respectively. The new files are used as the target files, while the initial
files are used as the source files.

Table 4 gives the details of those files to be compared, where “No.”
is the index of paired files to be compared, “Size(MB)” is the file sizes,
and “#instances” is the number of data instances within the files. Note
that although there is no modification in the imported and exported
models, the file sizes and the number of data instances still suffer some
changes. For example, M10 contains 91,023 instances, while there is a
great increase of instances in the re-exported M10_A (215,354 in-
stances). The main reason is that different systems map data into the
IFC files in different ways.

Next, comparisons of paired files are made using the flattening-
based method [14] and our approach, respectively. Table 5 shows the
computational time of the two methods. In Ref. [14], the process of file
comparison mainly contains three steps: (1) parsing data instances into
the memory, (2) flattening all the instances and (3) comparing pairs of
instances. In Table 5, we list the computational time of each step of the
flattening-based method and the total time (“T;”). In addition, the time
of our approach is given by “T5”, and the percentage of reduced time is
listed by “RT”, where RT = (T; — T5)/T;. The result in Table 5 shows
that our approach can significantly reduce the time in the file com-
parison process. For example, the percentage of reduced time is about
95.60% for the comparison of M10_A and M10. As mentioned in
Section 2.5.3, the flattening-based method is often time-consuming for
comparison of large IFC files, especially with numerous duplicate in-
stances. It takes a lot of time to perform the two steps of flattening and
comparing in [14]. In contrast with the flattening-based method, our
approach has an advantage when dealing with large file comparison. In
this experiment, for example, the flattening-based method costs
1845.02 s for the comparison of M10_A and M10, while our approach
just takes 81.2609 s to process the comparison of the same files (re-
ducing 95.60%). The result shows that the percentage of reduced time
with our algorithm is generally very high (the average is 92.13%) for
tested cases.

5.4.2. Computational space

In general, the flattening process in [14] also increases the size of an
IFC file several times or even dozens of times. Table 6 shows the size of
original target files in Table 4 and the size variation after running the
flattening-based method and our approach. As shown in this table,
when using the flattening-based approach, the sizes of some files will
increase more than ten times. In contrast, our approach reduces the file
to a smaller size, which greatly improves the comparison efficiency.

In addition, the flattening-based method needs to use all instances
for comparison. Unlike that, since numbers of duplicate instances are
removed from the original files based on our approach, the number of
actual instances used for comparison is significantly decreased. Table 7
lists the number of instances used for comparison based on the flat-
tening-based method and our approach. The result shows that the
average percentage of reduced instances using our approach reaches



X. Shi et al.

Automation in Construction 86 (2018) 53-68

. )
| IFCdiff Viewer =
[“1gnore GUID [0 [“]1gnore Order Change of Praperty Set
Target File Source File Matching Instances
Fie Name:  FieA.ifc Fle Name:  FileB.ffc Source Item Matching Item *
#87 #87 ‘5
% R 100% | #14 214
#87=IFCCARTESIANPOINT((-1057.,451.)); ~ [#87=IFCCARTESIANPOINT((-1057.,451.)); 3| || Busz #8
#94=IFCCARTESIANPOINT((-1057.,451.)); [ ] |#94=IFCCARTESIANPOINT((-1057.,451.)); m | #30 #30
#106=IFCCARTESIANPOINT((-2317.26681675875,4145.657 |#106=IFCCARTESIANPOINT((-2317.26681675875,4145.657 #94 #94
#75=IFCCARTESIANPOINT((-2602.26681675875,4245.657C  |#75=IFCCARTESIANPOINT((-2692.26681675875,4245.657C #106 #106
#83=IFCCARTESIANPOINT((-375.,-981.)); #83=IFCCARTESIANPOINT((-375.,-981.));
#84=IFCCARTESIANPOINT((-375.,1019.)); #84=IFCCARTESIANPOINT((-375.,1019.)); #11 #11
#78=IFCCARTESIANPOINT((451.,-1057.)); #145=IFCCARTESIANPOINT((-394.5,-547.)); #75 #75
#85=IFCCARTESIANPOINT((451.,1019.)); #146=IFCCARTESIANPOINT((-394.5,547.)); 283 283
#06=IFCCARTESIANPOINT((-5.32007051820075E-15,0.)); #159=IFCCARTESIANPOINT((-425.5,-578.)); o ot
#131=IFCCARTESIANPOINT((-8867.26681675874,7054.342  |#160=IFCCARTESIANPOINT((-425.5,578.));
#29=IFCCARTESIANPOINT((-8967.26681675874,7154.3420;  |#141=IFCCARTESIANPOINT((-438.5,-591.)); #21 #21
#71=IFCCARTESIANPOINT((-8967.26681675876,-4245.657C  |#144=IFCCARTESIANPOINT((-438.5,591.)); #85 #85
#90=IFCCARTESIANPOINT((-981.,-375.)); #154=IFCCARTESIANPOINT((-438.500000000001,-591.)); #32 s
#91=IFCCARTESIANPOINT((-981.,375.)); #155=IFCCARTESIANPOINT((-438.500000000001,591.));
#3=IFCCARTESIANPOINT((0.,0.)); #78=IFCCARTESIANPOINT((451.,-1057.)); #96 #96
#2=IFCCARTESIANPOINT((0.,0.,0.)); #85=IFCCARTESIANPOINT((451.,1019.)); #3 #3
#28=IFCCARTESIANPOINT((0.,0.,4000.)); #150=IFCCARTESIANPOINT((-457.5,-610.)); 267 267
#76=IFCCARTESIANPOINT((1000.,374.999999999999)); #153=IFCCARTESIANPOINT((-457.5,610.)); yial o
#89=IFCCARTESIANPOINT((1019.,-375.)); #06=IFCCARTESIANPOINT((-5.32907051820075E-15,0.));
#88=TFCCARTESIANPOINT((1019..-451 )): T |#1SB=IFCCARTESIANPOTNTI(-557.26581675876.4145.657 © | #29 #29
<[ mn » il —T— 293 203
Statistics 27 27
Similarity Rate(%): 74.0648% Missing Rate(%):  25.9352% Addition Rate(%): 68.5786% #71 #71
#26 #26
#Matching Instances: 297 #Missing Instances: 104 #Added Instances: 275 #90 £90
#27 #27 .
#Total Instances: 401 < T o
(a) The main interface of the IFCdiff viewer
0 Di\FileA dat -l [© Di\FileB.dat - ol
=En EuEe [ |[san
& Floord & Floor0
@ Floor1 Floor1
@ Floor2 Floor2
@ Floor3

(b) 3D model of File A

#724= IFCPROPERTYSINGLEVALUE ('IsExternal',$, IFCBOOLEAN(.T.),$);
#725= IFCPROPERTYSET ('3vCh$0ythZzhLC1JPLrosJ', #15, 'Pset WallCommon',$, (

3| #721, #722, #723,#724) ) ;

#727= IFCRELDEFINESBYPROPERTIES ('260N_OFnjMgInhaDQjXR Y',#15,%,$, (#509),

) |#725) ;

#731= IFCPROPERTYSINGLEVALUE ('\S\6\S\ (\S\N\S\;\S\0\S\_',$, IFCINTEGER (0) ,
k) ;

#732= IFCPROPERTYSINGLEVALUE ('\S\5\S\W\S\2\S\2\S\F\S\+\S\R\S\F', $,
IFCLENGTHMEASURE (0.) , $) ;

#733= IFCPROPERTYSINGLEVALUE ('\S\R\S\Q\S\8\S\=\S\W\S\E\S\5\S\W\S\2\5\2",

$, IFCBOOLEAN (.F.),$) ;

(a) File A

(GRS NS WS NE NS S WS NS NS e

6|#681= IFCPROPERTYSINGLEVALUE ('\S\6\S\ (\S\N\S\;\S\0\s\ '
718);

#674= IFCPROPERTYSINGLEVALUE ('IsExternal',$, IFCBOOLEAN(.T.),$);
#675= IFCPROPERTYSET ('3vCh$0ythZzhLC1JPLrosJ', #15, 'Pset WallCommon',$, (
#671,#672,#673,4674));

4|#677= IFCRELDEFINESBYPROPERTIES ('260N_OFnjMgInhaDQjXR Y',#15,$,$, (#509),

#675) ;
,$, IFCINTEGER (0) ,

#682= IFCPROPERTYSINGLEVALUE ('\S\5\S\W\S\2\S\2\S\F\S\+\S\R\S\F', $,
IFCLENGTHMEASURE (0.),$) ;

10|#683= IFCPROPERTYSINGLEVALUE ('\S\R\S\Q\S\8\S\=\S\W\S\E\S\5\s\W\S\2\s\2',
1|$, IFCBOOLEAN (.F.),$) ;

(b) File B

63

(c) 3D model of File B

Fig. 14. The screenshot of the IFCdiff viewer.

Fig. 15. The file comparison results using the plain text com-
parison tool DiffMerge.



X. Shi et al.

Automation in Construction 86 (2018) 53-68

(¢) M3 (with redundancy)

(d) M4 (without redundancy)

Fig. 16. Visualizing the models of four test IFC files (M1-M4). M1 contains a large number of duplicate data instances, while M2 is the non-redundant file through removing the duplicate
instances from M1. M3 is the re-exported file after deleting the roof of M1 in ArchiCAD, while M4 is the non-redundant file through removing the duplicate instances from M3.

Table 1
The number of data instances in test cases (M1-M4).

IFC files #instances
M1 (with redundancy) 106,438
M2 (without redundancy) 45,461
M3 (with redundancy) 103,541
M4 (without redundancy) 44,931

Table 2
The similarity rates computed using our method and the flattening-based method [14].

Target Source SR using our method” SR using flattening”
M3 M1 83.2% 81.6%
M3 M2 83.2% 81.6%
M4 M1 83.2% 83.2%
M4 M2 83.2% 83.2%

@ “SR using our method” is the similarity rate computed by our methods.

b “SR using flattening” is the similarity rate computed by the flattening-based
method [14].

25% for the tested cases.

5.5. Preliminary test in a real-life case

In order to test the performance of our approach in a real-life case,
an apartment building model in the Yunnan province in China is se-
lected as a preliminary test. The architectural design model was de-
veloped in Revit, and exported as an IFC file. This selected model has

64

been used for our previous case studies including IFC-based path
planning [8] and IFC compression [9]. The original IFC file is about
156.0 MB, which includes more than 2.8 million data instances with
numerous duplicate instances. The corresponding model is visualized in
Fig. 19.

In this case study, we first remove all duplicate instances from the
original file using the IFCCompressor tool [9]. Then the newly non-re-
dundant file is compared with the original file, which produces the si-
milarity rate of 100%. The result suggests that our approach is not
sensitive to redundant instances even in large IFC files. When using our
IFCdiff tool, the time cost of comparison process is about 371.1s. In
contrast, the flattening-based method fails to handle such large IFC
files.

5.6. Application to incremental backup of IFC files

One potential application of our approach is for incremental backup
of IFC files. An incremental backup is a type of data backup that backs up
only the new or changed data since the last incremental backup. The
design and management of building models follow an iterative process,
which often includes frequent revision and updating on one or more
basic models during the lifecycle of a construction project. This requires
an effective method for IFC file backup.Time and disk space can be
saved by only backing up the changed data.

The traditional full backup backs up all data on a disk even if minor
changes are made to the files, which is time-consuming and space-in-
tensive for IFC data management. Therefore, incremental backups are
often desirable as they consume smaller storage space and are quicker
to perform than full backups. Although pure text comparison methods
can be directly used for incremental backup of IFC files, they cannot
deal with specific data organization and representation of IFC files, as



X. Shi et al.

(a) M5

Table 3
The similarity rates using the IFCdiff with different parameter conditions.

Automation in Construction 86 (2018) 53-68

Fig. 17. Visualizing the models of M5 and
M6. A building model first was generated in
ArchiCAD and then exported as M5. Next,
M5 was imported into ArchiCAD and re-ex-
ported as M6 without any modification.

(b) M6

Table 4
The details of paired IFC files used for testing computational time and space.

Parameters Similarity rate No. Target files Source files
Default (without any specific parameters) 85.85% Name Size (MB) #instances Name Size (MB) #instances
Ignore the GUIDs 85.85% 1 M7 R 0.591 11,753 M7 0.425 8287
Ignore owner history information 95.12% 2 M8 A 1.040 24,277 M8 1.257 26,234
Ignore the order of property set 86.26% 3 M9 R 2.519 42,884 M9 3.511 68,114

4 M10A  9.817 215,354 M10 4.364 91,023

mentioned in Section 5.1. As a result, numerous consistent data in-
stances (with different instance names) are considered to be different,
and the size of incremental backup data is often close to the full backup.

The incremental backup mainly consists of identifying and

recording the changed data since the last backup. Our comparison ap-
proach can be directly applied to identify the differences between two
IFC files. Then the differences are saved as the portion that has changed.

(c) M9

Fig. 18. Visualizing the four models (M7-M10) used for testing computational time and space.

65

(d) M10



X. Shi et al.

Table 5
Computational time of two methods for the paired IFC files in Table 4.

No. Flattening-based method Ours RT*(%)
Parse (s) Flatten (s) Compare (s) T:" (s) Ty (s)

1 0.3276 2.0592 7.7377 10.1245 1.3728 86.44%

2 0.3276 2.0436 43.8987 46.8159 4.8048 89.74%

3 2.7924 4.6956 254.5 261.988 8.5333 96.74%

4 7.1605 135.861 1702.0 1845.02 81.2609 95.60%

2 “RT” is the percentage of reduced time when using our approach.
b «T,” is the total time of the flattening-based method.

€ “T,” is the time of our approach.

Table 6
Space requirements of two methods in the file comparison process.

No. Original’(MB) Flattening-based method Ours
Flatten"(MB)  Increase‘(%) Process’(MB) Reduce®(%)
1 0.591 33.292 5533.16% 0.466 26.82%
2 1.040 9.407 804.52% 0.722 44.04%
3 2.519 31.959 1168.72% 1.905 32.23%
4 9.817 70.175 614.83% 6.398 53.44%

@ “Original” is the size of original target files in Table 4.
b «“Flatten” is the size of space after flattening all instances in the target files.

¢ “Increase” is the percentage of increased space when using the flattening-based
method.

d “process” is the size of space after removing redundant instances using our approach.

¢ “Reduce” is the percentage of reduced space when using our approach.

Table 7
Counting the number of instances used for comparison based on the flattening-based
method and our approach.

No. Target files N;? N’ Reduce®(%)
1 M7_R 11,753 10,005 14.87%
2 M8_A 24,277 16,393 32.48%
3 M9 R 42,884 31,911 25.59%
4 M10_A 215,343 154,617 28.20%

@ “Ny” is the number of instances used for comparison based on the flattening-based
method.

b «N,” is the number of instances used for comparison based on our approach.

¢ “Reduce” is the percentage of reduced instances when using our approach.

Fig. 20 shows an example for illustrating the incremental backup con-
tent, where File A is the previous version and File B is the current
version. Here the identical data instances are highlighted by the light
gray nodes, while the different data instances are the white nodes. Fi-
nally, the differences between two files are saved to record the changed
data since the last incremental backup, where we typically save the
different data instances and the hash table of matching instances in a
specific file form (see Fig. 21).

We also test our incremental backup strategy on two actual files (M2
and M4), as shown in Fig. 16. Table 8 shows the comparison of storage
space between the full backup and our incremental backup, where M2
and M4 are assumed to be the previous and current versions, respec-
tively. The result suggests that our incremental backup saves around
73% space in contrast to the full backup. The incremental backup of IFC
files is an attractive research topic, and its full implementation in-
cluding an efficient recovery process will be left to our future work.

66

Automation in Construction 86 (2018) 53-68

6. Conclusion, contribution and discussion

This paper presents a content-based automatic comparison ap-
proach for IFC files, and presents the development of a file comparison
tool IFCdiff. The novelty is to build the hierarchical structures for
comparing IFC files along with eliminating their redundant instances in
the comparison process. Here the built hierarchical structures of two
IFC files are compared with an iterative bottom-up procedure instead of
comparing the original files. Such a process does not need to flatten all
the data instances in IFC files. In the comparison process, all matching
instances between two files are saved in the hash table, while the dif-
ferences between them are also recorded for further applications. To
evaluate the performance of our approach, the presented approach is
tested on some IFC files exported through several commercial BIM
software platforms. Finally, we make use of the presented approach to
demonstrate a potential application to incremental backup of IFC files.
The experimental results show that our approach outperforms the
previous methods.

The significant contributions of our work are summarized as fol-
lows.

— We build the hierarchical structures for comparing IFC files with an
iterative bottom-up procedure. Compared with the previous flat-
tening-based approach, our approach avoids the procedure of flat-
tening instances. As a result, our approach can greatly reduce the
computational time and space in the file comparison process. The
experimental result shows that the percentage of reduced time with
our algorithm is generally very high (the average is 92.13%) for
tested cases.

— In the level-by-level comparison of hierarchical structures, we also
eliminate redundant instances appearing in two IFC files. This brings
two advantages. On the one hand, by removing redundant instances,
one can significantly decrease the number of data instances to be
compared, which improves the comparison efficiency. On the other
hand, by removing the redundant instances while keeping the
complete IFC models, the comparison result using our approach is
not sensitive to redundant instances in IFC files, which brings a
stable and reliable similarity superior to the previous methods.

— We apply the presented comparison approach to incremental
backup of IFC files. Here our approach is used for identifying and
recording the changed data between the previous version and the
current one. The result suggests that our incremental backup can
greatly save the storage space in contrast to the full backup.

Some previous studies have contributed to the issue of removing
redundant instances in a single IFC file, such as Solibri IFC
Optimizer [28] and IFCCompressor [9]. In this paper, we follow a si-
milar manner to Ref. [9] to remove redundant instances in each level
comparison. In practice, however, the IFC files generated by various
software platforms often include a large number of redundant in-
stances [9,14], so the redundant instances should be considered in the
process of IFC comparison. In this paper, we argue that it is meaningful
and important to make use of the hierarchical structures for comparing
IFC files along with removing redundant instances. This combination of
hierarchical comparison and redundancy elimination can significantly
speed up the file comparison process and obtain a stable similarity.
Even if two IFC files without redundancies are compared to each other,
our approach can still reduce the computational time and space in
contrast with the previous flattening-based approach. The IFCdiff pre-
sented in this paper can be considered as a complementary tool for the
existing IFC tools.

Our comparison method only deals with the syntax content of data
instances explicitly extracted from the input IFC file itself, but the se-
mantic content of data instances implicitly derived from the IFC file is
not handled yet. The domain of geometry comparison and objectified
relationships belongs to the semantic comparison problem, which is



X. Shi et al.

0.5 o S o e o

)

™~
-

#40 = IFCCARTESIANPOINT((0., 0., -150.));
#41 = IFCAXIS2PLACEMENT3D(#40, $, $);

#42 = IFCLOCALPLACEMENT(#38, #41);

Fig. 21. Illustrating the differences between the previous and current versions, which are
saved to record the changed data in incremental backup.

Table 8
Comparison of storage space between the full backup and our incremental backup.

Previous Current Full backup (MB) Incremental backup (MB) Reduce (%)

M2 M4 2.231 0.603 72.97%

quite complicated and will be our future work. We give an example for
illustrating this problem as follows. In our method, one data instance
explicitly extracted from the input IFC file itself consists of three terms
(i.e. instance name, entity name and attribute values). If the entity
name and attribute values between two data instances are consistent,

67

Automation in Construction 86 (2018) 53-68

Fig. 19. Visualizing the IFC model used in a real-life case.

Fig. 20. An example for illustrating the incremental backup
content, where File A is the previous version and File B is the
current version. The identical data instances are highlighted by
the light gray nodes, while the different data instances are the
white nodes.

(b) File B

they are considered to be the same. In contrast, if the geometric re-
presentation is different between two data instances, they will be po-
tentially considered to be different in our method. This may not be
always true. In particular, the [FC schema provides various geometric
representations (such as swept, CSG and B-rep) for a solid model, which
can be freely chosen by an BIM modeling system. This means that the
same solid model may have many different geometric representations.
To address this issue, a possible way of geometry comparison is to first
discretize the solid models into 3D meshes and then use some existing
3D shape comparison methods for the discretized shapes [29-37].

Supplementary material

The online IFCdiff tool and its demonstration can be accessed at:
http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/.

Acknowledgments

The research is supported by the National Natural Science
Foundation of China (61472202, 61272229). The third author is partly
supported by the National Key Technologies R&D Program of China
(2015BAF23B03), and by Foundation Project: Key issues of China
Railway Corporation Science and Technology research plan (Z2016-
X002).


http://cgcad.thss.tsinghua.edu.cn/liuyushen/ifcdiff/

X. Shi et al. Automation in Construction 86 (2018) 53-68

Appendix A. Comparison of computational complexities

In this section, we mainly compare computational complexities between our approach and the flattening-based algorithm [14]. If only con-
sidering the comparison process, both the time complexities of our method and the flattening-based method are O(nlog(n)) (see Section 4.4) with the
assumption that the length of each data instance is a constant, where n is the average number of data instances between two IFC files to be compared.
Our method is able to accomplish the comparison of reference instances by only comparing the instance name with the help of an auxiliary map
storing matched instance names. However, the flattening-based method replaces all the reference numbers with their actual values in each IFC file,
which makes an IFC file into a structure that does not include any referencing or inheritance structure. This will result in that the length of the
flattened data instance increases dramatically (see an example in Section 2.4). Therefore, the length of the data instance cannot be seen as a constant
any more. Assuming that the average length of the flattened data instance is L, the time complexity of the flattening-based algorithm is O(Lnlog(n)),
which of course will take much more time than our method.

In addition, our algorithm has some extra advantages in contrast to the flattening-based method from the perspective of space complexity. In
order to facilitate the description and analysis, the comparing file and the compared file can be simplified as a hierarchical structure to establish the
reference mechanism based on a tree. Let d be the depth of the tree and L be the average length of each data instance. We also assume that the
number of attributes of the instance is K and they are all references. Finally, from the bottom of the tree, each data instance is referenced by others
for h times.

In our algorithm, the number of the terminal level is k ~* and the total length is k¢ L. Similarly, the second layer from the bottom has k% ~2 data
instances and the total length is k% ~2L. Therefore, we can deduce that the space complexity of our algorithm is

Sy = k4L + k2L 4+ .. +L. (A1)

Meanwhile, in the flattening-based method, the number of the terminal level is k™! and the total length is k% ~'L. Similarly, the second layer
from the bottom has k% ~2 data instances and the total length is k¢ “1Lh + k% ~2L. Thus, we can deduce that the space complexity of the flattening-
based algorithm is

S, =k L + (k% Lh + k972L) + (k%" 'Lh + k%2L)hL + k43+..+L
= k4 'Lh + (k%" 'Lh + k% 2L)+...+k4" L + k% 2L+..+L
=k Lh + (k%'Lh + k92L)+..+5). (A.2)

Apparently, the whole file increases dramatically large after the flattening process, which explains why the flattening-based method takes much
longer than our method.

References Conference on Bringing ITC Knowledge to Work, 2007, pp. 61-66.
[18] Y.-S. Jeong, C. Eastman, R. Sacks, I. Kaner, Benchmark tests for BIM data ex-
changes of precast concrete, Autom. Constr. 18 (4) (2009) 469-484.

[1] C. Eastman, P. Teicholz, R. Sacks, K. Liston, BIM Handbook: A Guide to Building [19] T. Pazlar, z. Turk, Interoperability in practice: geometric data exchange using the
Information Modeling for Owners, Managers, Designers, Engineers and Contractors, IFC standard, ITcon 13 (2008) 362-380.
second, John Wiley and Sons, NJ, 2011. [20] H. Ma, K.M.E. Ha, C.K.J. Chung, R. Amor, Testing semantic interoperability,
[2] BuildingSMART, Industry Foundation Classes (IFC). Available from: http://www. Proceedings of Joint International Conference on Computing and Decision Making
buildingsmart-tech.org/specifications/ifc-overview/ 2014. in Civil and Building Engineering, Montreal, Canada, 2006, pp. 1216-1225.
[3] S. Jeong, Y. Ban, Computational algorithms to evaluate design solutions using [21] ISO 10303-21:2002, Industrial automation systems and integration - Product data
space syntax, Comput. Aided Des. 43 (6) (2011) 664-676. representation and exchange - Part 21: Implementation methods: Clear text en-
[4] J. Zhang, F. Yu, D. Li, Development and implementation of an industry foundation coding of the exchange structure 2002.
classes-based graphic information model for virtual construction, Comput. Aided [22] File comparison tools. Available from: http://en.wikipedia.org/wiki/Comparison_
Civ. Inf. Eng. 29 (1) (2014) 60-74. of file_comparison_tools 2015.
[5] R. Vanlande, C. Nicolle, C. Cruz, IFC and building lifecycle management, Autom. [23] J. Oraskari, S. Térmé, RDF-based signature algorithms for computing differences
Constr. 18 (1) (2008) 70-78. of IFC models, Autom. Constr. 57 (2015) 213-221.
[6] C. Eastman, J. Lee, Y. Jeong, J. Lee, Automatic rule-based checking of building [24] J. Katajainen, E. Mikinen, Tree compression and optimization with applications,
designs, Autom. Constr. 18 (8) (2009) 1011-1033. Int. J. Found. Comput. Sci. 1 (4) (1990) 425-447.
[7]1 P. Pauwels, D.V. Deursen, R. Verstraeten, J.D. Roo, R.D. Meyer, R.V. de Walle, [25] G. Busatto, M. Lohrey, S. Maneth, Efficient memory representation of XML
J.V. Campenhout, A semantic rule checking environment for building performance document trees, Inf. Syst. 33 (4-5) (2008) 456-474.
checking, Autom. Constr. 20 (5) (2011) 506-518. [26] T. Liebich, IFC 2x Edition 3 Model Implementation Guide (Version 2.0). (2009).
[8] Y.-H. Lin, Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, M. Gu, The IFC-based path [27] L. Zhang, R. Issa, Ontology based partial building information model extraction, J.
planning for 3D indoor spaces, Adv. Eng. Inform. 27 (2) (2013) 189-205. Comput. Civ. Eng. 27 (6) (2013) 576-584.
[9] J. Sun, Y.-S. Liu, G. Gao, X.-G. Han, IFCCompressor: a content-based compression [28] Solibri, Solibri IFC Optimizer. Available from: http://www.solibri.com/solibri-_ifc-_
algorithm for optimizing industry foundation classes files, Autom. Constr. 50 (2015) optimizer.html 2014.
1-15. [29] Y.-S. Liu, K. Ramani, M. Liu, Computing the inner distances of volumetric models
[10] G. Gao, Y.-S. Liu, P. Lin, M. Wang, M. Gu, J.-H. Yong, BIMTag: concept-based for articulated shape description with a visibility graph, IEEE Trans. Pattern Anal.
automatic semantic annotation of online BIM product resources, Adv. Eng. Inform. Mach. Intell. 23 (12) (2011) 2538-2544.
31 (2017) 48-61. [30] Y.-S. Liu, Y. Fang, K. Ramani, IDSS: deformation invariant signatures for mole-
[11] G. Gao, Y.-S. Liu, M. Wang, M. Gu, J.-H. Yong, A query expansion method for cular shape comparison, BMC Bioinf. 10 (157) (2009) 1-14.
retrieving online BIM resources based on industry foundation classes, Autom. [31] Y. Fang, Y.-S. Liu, K. Ramani, Three dimensional shape comparison of flexible
Constr. 56 (2015) 14-25. protein using the local-diameter descriptor, BMC Struct. Biol. 9 (29) (2009) 1-15.
[12] H. Liu, Y.-S. Liu, P. Pauwels, H. Guo, M. Gu, Enhanced explicit semantic analysis [32] Y.-S. Liu, Q. Li, G.-Q. Zheng, K. Ramani, W. Benjamin, Using diffusion distances
for product model retrieval in construction industry, IEEE Trans. Ind. Inf. (2017), for flexible molecular shape comparison, BMC Bioinf. 11 (480) (2010) 1-15.
http://dx.doi.org/10.1109/TI1.2017.2708727 in press. [33] J. Feng, Y.-S. Liu, L. Gong, Junction-aware shape descriptor for 3D articulated
[13] G. Arthaud, J. Lombardo, Automatic semantic comparison of STEP product models: models using local shape-radius variation, Signal Process. 112 (2015) 4-16.
application to IFC product models, Innovations in Design & Decision Support [34] Y.-S. Liu, H. Deng, M. Liu, L. Gong, VIV: using visible internal volume to compute
Systems in Architecture and Urban Planning, Heeze, The Netherlands, 2006, pp. junction-aware shape descriptor of 3D articulated models, Neurocomputing 215
447-463. (2016) 32-47.
[14] G. Lee, J. Won, S. Ham, Y. Shin, Metrics for quantifying the similarities and [35] Z. Han, Z. Liu, C.-M. Vong, Y.-S. Liu, S. Bu, J. Han, C.P. Chen, BoSCC: bag of
differences between IFC files, J. Comput. Civ. Eng. 25 (2) (2011) 172-181. spatial context correlations for spatially enhanced 3D shape representation, IEEE
[15] R. Lipman, M. Palmer, S. Palacios, Assessment of conformance and interoper- Trans. Image Process. 26 (8) (2017) 3707-3720.
ability testing methods used for construction industry product models, Autom. [36] Z. Liu, X. Wang, S. Bu, Human centered saliency detection, IEEE Trans. Neural
Constr. 20 (4) (2011) 418-428. Netw. Learn. Syst. 27 (6) (2016) 1150-1162.
[16] W. Gielingh, An assessment of the current state of product data technologies, [37] Z. Liu,J. Huang, S. Bu, J. Han, X. Tang, X. Li, Template deformation based 3D
Comput. Aided Des. 40 (7) (2008) 750-759. reconstruction of full human body scans from low-cost depth cameras, IEEE Trans.
[17] T. Pazlar, 7. Turk, Evaluation of IFC optimization, Proceedings of CIB W78 Cybern. 47 (3) (2017) 695-708.

68


http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0005
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0005
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0005
http://www.buildingsmart-tech.org/specifications/ifc-overview/
http://www.buildingsmart-tech.org/specifications/ifc-overview/
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0010
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0010
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0015
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0015
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0015
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0020
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0020
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0025
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0025
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0030
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0030
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0030
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0035
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0035
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0040
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0040
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0040
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0045
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0045
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0045
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0050
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0050
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0050
http://dx.doi.org/10.1109/TII.2017.2708727
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0060
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0060
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0060
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0060
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0065
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0065
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0070
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0070
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0070
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0075
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0075
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0080
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0080
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0085
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0085
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0090
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0090
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0095
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0095
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0095
http://en.wikipedia.org/wiki/Comparison_of_file_comparison_tools
http://en.wikipedia.org/wiki/Comparison_of_file_comparison_tools
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0100
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0100
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0105
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0105
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0110
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0110
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0115
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0120
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0120
http://www.solibri.com/solibri-_ifc-_optimizer.html
http://www.solibri.com/solibri-_ifc-_optimizer.html
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0125
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0125
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0125
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0130
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0130
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0135
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0135
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0140
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0140
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0145
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0145
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0150
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0150
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0150
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0155
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0155
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0155
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0160
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0160
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0165
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0165
http://refhub.elsevier.com/S0926-5805(17)30940-8/rf0165

	IFCdiff: A content-based automatic comparison approach for IFC files
	Introduction
	Related work
	Plain text comparison
	GUID-based IFC comparison
	Graph-based IFC comparison
	Flattening-based IFC comparison
	Summarizing the existing problems
	Sensitivity for GUID changes
	Sensitivity for redundant instances
	Time-consuming to calculation
	Other issues

	Tree compression

	Basic terms and IFC hierarchical structure
	Basic terms used in the IFC file
	Hierarchical structure of the IFC file

	The content-based IFC comparison approach
	Step 1: preprocess data instances and construct the IFC hierarchical structures
	Step 2: compare the terminal nodes along with removing redundant instances
	Step 3: repeat the iterative comparison process
	Step 4: compute the similarity metric
	Computational complexity

	Improvements of approach implementation

	Experimental results and discussions
	Comparison with plain text comparison methods
	Comparison with the flattening-based file comparison method
	Experiments under different parameter conditions
	Computational time and space
	Computational time
	Computational space

	Preliminary test in a real-life case
	Application to incremental backup of IFC files

	Conclusion, contribution and discussion
	Supplementary material
	Acknowledgments
	Comparison of computational complexities
	References




