ELSEVIER

Available on]ine at www.sciencedirect.com
"=, ScienceDirect

Computer-Aided Design 38 (2006) 1251-1263

COMPUTER-AIDED
DESIGN

www.elsevier.com/locate/cad

Automatic least-squares projection of points onto point clouds with
applications in reverse engineering

Yu-Shen Liu®?*, Jean-Claude Paul?, Jun-Hai Yong?, Pi-Qiang Yu®, Hui Zhang?, Jia-Guang Sun?,
Karthik Ramani®

4 School of Software, Tsinghua University, Beijing 100084, PR China
Y Purdue Research and Education Center for Information Systems in Engineering (PRECISE), Purdue University, West Lafayette, IN 47907-2024, USA
¢ School of Computer and Information Technology, Beijing Jiaotong University, PR China

Received 19 January 2006; accepted 1 September 2006

Abstract

A novel method for projecting points onto a point cloud, possibly with noise, is presented based on the point directed projection (DP) algorithm
proposed by Azariadis P., Sapidis N. [Drawing curves onto a cloud of points for point-based modelling. Computer-Aided Design 2005; 37(1):
109-22]. The new method operates directly on the point cloud without any explicit or implicit surface reconstruction procedure. The presented
method uses a simple, robust, and efficient algorithm: least-squares projection (LSP), which projects points onto the point cloud in a least-squares
sense without any specification of the projection vector. The main contribution of this novel method is the automatic computation of the projection
vector. Furthermore, we demonstrate the effectiveness of this approach through a number of application examples including thinning a point cloud,

point normal estimation, projecting curves onto a point cloud and others.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Point clouds; Projection; Least-squares; Reverse engineering

1. Introduction

With 3D scanners becoming the standard source for
geometric data acquirement, point clouds have received
a growing amount of attention as an alternative surface
representation [16,26]. Point-based techniques such as point
rendering [16], parameterization [7], simplification [27],
thinning [3], area computation [21], registration [11,23], and
reconstruction [18], also become an active research area in
computer aided design (CAD) and computer graphics (CG).
In this paper, we focus on the projection of points onto point
clouds, which is a common problem for many point-based
techniques.

Projecting a point onto a parametric or implicit surface
in order to find the closest point (footpoint) is an important

* Corresponding author at: School of Software, Tsinghua University, Beijing
100084, PR China. Tel.: +86 10 62795455; fax: +86 10 62795460.
E-mail addresses: liuyushen00@ gmail.com (Y.-S. Liu),
paul @tsinghua.edu.cn (J.-C. Paul), yongjh@tsinghua.edu.cn (J.-H. Yong),
yupigiang @gmail.com (P.-Q. Yu), huizhang @tsinghua.edu.cn (H. Zhang),
ramani @purdue.edu (K. Ramani).

0010-4485/$ - see front matter (©) 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2006.09.001

problem in geometric modeling, computer graphics, and
computer vision (e.g. Refs. [13,22,29]). Similarly, projecting a
point onto a point cloud is also a key issue in many point-based
techniques. It can be used in the moving least squares (MLS)
technique [18,20], the point cloud collision detection [15],
and the ICP (iterative closest point) algorithm for shape
registration [9,23]. Based on a novel point directed projection
algorithm, Azariadis [7] develops the Dynamic Base Surfaces
(DBS) method in order to solve the parameterization problem
for unstructured point clouds. The resulting parameterization is
then utilized for high-accuracy surface fitting. By combining
with the point directed projection algorithm, Azariadis and
Sapidis [8] also design a new curve-drawing technique for
producing curves lying onto point clouds.

1.1. Related work

Traditionally, there are many methods for projecting a point
onto a parametric or implicit surface [13,22,29]. A review of
the many available methods for computing the projection point
onto the parametric or implicit surface is beyond the scope

http://www.elsevier.com/locate/cad
mailto:liuyushen00@gmail.com
mailto:paul@tsinghua.edu.cn
mailto:yongjh@tsinghua.edu.cn
mailto:yupiqiang@gmail.com
mailto:huizhang@tsinghua.edu.cn
mailto:ramani@purdue.edu
http://dx.doi.org/10.1016/j.cad.2006.09.001

1252 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

of this paper. The reader may consult Ref. [13] for detailed
expositions. The existing methods in Refs. [13,22,29] require a
parametric or implicit representation for the surface. However,
an unorganized point set does not contain any extra information
of the surface, except for the geometric position. One possible
solution is to reconstruct globally or locally surfaces from the
point set [5,12,24] and then use the common techniques to
project points onto the reconstructed surface. There are several
limitations on the indirect method based on explicit or implicit
surface reconstruction. First, it is a non-trivial task to build
a surface representation that is faithful to point sets, and the
errors of the projection approximation would be introduced by
various surface reconstruction methods. Second, it often fails to
reconstruct surfaces from large and complex point sets acquired
by 3D scanning devices such that the projection operation
is unsuccessful. Furthermore, the explicit or implicit surface
reconstruction requires the expenditure of large amounts of
time and space if the number of points is gigantic.

Recently, some point-based rendering techniques [1,31] are
also presented. Adamson and Alexa [1] use implicit surface
models for ray tracing point set surfaces. Wald and Siedel [31]
improve their works in order to allow for interactively ray
tracing even highly complex models of several million points.
The core of ray tracing of point-based models is an efficient
intersection algorithm between a ray and the point set surface.
Although a very efficient intersection implementation is
performed, it looks more relative to the point directed projection
onto the point cloud along an associated projection vector [7,
8]. It needs to know the projection direction determined by
the ray. In contrast, our paper focuses on the problem of point
projection onto point clouds without any specification of the
projection vector.

Based on the MLS method [20], Alexa et al. [2,3]
define a point set surface approximated locally for a certain
neighborhood by polynomial, and then project the point near
the point set onto the surface. Some improved MLS methods are
also proposed in Refs. [6,10,18]. Their methods are essentially
reconstruction-based methods and need a certain neighborhood
of the test point. In addition, since it is not rare for a point
set acquired by 3D scanning devices to include under-sampled
areas [8], it becomes difficult to find a suitable neighborhood
for performing the MLS projection operation in under-sampled
areas. Though the closest point can also be simply computed as
the one with the minimal Euclidean distance of the test point to
all points of the point cloud, point sets acquired by 3D scanning
devices typically contain noise and irregular samples, resulting
in larger approximation errors. Another possible solution is to
find the k-nearest neighborhoods of the test point, and then
compute the average of the k neighborhood points [15]. This
method is not related to a measurement error analysis, and it
is also faced with the same problem how to choose a suitable
neighborhood. Recently, Klein and Zachmann [15] describe
a method for collision detection of point clouds. Although
the authors do not compute a k-nearest neighborhood (they
utilize the simple implicit surface definition and a hierarchical
sphere covering for automatically defining a neighborhood), the
performance and space can be increased during the increase of

the point hierarchy and the hierarchical sphere covering. The
current literature does not offer a satisfactory solution to the
problem of projecting an arbitrary point onto a point cloud
when no explicit or implicit surface reconstruction procedure
is used.

The work most related to ours is Ref. [7], in which a new
method for finding a parameterization of an unorganized point
cloud using the point directed projection onto the point cloud
along an associated projection vector is presented by Azariadis.
His method operates directly on the point cloud without
any explicit or implicit surface reconstruction procedure. The
projection method is essentially a least-squares method along
associated projection vectors. It has also been applied to curve-
drawing onto point clouds for point-based modeling [8], where
the projection vectors are specified through a graphics interface
tool. Their directed projection algorithm has two advantages
due to the iterative property with weight functions [8]. The
first advantage is that no certain neighborhood is fixed for the
test point, so it is suitable for the point set with noise and
irregular samples. The second advantage is that an appropriate
point cloud error function is given, which is used to solve the
problem of directed projection onto a point cloud. However,
since the projection vector is unknown for a test point and
an unorganized point cloud, their method cannot be applied
directly to compute point projection without any projection
direction. The main difficulty is how to determine automatically
the projection direction.

1.2. Contributions

To overcome the aforementioned difficulties, we present
a novel algorithm of projecting points onto a point cloud.
This algorithm is not using any explicit or implicit surface
reconstruction procedure to the given point cloud. In some
sense, our algorithm can be considered an extension of the
directed projection (DP) algorithm proposed by Azariadis and
Sapidis [7,8]. Essentially, the proposed algorithm is also a least-
squares method like Azariadis’s method, so we call the new
method a least-squares projection (LSP). First, the projection
direction of LSP is determined by optimizing the solutions
of all projection directions. Then the test point is projected
onto the point cloud along the determined projection direction,
where the projection position of the test point is computed by
minimizing an error function defined for measuring the distance
between the projected point and the point cloud [8]. In order to
investigate the accuracy and robustness of the LSP algorithm,
several experiments have been conducted. Furthermore, we
demonstrate the effectiveness of this algorithm through a
number of application examples including thinning a point
cloud, point normal estimation, projecting curves onto a point
cloud and others. The major contributions of our work are as
follows.

— Propose the formula of the projection direction and extend
the directed projection algorithm [7,8] to the LSP algorithm.
Especially, the new method does not use any explicit
or implicit surface reconstruction procedure and can be
implemented easily.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1253

— Investigate the effect of the LSP algorithm on the
discontinuous problem. Our experimental data shows the
LSP algorithm has a good approximation.

— Apply the LSP algorithm to some point-based techniques,
including thinning a point cloud, point normal estimation,
projecting curves onto a point cloud and others. The
proposed algorithm has given us some very promising
results in reverse engineering.

The remainder of this paper is organized as follows. In
Section 2, the procedure of the LSP method is described.
In Section 3, some experimental results are introduced. In
Section 4, some applications are presented. The comparison
with the MLS method is provided in Section 5. Finally, we give
conclusions in Section 6.

2. Least-squares projection of a point onto a point cloud
2.1. Problem statement

We consider the following problem. Let Cxy = {p;|i =
I,..., N} be a set of unorganized data points. The set Cy of
data points is assumed to be a sampling of an unknown surface
S, called the point-sampled surface, with or without boundary.
We suppose that the unorganized data points, often referred to
as a point cloud or scattered data points in the literature, may
have non-uniform distribution with considerable noise. Such
data point sets are common in reverse engineering process,
where the surface of a sculptured object is measured by a 3D
scanner or by a coordinate measurement machine. Suppose
that p = (x,y,z) be an arbitrary 3D point. Our goal is to
find the projection point of p onto the point-sampled surface
S consisting of the point cloud Cy by minimizing an error
function.

2.2. The review of the directed projection algorithm

Azariadis [7] proposes an appropriate point cloud error
function and uses it to solve the problem of point projection
onto a point cloud along a projection direction. We call
Azariadis’s method the directed projection (DP) algorithm.
First, we summarize the DP algorithm as follows [7,8].

1. Define an error function for measuring the distance between
the point to be projected and the point cloud.

2. Project the point of interest onto the point cloud by
minimizing the above error function.

Following the above DP algorithm, we review the detail of
the error function. Consider a point cloud Cy and a test point
p = (x,y,z) with an associated projection vector n =
(nx,ny,n;). Bach p; is associated to a positive weight ;.
Let p* be the projection point of p for the DP problem. Find
p* by minimizing the following weighted sum of the squared
distances:

N
E@p*) =) allp* —pil°. ()

i=1

For given weights {o;}, Azariadis writes p* = (x*, y*, z*) as

pf=p*@)=p+m, ek,)

where n is the projection vector. Then, by substituting Eq. (2)
into Eq. (1), the solution of minimizing Eq. (1) is [7]

_ABA-pnm
Im1?

, 3)

where - denotes the dot product and

ciny + cany 4+ c3n
B = al) < and

€0

N N
co = E i, €1 = E o Xi,
i=1 i=l1

N N
=) iy, 3= aizi.)
i=1 i=1

Intuitively, the projection process defined by Eqs. (2) and (3)
can be regarded as a method for intersecting a given point cloud
with the semi-infinite line defined by p and n. Independently,
Liuetal. [21] and Schaufler and Jensen [30] have given a simple
result for the similar problem of intersecting a line with a point
cloud.

2.3. Least-squares projection of a point onto a point cloud

Although the DP algorithm on the basis of Eqgs. (2) and (3)
can produce reasonable results along an projection direction
vector n, we would like to find the projection point of p
under the condition of an unknown projection direction. The
main difficulty is how to determine automatically the projection
direction. A possible approach would be to consider projecting
a point p onto the point cloud Cy along different directions on
the basis of Eq. (3), and then finding an “appropriate” projection
direction. “Appropriate” means that the sum of the squared
distances, which is computed through Eq. (1) using the DP
algorithm along the projection direction, is not more than one
along any other projection direction.

Consider a variable projection vector n for Eq. (3). Then
Eq. (3) can be rewritten as

B—p-n
tn) = ————
2
1
—c-n—p-n
o
= &)
|2
where ¢ = (c1,¢2,¢3) and ¢;(i = 0,1, 2,3) are given by
Eq. (4). We denote
1
m=—c—p,
o
where

m = (my, mp, m3), and
c1 [e) c3
mp=——Xx,my=——y, m3=——2. (6)
€0 €0 €0

1254 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

Thus, # (n) in Eq. (5) can also be written by

m-n

t(n) =

n-n’
2.3.1. Nonlinear optimization

How to define an optimization function for approximating
the projection vector? By substituting ¢ (n) into Eq. (2), it could
be a choice to minimize the objective function equation (1) as
follows:

i lp*(m) — p; 1>

M=

E() =

—

oillp — p; +t(@n|?

Il
.MZ

m-n |2
o; APH—HHH , (7

Il
.MZ

1

where Ap; =p —p;.

Eq. (7) expresses the energy function E(n) with respect to
the variable projection direction n. Thus, E(n) is optimized
when its derivative with respect to n is zero (this implies that the
partial derivatives of E(ny, ny, n;) with respect to ny, ny, and
n; should be zero). For this problem, the constraints of n-n = 1
and m - n >= 0 can be enforced, then

N
. _) . 2
Min E(n)-l;a,nApiﬂm nn| ®

n-n=1.

However, it is not easy to solve the nonlinear optimization
problem. In the next section, we propose a linear optimization
method for approximating a projection vector of Eq. (5), and
use the solved projection vector for computing the projection
point.

2.3.2. Linear optimization

Being different from the above nonlinear optimization
method, in this section we first optimize directly the function
of the solution #(n) with respect to the variable projection
direction n, which can be regarded as a method for finding the
optimization solution when projecting a point onto a given point
cloud surface along different directions n. Then, we will give
Propositions 2.1 and 2.2 for proving our conclusion, in which
the weighted mean point that minimizes Eq. (1) lies on the
line defined by the test point p and the optimization projection
vector n.

t (m) is optimized when its derivative with respect to n is zero
(this implies that the partial derivatives of (ny, ny, n;) with
respect to ny, ny, and n; should be zero). For this problem, the
constraint of |n||2 = 1 (i.e. n-n = 1) can also be enforced,
then

dt(n) —0

an)
n-n=1.

Since n - n = 1, using a lagrange multiplier for Eq. (9), we
obtain

Lm) =t(m)+A(n-n—1)

=m-n+A(n-n—1)

= (miny + mony + man;) + A(n} +nl +nZ — 1). (10)
In order to simplify the optimization function 7 (n), we assume
that the weights «; are pre-computed and are not correlative
with the projection direction n. That is, that the weights are

constant in Eq. (5) when the test point and point cloud are given.
By setting

oL
=my +2in, =0
ony
oL + 2X 0 11
—=m ny, =
o, 2 y (11)
oL
— =m3+2in; =0,
on;
we obtain
! (12)
n=-——m
2A

Next, the following proposition points out that the direction
vector n defined by Eq. (12) maximizes or minimizes ¢ (n) with
respectto A < O or A > 0.

Proposition 2.1. The maximum (or minimum) of function t (n)
in Eq. (5) with respect to n, is defined by
1

n=——m,
2A

i.e. Eq. (12), where .. < 0 (or A > 0).

Proof. The necessary condition for the maximization (or
minimization) of Eq. (5) with respect to n is

1
fm)=0=n=—— 13
(m) n m (13)

and that the Hesse matrix of the lagrange function
L(n) (Eq. (10)) is the negative (or positive) definite matrix. The
Hesse matrix of L(n) is defined by

r9%L 3L 2L 7
@ onyon, 0dnyon; 0 0
= | 0L L 2L | _ 1o 2 o
dnydny dn3 dnyon; 0 0 21
3L 3L 3L
Ldn;dn, 0dngdny, 0ngon; |

If A < 0, Hy is the negative definite matrix; otherwise if A > 0,
Hjp is the positive definite matrix. Therefore, the unit vector
defined by Eq. (12) with A < 0 (or A > 0) corresponds to the
maximum (or minimum) of Eq. (§). O

Here, n is the enforced constraint that ||n|| = 1. In practice,
a simple way to maximize the solution is to solve Eq. (12) by
setting A = —1, and then rescale the direction n so that its

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1255

length is one (which yields the same result). Especially, if m is

equal to zero, ¢ in Eq. (5) is also enforced zero, i.e. p* = p.

Consider A = A9 < 0 sothatn = —ﬁm is the unit vector.
1 1.2

Substituting n = — 3 m into Eq. (5), then t(n) = —apm >
0. Since t = t(n) > 0, the projection point p* of p in Eq. (2)
is always on the positive direction of the projection vector n.
Correspondingly, if . = A9 > 0, we obtain ¢ = #(n) < O (this
means that p* is always on the negative direction of n). Along

the projection direction n = —%m with respect to A < 0 or
A > 0, we can get the same projection point p* by using the DP
algorithm.

Now, we check the projection vector n in Eq. (12) through
the following proposition.

Proposition 2.2. The weighted mean point that minimizes
Eq. (1) lies on the line defined by the test point p and the
projection vector n in Eq. (12).

Proof. We begin by considering the problem of finding a point
p** such that the sum of the squared distances between p** and
p; is as small as possible. We use the squared-error criterion
function in Eq. (1) and seek the value of p** that minimizes
Eq. (1). Partially being differing from the DP problem, p** is
independent of the test point p and the projection vector n. Then
p*™* is the solution of the following problem:

N
Find p** minimizing E (p**) = Zai lp**

i=1

—pil*

The point p** is also called the weighted mean point of the point
cloud Cy. Then the minimization with respect to p** is

N
Do aip;

i=1

E/(p**) —0= p** — - — i,
Do

i=1

where co and ¢ are defined by Egs. (4) and (5), respectively.
Thus,
pr-p=-—-p=m,
co

where m is defined by Eq. (6). By substituting (p** — p) into
Eq. (12), we get

1 m— 1 (

o TP
Clearly, p** lies on the line defined by p and the projection
vector nin Eq. (12). O

n= *—p).

From Proposition 2.2, we can obtain an interesting
conclusion that the projection vector n defined by Eq. (12) is
co-linear with the line through the test point p and the mean
point p** of the point cloud Cy. Geometrically, the projection
vector defined by Eq. (12) can also be regarded as the vector
from the mean point of the point cloud relative to the test point.
Fig. 1(b) shows an example of projecting a test point p onto the
whole point cloud, where n and p* are the projection direction
vector computed by Eq. (12) and the corresponding projection
point using the DP method, respectively.

*p *p
(a) (b)
%%‘ f n .!e?“ “"&‘ﬁ\h 4 N ;Q#z‘
P, / Mg ‘ rd
S e, J : - %"w_ /pv P?F
b ST i ,M-Nyﬂw
/ /

(c) (d)

Fig. 1. The illustration of the LSP procedure. First, the projection direction
vector n of projecting the test point p (the blue point) onto the point cloud is
computed through Eq. (12), where the set of red points is the current working
point cloud ¢, after several iterations (K). Then the projection point p* (the
other blue point) is computed by the DP algorithm along n. (a) The original
pointset. (b) K = 1. (c) K = 2.(d) K = 5. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

For the DP method, Azariadis and Sapidis [8] give the error
analysis which is related to the measurement error in the point
cloud with the implied error in the solution of the DP problem.
Their conclusion is that the error in the solution of the DP
problem is always bounded and depends linearly on the error in
the measured point cloud. Therefore, the error of our algorithm
is also bounded by the measured point cloud after we calculate
the projection direction n through Eq. (12).

2.4. Selecting an appropriate weight function

The weights «; play a dominant role in the computation of
p*, so they should be chosen carefully. In general, the weights
a; of p; € Cy should take a larger value when p; is closer to the
point p, to be projected, and a descending value as the distance
from p; to p increases. Azariadis and Sapidis [7,8] give two
weight functions. One weight function, which only takes into
account the distance between p; and p [7], is

1

Ip—pill*
The other weight function, which also considers the
direction n, is associated to the given point p [8]. Since this
weight function is related to the direction n, it is inapplicable
to our case. In our case, n is unknown before projecting, and its
computation utilizes weights ;.

The weight function used in Eq. (14) is only related to
the distance between p; and p, so it is suitable for our case.
However, when p € Cy, i.e. p coincides with one of the
point cloud, «; does not ensure numerical stability of the
computation. We slightly improve Eq. (14) by defining the
following weight function

(&7}

o € [0, 00). (14)

1

= m, (OS] (O, 1] (15)
l

o

1256 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

In addition, some more complex functions, such as Gaussian
function [7,20], can also be considered. One of the future works
is to search for better weight functions.

2.5. The implementation details for our LSP algorithm

The implementation of the LSP algorithm is given in Listing
(1). The algorithm takes as input a point p and a point cloud Cy
and computes the projection point p* of p onto Cy. In Ref. [8],
the DP problem and Egs. (2)—(4) require the specification of
the projection direction n. Azariadis et al. propose an iterative
approach, which relies on the user to define n. In our case, the
projection direction n is determined by optimizing the solutions
of all projection directions in Eq. (12). Our algorithm is also
achieved through an iterative procedure with the aid of a local
variable ¢, which is a working sub-cloud of Cy; initially, ¢, =
Cy. During the projection calculation, ¢, is gradually reduced
by removing some points from the cloud point Cy. In this way,
we are able to reduce the processing time and also increase
the accuracy of the projection procedure. The significance of
each point in the current ¢, is determined by the corresponding
weights «;, calculated using Eq. (15); all weights are stored in
a single vector a € R".

The following parameter selected is similar to the strategy
in Ref. [8]. In order to decide which point of the point cloud
should be ignored in the K iteration, another local variable
named ojjp; is defined by

anean + ®max — Omean ’

12— K
Omax — ®mean
- 5
where two real parameters: &max and Omean, correspond to
the maximum and mean value of the computed weights «;,
respectively.

The main steps of the LSP algorithm are as follows.

K <11
Uimit = (16)

Omean + otherwise

1. Compute the projection direction n through Eq. (12).

2. Compute the projection point p* of p along the computed
projection direction n by using the DP algorithm.

3. Repeat steps 1 and 2 until the projection error is less than a
predefined threshold.

In addition, the detailed pseudocode of the above LSP
algorithm is given in Listings 1 and 2.

Listing 1: The fundamental PointLSP algorithm for imple-
menting our LSP method.

Procedure PointLSP(p,Cy, n, p*, t);
Input:
p the test point
Cy € RV*3 the given point cloud with
N points
Output:
n the projection direction vector
(Eq. (12))
p* the projection point of p
t e R the corresponding solution (Eq.(5))

Local variables:
K the current iteration
¢cn €Cy the current working point cloud
ne€ N the number of points of ¢,
cemp SCn a point set used for temporary
storage
t* e R the current
through Eq. (5)
aeR" the weight vector
Omean € R the mean value of a
Omax € R the maximum value of a
olimit € R computed through Eq. (16)
Begin
K =0;
¢ i =Cn;
t:=0;
while (K ++ < MAXITERS)
Begin
OptimProjectToCloud(p, ¢,, n, p*, t*, a) ;
if(t —t*|| <¢&) then return;
Compute local variables omax, Omeans limit;
Ctemp =0;
for(i =0;i <n;i++) do
if (@ >= atimit) then Ctemp = ctemp"‘cn(i);
ti=1t*,

solution computed

Cn ‘= Ctemp;
Compute the number n of points of c¢,;
if(n==0) then return;

End;

End

Listing 2: The algorithm for estimating the optimal projection
of p onto ¢, for each iteration.

Procedure OptimProjectToCloud(p, ¢,, n, p*, ¢, a);
Input:

p the current test point

¢p €Cy the current working point cloud

Output:
n the projection direction vector
(Eq. (12))
p* the optimum projection of p along

direction n
t e R the corresponding
acR" the weight vector
Begin
Compute weights a through Eq. (15);
Compute the projection direction n
through Eq. (12);
Rescale the direction n so
unit vector;
Compute p and ¢ using Eq. (5) and Eq. (2);
End

solution (Eq. (3))

that n is a

According to Listing 1, the proposed PointLSP algorithm is
initialized by setting the working sub-cloud equal to the initial
one (¢, := Cy) and the parameter ¢ equal to 0 (r := 0).

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1257

Then a loop begins and the given point p with the current
working cloud ¢, is passed into the OptimProjectToCloud
procedure (Listing 2) producing n, p* and t*, which are
the current estimation for the projection of p onto c,.
OptimProjectToCloud also returns the weight vector a with
respect to the input point p. If the difference between the current
solution ¢* and the previous solution ¢ is less than a predefined
threshold e, the procedure is terminated. The other termination
conditions can also be used in the PointLSP algorithm. For
instance, if the distance between the current projection point
and the previous projection point is less than a threshold.

In the opposite case, a new iteration redefines points of ¢,
where those weights that are smaller than the current oy are
removed from c,,. Finally, if the number of points of ¢, is equal
to 0, the algorithm terminates.

Fig. 1 shows an illustration of the LSP procedure.

3. Experimental results

We have applied the LSP algorithm to some point clouds,
which are sampled from the B-spline surface (see Fig. 2).
The algorithm described above is implemented in C++. The
execution time is given in seconds on a Pentium IV 1.70 GHz
processor with 512M RAM excluding the time of loading point
clouds.

3.1. Testing the effectiveness for noiseless point clouds

This section investigates the numerical performance of the
proposed PointLSP algorithm by comparing the true result
of projecting some test points onto one surface and the
approximating result of projecting the same test points onto
point clouds sampled from the surface.

The Newton—Raphson method is used to improve the
accuracy of the closest point for orthogonal projection
onto curves and surfaces. Piegl and Tiller [28] use the
Newton—Raphson method to minimize the distance between the
test point and the whole NURBS surface. Recently, Piegl and
Tiller [29] provide another method to solve the point projection
problem for the NURBS surface by decomposing the NURBS
surface into quadrilaterals. Ma and Hewitt [22] also present
a practical algorithm for computing a good initial value for
the Newton—Raphson method. Hu and Wallner [13] propose a
second order algorithm for orthogonal projection onto curves
and surfaces. In this paper, we use a modified Newton—Raphson
method [28] to pre-compute the projection points onto the given
B-spline surface. We first show one example for testing the
effectiveness of the PointLSP algorithm for noiseless point
clouds.

Example 1. Fig. 2 shows an example of projecting a set of 20
points sampled from a NURBS curve onto a B-spline surface
and point clouds sampled from the surface. Several point clouds
Cy, with a varying density, are randomly sampled from the B-
spline surface. The number of points is specified from 10,000
to 300,000. The accuracy and execution time for different Cy
are given in Table 1. The experimental data shows that the new
method has good approximation.

Fig. 2. Comparing the results of projecting points onto the B-spline, and
onto point clouds consisting of 10,000 points sampled from the corresponding
surface. The projection points are blue and red, respectively. Here the test points
(the black points) are sampled from a NURBS curve. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Results of point projection onto noiseless point clouds sampled from the B-
spline surface in Fig. 2 with increasing density

N Iteration Final sub-cloud Time (s) Relative error
10,000 11 4 0.0148437 0.0339159
30,000 10 19 0.04375 0.0274106
60,000 10 26 0.084375 0.0188686

100,000 11 45 0.146094 0.0121798

140,000 11 62 0.213281 0.0102712

200,000 10 127 0.295312 0.00835032

300,000 10 149 0.482031 0.00673906

Table 1 lists the size N of each point cloud Cy, the number
of iterations, the size of the final sub-cloud, the execution time,
and the accuracy. All data are the average of projecting 20
equally spaced points onto the given B-spline surface and the
corresponding Cy. Suppose q; (i =1, ..., 1) are the test points
sampled from the NURBS curve, where [is the number of some
test points sampled from the curve. We obtain 20 true projection
points qiS by projecting q; onto the given B-spline surface
using the modified Newton—Raphson method, and 20 points
q; by projecting q; per point cloud Cy using our PointLSP
algorithm. The accuracy for each q; is the average error, which
is computed by

l

> lg:—q?|

—~ lq;—q? |
l_lf' (17)

3.2. Testing the effectiveness for noisy point clouds

Models created from 3D scanners usually contain noise
[14]. Noise tends to increase point-error (or “point cloud
thickness”) [8]. Next, we give one experimental result
demonstrating the approximation influences of the PointL.SP
algorithm on noisy point clouds.

Example 2. For this experiment, a series of initial point clouds
are generated by sampling from the B-spline surface in Fig. 2.
Then, noisy point clouds are produced by adding Gaussian

1258 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

0.03 F /
50.025 ¢
S
o
ot
5 0o2p

0.015

0.01 4 ' . ‘

0 0.002 0.004 0.006 0.008 0.01

noise

Fig. 3. Error curve of the PointL.SP algorithm for a series of point clouds with
increasing noise p. The solid line corresponds to the error curve of projecting
points onto point clouds generated through the surface in Fig. 2.

noise to each point cloud along the normals with increasing
variances p, as proposed by Azariadis and Sapidis [8]. p €
[0,0.01] is the point cloud’s “thickness factor” with respect
to the surface bounding box, where p = 0 corresponds to the
initial point cloud sampled from the corresponding surface. The
number N of points for each point cloud is equal to 60,000.
Fig. 3 shows the error curve, which is relative to the thickness
factor p of the produced noisy point clouds, respectively in
Fig. 2. In Fig. 3, the curve shows that the projection error
is increased accordingly when the thickness p is increased.
This test yields incorrect results if the noise is larger than the
sampling density of a point cloud.

4. Applications in reverse engineering
4.1. Thinning a point cloud

A given point cloud might have erroneous point locations
(i.e. noise). The problem of noise can be handled by projecting
the points onto the point cloud surface themselves [3,18]. The
result of the projection procedure is a thin point cloud [3],
and the procedure can be called the thinning operation [18].
The thinning operation is necessary for reconstructing or fitting
curves and surfaces from unorganized and noisy points [18,32].

The algorithm of thinning a point cloud Cy consists of two
steps.

1. Project each point in Cy onto Cy and obtain the projection
position through the PointL.SP algorithm.
2. Move each point in Cy to its projection position.

Fig. 4 shows an example of thinning a 2D point cloud sampled
from a closed B-spline curve. In Fig. 5, another example of
thinning a 3D point cloud sampled from an open helix curve
is illustrated. Fig. 6 shows a complex example of thinning a
dense point cloud, which is acquired by 3D scanning devices
and contains additional noise.

From an de-noising view, the presented application in point-
cloud thinning is similar to “noise filtering”. Our goal is also to
remove noise and thin the point cloud. However, our thinning
method begins by considering the problem of finding a point

el TR
e o5 M‘..:_ -

%‘.
W
by

,
Wi

e
(a) (b)
Fig. 4. Thinning a 2D point cloud using our LSP algorithm. (a) 1000 points

(with noise) sampled from a closed B-spline curve. (b) The result of thinning
the point cloud.

U Ratadi oW - ~
- "’
o
\.* .’/
Ko &
'c"? 4
§ i
£ i
A
o ‘\
. \
‘“ TR LT e ~ amim———— .
e ..-.,'-‘f'f"'“ 3 has 3 -ﬁ..'\ "~ e e
s -
i 3 p =
_;f"") FAED 1 gt ,-‘" S e ="
- /
b
Y
k) p
. N
5, ~
o r s
Wi, " .
TERN L e -:‘-'-'?r.haﬂ’ B emnnsndfr

(a) (b)

Fig. 5. Thinning a 3D point cloud using our LSP algorithm. (a) 1000 points
(with noisy) sampled from an open helix curve. (b) The result of thinning the
point cloud.

p* along a projection direction n such that the sum of the
squared distances between p* and points of the point cloud is as
small as possible. Therefore, the new method is an optimization
method in a least-squares sense under the squared distances.
However, most “noise filtering” methods mainly derive from
image processing techniques [14] or differential geometry [17].

4.2. Point normal estimation

The estimation of the normal vector at a discrete data
point in a scanned point data set is important for the CAD
technologies when the continuous CAD model representation
is not available [25]. It is a fundamental problem in many
CAD and CG applications, such as smoothing [17] and
surface reconstruction [12]. Many researchers have attempted
to estimate the normal vectors of discrete points by locally
fitting parametric or implicit surfaces [4,12,17,25]. In general,
the estimation procedure is as follows [25].

1. Identify the applicable neighborhood points for estimating
the normal vector;

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1259

£

£
i

(c)

(d

Fig. 6. Thinning a point cloud representing the dinosaur, which is acquired by 3D scanning devices and contains additional noise. (a) A set of 70K points. (b) The
result of thinning the point cloud. (c) A magnified view of (a). (d) A magnified view of (b).

2. Estimate the normal vector based on points in the local
neighborhood;
3. Establish the inner and outer directions of the normal vector.

Many researchers have used a fixed number of Euclidean
nearest neighborhood data points, i.e. k-nearest neighborhoods,
to estimate the normal vector at a given data point [12,17].
Those k-nearest neighborhoods were used to fit the tangent
plane or the local quadric surface at the point [12]. The
intended k neighborhood points may not be suitable to estimate
the normal vector when the data is not in the fixed grid
format of range images [17]. Another class of approaches
is based on the global or local Delaunay triangulation to
obtain the reconstructed mesh [5]. Then, the point normal of
the mesh can be approximated instead of the normal of the
point cloud. However, the reconstruction-based method is not
suitable for noisy and dense point clouds because the true
surface representation is unknown and the construction of a
valid global or local Delaunay triangulation mesh is not always
possible.

The LSP method can be directly used to estimate the point
normal of an unorganized point cloud. The new method does
not need to specify the size of the neighborhood and it is robust
for dense point clouds. The normal estimation procedure of the
whole point cloud consists of three steps.

1. Obtain the new position p; for each point p; in the point
cloud Cy by our projection method.

2. Rescale the new vector n; = p! — p; so that n; is an unit
vector, and then the unit vector n; is chosen as the initial

normal vector for p; (see Fig. 7(a)). If p is equal to p;, n;
only can be computed by other methods, such as Ref. [12].

3. Establish the inner and outer directions of the normal vector
(see Fig. 7(b)).

Fig. 7 shows an example of point normal estimation for a dense
point cloud, where the red lines denote the unit normal vectors.
The original point cloud can be found in Fig. 11(a). In Fig. 7(b),
most red lines look good to approximate normal vectors of the
point cloud though several red lines are imperfect.

In addition, one of the most difficult problems in normal
vector estimation is the establishment of a consistent inner and
outer orientation (i.e. Step 3), and the presented application
does not contribute in this critical issue. OuYang and Feng [25]
compare several algorithms for establishing the inner and outer
directions. In our implement, we only use a simple strategy
similar to Hoppe et al.’s method [12], in which the normal
direction is propagated from an initial normal. The propagation
method requires that all pairs of sampled points are sufficiently
close and the sampled surface is smooth. Suppose two points
p; and p; in a point cloud Cy are close, so the corresponding
normals n; and n; are nearly parallel,i.e. n; -n; ~ I; otherwise,
either n; or n; should be flipped. To assign an initial normal,
the unit normal of the point whose center has the largest z
coordinate is forced to point toward the +z axis.

4.3. Projecting curves onto a point cloud

Designing curves onto a point cloud is an important problem
for many applications in reverse engineering (RE), such as

1260 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

Fig. 7. An example of point normal estimation. (a) Projecting each point onto
the point cloud and obtaining normal vectors (red lines). (b) Adjusting normal
vectors. Here, those normal vectors of random points on the point cloud are
chosen for display. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

segmentation, parameterization [7], reconstruction, and point-
based modeling [8]. A generic approach of reconstructing
surfaces from an unorganized point cloud first needs to divide
the point cloud into subsets which correspond to certain regions
of the object surface where a single surface can be fitted [7].
In some RE software, users usually finish the segmentation
through designing interactively curves onto a point cloud, but
this step is not easy. Azariadis and Sapidis [8] develop a
new technique, called drawing curves onto a cloud of points,
for point-based modeling. This technique is based on the
DP method of projecting points onto a point cloud, whereas
the projection vectors must be specified through a graphics
interface tool.

In this section, we improve Azariadis et al.’s method [8] by
using the LSP method instead of the DP method. The improved
algorithm of curve projection consists of four steps as follows.

1. Discretize the test curve into some line segments through
sampling the curve.

2. Project those line segments onto the point cloud and obtain
a polyline. This step is similar to Ref. [8], and the only
difference is that our LSP method replaces their DP method.

3. Smooth the projection polyline. This step follows Azari-
adis’s algorithm about smoothing projected segments [8].

4. Designing the B-spline curve onto the point cloud by
interpolating the endpoints of the smoothed polyline.

Fig. 8 shows an example of projecting two curves onto a point
cloud sampled from a cylinder model. Fig. 9 shows the other
example of projecting a B-spline curve onto a point cloud which
is acquired from a man model by a 3D scanning device.

4.4. Other applications

Besides those applications proposed in previous several
sections, the LSP method can also be applied in some high-
grade domains.

One application is to reconstruct or approximate curves from
a point cloud [18]. First, the noisy point cloud is thinned by our
LSP algorithm. Then the projection point set is approximated
with a curve. Here, we do not repeat the application of curve
reconstruction from a point cloud [18]. Based on the method
of projecting curves onto a point cloud, we give a simple and

(a) (b)

Fig. 8. Projecting two curves onto a point cloud of a cylinder. (a) 12,516 points
sampled from a cylinder surface. (b) The result of projecting two curves onto
the point cloud.

(a) (b)

Fig. 9. Projecting a B-spline curve onto a point cloud of a man model. (a) The
initial 3D curve and point cloud (62,202 points). (b) The result of projecting the
curve onto the point cloud.

interesting algorithm for approximating a digital point cloud
extracted from a 2D CT image.

1. Extract a digital point cloud from a 2D CT image, where the
point cloud is unordered and possibly dense.

2. Specify a proper initial curve of a B-spline approximating
curve.

3. Project the curve onto the point cloud.

4. Repeat step 3 until a pre-specified error threshold is satisfied.

In the first step, the digital point cloud can be extracted by some
image processing techniques, such as choosing some points
whose gray values are greater than or equal to a threshold. The
second step, i.e. the choice of the initial shape specification,
is very important for obtaining a good approximation. Wang
et al. [32] use a quad-tree cell partition to obtain a collection
of connected cells of possibly different sizes that cover the data
points. Then a sequence of feature points of these covering cells
are extracted as the control points of an initial B-spline curve.
For a closed and relatively simple target shape, we specify
a boundary circle as the initial approximating curve. Fig. 10
shows an example of approximating the contour of a CT image
with a B-spline curve after one iteration, where the image can

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1261

‘; - S
(A
Y \
X
Rt
L ;
L’\ A
Hk“"‘u___ ~
(b)

()

Fig. 10. Approximating the contour of a CT image with a B-spline curve.
(a) The target CT image. (b) A target point cloud obtained from the CT image
using image processing techniques. (c) The initial approximating curve (circle).
(d) The approximated result generated by projecting the initial curve onto the
target point cloud after one iteration.

be found in Ref. [33] and the white contour in Fig. 10(a) is
drawn manually with the aid of image processing software. The
number of control points of an approximation curve may be
inadequate or redundant. As an alternative to our approach, one
could use a method of inserting and deleting control point for
the resulting B-spline curve [33].

Another class of applications is parameterization of point
clouds [7]. Dynamic base surfaces (DBS) [7] are developed
to solve the parameterization problem for unstructured point
clouds. Then, the resulting parameterization is utilized for high-
accuracy surface fitting [7]. According to the original DBS
methodology, an initial DBS is constructed by interpolating a
given closed boundary topologically equivalent to a rectangle
with a bi-cubic Coons surface. A grid of points is derived
along the two parametric directions of the DBS and then it is
projected onto the point cloud surface by minimizing a set of
distance metrics. The projection direction of each grid point is
set equal to the corresponding DBS normal direction. However,
the defined projection direction might result in the slow
convergence for the complex initial DBS. Unlike Azariadis’s
method [7], we replace the DP method as our LSP algorithm,
which can avoid any specification of the projection vector.

The LSP algorithm can also be applied in the ICP algorithm
for shape registration of point clouds [11,23]. It seems
reasonable for shape registration of dense point clouds in order
to ensure the convergence of the ICP algorithm.

5. Comparison with the moving least-squares (MLS)
method

The moving least-squares (MLS) method can also be used
to thin a point cloud [3,18-20]. The thinning procedure based

Fig. 11. Comparison with the MLS method. (a) The original dense 2D point set
(1511 points). (b) The result of the MLS method by choosing 25 neighborhood
points after one iteration without EMST. (c) The result of the MLS method after
two iterations. (d) The result of the new method.

on the MLS method is reviewed as follows [18]. For each
data point p; in a point set Cy, a simple curve or surface
that fits some neighborhood points of the point p; is first
computed using a weighted regression scheme. Then, the point
p; is moved to a new position on this approximated curve or
surface. However, the MLS method is sensitive to the size of the
chosen neighborhood of each point p; for a local polynomial
approximation [3,18]. Let H be the radius of the circle with
the center p;. If H is too small, the local regression does not
reflect the thickness of the point cloud, resulting in the thinned
points are scattered (see Fig. 11(b)). If H is too large, the
local regression may contain some unwanted points, which may
occur the failure of the MLS algorithm [18]. To prevent the
effects, Lee [18] has used the Euclidean minimum spanning tree
(EMST) to make the connectivity of the point elements. Lee’s
improved MLS method needs the Delaunay triangulation of the
point set, and it is difficult to extend his method to 3D point sets.
Since MLS is based on local fitting, it is also a reconstruction-
based approach. The reconstruction-based drawback for the
projection operation has been mentioned in Section 1. Our LSP
method can be applied to thin 2D and 3D point sets without any
explicit or implicit surface reconstruction procedure, and can
get good results (see Section 4.1). Furthermore, no triangulation
and complex data structures are used in the new method.

In order to compare the new method with the MLS method,
Fig. 11 shows a thinned example for a 2D point set. The thinned
point set using the MLS method is shown in Fig. 11(b), whereas
it still contains some noisy points. An iteration scheme [18] for
refining the point set is also presented to improve the result, but
there still remain some difficulties (see Fig. 11(c)). The thinning
procedure based on the LSP method can solve those problems
caused by the MLS method (see Fig. 11(d)), because the size
of the current neighborhood used for computing the projection
position is controlled by the iterative error ¢ (see Section 2.5).

1262 Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263

In some sense, the new method still has the same drawback
with the MLS method. That is that the thinned point set does
not represent the shapes of the original point set near the end
points of open curves or surfaces.

6. Conclusions

We have presented a simple and efficient algorithm, the
so-called LSP, for projecting points onto a point cloud. The
new method is based on the directed projection algorithm [7,
8] and does not need any complex data structure. The major
advantage in the LSP method is that the projection vector
is computed automatically. Our experiments show that the
LSP method is fast, robust and obtains high accuracy without
requiring an explicit or implicit reconstruction of the underlying
surface from the point cloud. We have also shown the efficiency
of the proposed method for some applications in thinning,
normal estimation, drawing curve, reconstruction and others.
We believe that there are numerous other applications that can
benefit from the LSP method.

Many areas of future works and potential applications
are envisaged. In our algorithm, we assume that the weight
function is not correlative with the projection direction so
that the optimization function 7(m) is simple. In the future
we plan to optimize the projection direction together with the
corresponding weight function. This is an area for future (and
challenging) research for projection problems.

In addition, our application on projecting a curve onto a
point cloud is based on the method proposed in Ref. [8].
Our application looks probably very useful for automatic
segmentation of point clouds for reconstruction. There is still
one open problem in this area: how to discretize effectively a
continuous curve in such a way that its projection onto the point
cloud is a “digital curve that lies on that cloud surface”?

Acknowledgements

We would like to thank Dr. Heng Liang from Department
of Mathematics at Tsinghua University for many helpful
discussions, and Wenke Wang for some valuable comments
during our work. The authors appreciate the comments and
suggestions of three anonymous reviewers. The research was
supported by Chinese 973 Program (2004CB719400), and the
National Science Foundation of China (60403047, 60533070).
The third author was supported by the project sponsored by
a Foundation for the Author of National Excellent Doctoral
Dissertation of PR China (200342), and a Program for New
Century Excellent Talents in University (NCET-04-0088).

References

[1] Adamson A, Alexa M. Ray tracing point set surfaces. In: Proceedings of
shape modeling international 2003. 2003. p. 272-79.

[2] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT. Point set
surfaces. In: Proceedings of IEEE visualization’01. 2001. p. 21-8.

[3] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT.
Computing and rendering point set surfaces. IEEE Transactions on
Visualization and Computer Graphics 2003;9(1):3-15.

[4] Alexa M, Adamson A. On normals and projection operators for surfaces
defined by point sets. In: Proceedings of eurographics symposium on
point-based graphics. 2004. p 149-56.

[5] Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface
reconstruction algorithm. In: Proceedings of SIGGRAPH’98. 1998. p.
415-21.

[6] Amenta N, Kil Y. Defining point-set surfaces. In: Proceedings of
SIGGRAPH’04. 2004. p. 264-70.

[7] Azariadis P. Parameterization of clouds of unorganized points using
dynamic base surfaces. Computer-Aided Design 2004;36(7):607-23.

[8] Azariadis P, Sapidis N. Drawing curves onto a cloud of points for point-
based modelling. Computer-Aided Design 2005;37(1):109-22.

[9] Besl PJ, McKay ND. A method for registration of 3-d shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1992;2(6):
239-56.

[10] Fleishman S, Cohen-Or D, Silva CT. Robust moving least-squares fitting
with sharp features. In: Proceedings of SIGGRAPH’05. 2005. p. 544-52.

[11] Gelfand N, Mitra NJ, Guibas L, Helmut P. Robust global registration. In:
Proceedings of eurographics symposium on geometry processing. 2005.
p. 197-206.

[12] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W.
Surface reconstruction from unorganized point. In: Proceedings of
SIGGRAPH’92. 1992. p. 71-8.

[13] Hu SM, Wallner J. A second order algorithm for orthogonal projection
onto curves and surfaces. Computer Aided Geometric Design 2005;22(3):
251-60.

[14] Jones T, Durand F, Desbrun M. Non-iterative, feature-preserving mesh
smoothing. In: Proceedings of SIGGRAPH’03. 2003. p. 943-9.

[15] Klein J, Zachmann G. Point cloud collision detection. Computer Graphics
Forum 2004;23(3):567-76.

[16] Kobbelt L, Botsch M. A survey of point-based techniques in computer
graphics. Computers and Graphics 2004;28(6):801-14.

[17] Lange C, Polthier K. Anisotropic smoothing of point sets. Computer
Aided Geometric Design 2005;22(7):680-92.

[18] Lee IK. Curve reconstruction from unorganized points. Computer Aided
Geometric Design 2000;17(2):161-77.

[19] Levin D. The approximation power of moving least-squares. Mathematics
of Computation 1998;67:1517-31.

[20] Levin D. Mesh-independent surface interpolation. In: Brunnett, Hamann,
Mueller, editors. Geometric modeling for scientific visualization.
Springer-Verlag; 2003. p. 37-49.

[21] Liu Y-S, Yong J-H, Zhang H, Yan D-M, Sun J-G. A quasi-Monte Carlo
method for computing areas of point-sampled surfaces. Computer-Aided
Design 2006;38(1):55-68.

[22] Ma YL, Hewitt WT. Point inversion and projection for NURBS curve and
surface: Control polygon approach. Computer Aided Geometric Design
2003;20(2):79-99.

[23] Mitra NJ, Gelfand N, Pottmann H, Guibas L. Registration of point
cloud data from a geometric optimization perspective. In: Proceedings of
eurographics symposium on geometry processing. 2004. p. 23-32.

[24] Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel HP. Multi-level partition
of unity implicits. In: Proceedings of SIGGRAPH’03. 2003. p. 463-70.

[25] OuYang D, Feng HY. On the normal vector estimation for point cloud data
from smooth surfaces. Computer-Aided Design 2005;37(10):1071-9.

[26] Pauly M, Kobbelt L, Gross M. Multiresolution modeling of point-sampled
geometry. ETH Zurich technical report, #378. September 16, 2002.

[27] Pauly M, Gross M, Kobbelt L. Efficient simplification of point-sampled
surfaces. In: Proceedings of IEEE visualization’02. 2002. p. 163-70.

[28] Piegl LA, Tiller W. The NURBS book. Berlin: Springer; 1995.

[29] Piegl LA, Tiller W. Parameterization for surface fitting in reverse
engineering. Computer-Aided Design 2001;33(8):593-603.

[30] Schaufler G, Jensen HW. Ray tracing point sampled geometry. In:
Proceedings of the 11th eurographics workshop on rendering. 2000.
p. 319-28.

[31] Wald I, Seidel H-P. Interactive ray tracing of point based models. In:
Proceedings of 2005 symposium on point based graphics. 2005.

Y.-S. Liu et al. / Computer-Aided Design 38 (2006) 1251-1263 1263

[32] Wang W, Pottmann H, Liu Y. Fitting B-spline curves to point clouds
by squared distance minimization. ACM Transactions on Graphics 2006;
25(2):214-38.

[33] Yang HP, Wang W, Sun JG. Control point adjustment for B-spline curve
approximation. Computer-Aided Design 2004;36(7):639-52.

Yu-Shen Liu is currently a postdoctoral scholar at
PRECISE (the Purdue Research and Education Center
for Information System in Engineering), Purdue
University. He received his Ph.D. in the Department
of Computer Science and Technology at Tsinghua
University of China in 2006. He received his B.S. in
Mathematics from Jilin University of China in 2000.
His research interests are computer-aided design and
computer graphics.

Jean-Claude Paul is a senior researcher at CNRS and
INRIA (France), and currently visiting professor at
Tsinghua University. He received his Ph.D. in
Mathematics from Paris University in 1976. His
research interests include numerical analysis, physics-
based modeling and computer-aided design.

Jun-Hai Yong is an associate professor in School of
Software at Tsinghua University, China. He received
his B.Sc. and Ph.D. in Computer Science from
the Tsinghua University, China, in 1996 and 2001,
respectively. He held a visiting researcher position in
the Department of Computer Science at Hong Kong
University of Science and Technology in 2000. He was
a postdoctoral fellow in the Department of Computer
Science at the University of Kentucky from 2000 to
2002. His research interests include computer-aided design, computer graphics,
computer animation, and software engineering.

Pi-Qiang Yu is an assistant professor in School of
Computer and Information Technology at Beijing
Jiaotong University, China. He received his B.Sc. and
Ph.D. degrees in Computational Mathematics in 1997
§ and 2002 both from Dalian University of Technology

of China, and he finished his post-doctor research
at Tsinghua University in 2004. His current research
interests are computer graphics and computer-aided
geometric design.

Hui Zhang is an assistant professor in School of
Software at Tsinghua University, China. She received
her B.Sc. and Ph.D. in Computer Science from the
Tsinghua University of China in 1997 and 2003,
respectively. Her research interests are computer-aided
design and computer graphics.

Jia-Guang Sun is a professor in the Department of
Computer Science and Technology at Tsinghua Uni-
versity, China. His research interests are computer
graphics, computer aided design, computer-aided man-
ufacturing, product data management and software
engineering.

Karthik Ramani is a professor in the School of
Mechanical Engineering at Purdue University. He
earned his B.Tech. from the Indian Institute of
Technology, Madras, in 1985, an M.S. from The Ohio
State University, in 1987, and a Ph.D. from Stanford
University in 1991, all in Mechanical Engineering. He
has worked as a summer intern in Delco Products,
Advanced Composites, and as a summer faculty intern
e in Dow Plastics, Advanced Materials. He was awarded
the Dupont Young Faculty Award, the National Science Foundation Research
Initiation Award, the National Science Foundation CAREER Award, the
Ralph Teetor Educational Award from the Society of Automotive Engineers,
Outstanding Young Manufacturing Engineer Award from the Society of
Manufacturing Engineers, and the Ruth and Joel Spira Award for Outstanding
contributions to the Mechanical Engineering Curriculum. In 2002, he was
recognized by Purdue University through a University Faculty Scholars Award.
In 2005 he won the Discovery in Mechanical Engineering Award for his work
in shape search. He has developed many successful new courses Computer-
Aided Design and Prototyping, Product and Process Design and codeveloped
an Intellectual Property course. He founded the Purdue Research and Education
Center for Information Systems in Engineering (PRECISE) and ToolingNET, a
collaborative 21st century project funded by the State of Indiana. A major area
of emphasis in his group is shape representations for search and configuration in
both engineering and biology. His research is funded by the NSF, DLA/Army,
and the National Institute of Health. He also chairs an ASME Computers
and Information in Engineering Committee and is on the editorial board of
Computer-Aided Design.

	Automatic least-squares projection of points onto point clouds with applications in reverse engineering
	Introduction
	Related work
	Contributions

	Least-squares projection of a point onto a point cloud
	Problem statement
	The review of the directed projection algorithm
	Least-squares projection of a point onto a point cloud
	Nonlinear optimization
	Linear optimization

	Selecting an appropriate weight function
	The implementation details for our LSP algorithm

	Experimental results
	Testing the effectiveness for noiseless point clouds
	Testing the effectiveness for noisy point clouds

	Applications in reverse engineering
	Thinning a point cloud
	Point normal estimation
	Projecting curves onto a point cloud
	Other applications

	Comparison with the moving least-squares (MLS) method
	Conclusions
	Acknowledgements
	References

