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a b s t r a c t

A robust technique for determining the principal axes of a 3D shape represented by a point set, possibly
with noise, is presented. We use techniques from robust statistics to guide the classical principal
component analysis (PCA) computation. Our algorithm is based on a robust statistics method: least
median of squares (LMS), for outlier detection. Using this method, an outlier-free major region of the
shape is extracted, which ignores the effect on other minor regions regarded as the outliers of the shape.
In order to effectively approximate the LMS optimization, the forward search technique is utilized.

We start from a small outlier-free subset robustly chosen as the major region, where an octree is used for
accelerating computation. Then the region is iteratively increased by adding samples at a time. Finally, by
treating the points onminor regions as outliers, we are able to define the principal axes of the shape as one
of themajor region. One of the advantages of our algorithm is that it automatically disregards outliers and
distinguishes the shape as the major and minor regions during the principal axes determination without
any extra segmentation procedure. The presented algorithm is simple and effective and gives good results
for point-based shapes. The application on shape alignment is considered for demonstration purpose.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

One of the important tasks in computer graphics and computer
vision is the determination of location and orientation of an
object within a specified frame of reference [1,2]. Typically, this
information is also called the pose of the object. There are several
representations of an object’s pose, including the principal axes,
affine transformation, moment invariants, medial axis transform,
and others [1]. The simplest and most widely accepted one for
3D shapes is based on the principal axes of the object [1], which
completely consists of its orientation and position with respect
to an orthogonal frame or coordinate system. One main problem
using traditional global techniques is that the derived principal
axes might be quite different for some similar shapes [3,4].
In computer graphics and geometric modeling, 3D shapes

are commonly represented by explicit surfaces, implicit surfaces,
or polygonal meshes. With 3D scanners becoming the standard
source for geometric data acquisition, point sets have received
an increasing attention as an alternative shape representation [5–
11]. The point-based representation allows more flexibility when
a globally consistent surface topology is not necessarily required

∗ Corresponding author. Tel.: +1 765 494 0309; fax: +1 765 494 0539.
E-mail addresses: liuyushen00@gmail.com, liu28@purdue.edu (Y.-S. Liu),

ramani@purdue.edu (K. Ramani).

0010-4485/$ – see front matter© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2008.10.012
[8], and can cover wide shapes, such as non-manifold. A geometric
shape referred to in this paper is represented by a set of points
sampled from its underlying surfaces. Our method presented in
this paper is also suitable for other shape representations through
converting them into point sets.
In this paper, we focus on the problem of the principal axes

determination for 3D shapes represented by point sets, possibly
with noise, by combining robust statistics methods.

1.1. Previous work

The principal axes or pose determination of 3D shapes is
one of the most important techniques in robotics, computer
graphics, and computer vision. It is used in many areas, such
as shape alignment [12], object recognition [13], generating 2D
drawing views from 3D models [14]. There have been some
effective approaches in extracting the pose of both polyhedral
and smooth objects by associating some additional information,
such as the surface normals and areas, except the point position.
These approaches include extended Gaussian image (EGI) [13],
complex extended Gaussian image (CEGI) [2], and some related
improvement techniques [15,14]. A review of many available
methods for both polyhedral and smooth objects is beyond the
scope of this paper. The reader may consult Refs. [2,15,14] for
detailed expositions. In this section, the work most related to ours
will be reviewed.
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Research on determining the principal axes of 3D shapes can
be categorized as the global and partial approaches. The most
common technique for determining the principal axes of 3D shapes
is principal component analysis (PCA) that is a global approach. The
main advantages of PCA are simple, fast, and applicable to most
of 3D models, also including non-manifold and point sets. Each
object is analyzed by PCA in three principal axes (or eigenvectors),
and according to their eigenvalues these vectors are mapped to
three axes. PCA is generally considered toworkwell for a variety of
classes. The PCA approach seeks a projection that best represents
the data in a least squares sense [16]. One problem for the least
squaresmethod is lack of robustness. Indeed, one single outlier can
have an arbitrarily large effect [17]. The principal axes derived by
PCA might be quite different for some similar shapes due to some
small local difference between shapes [3]. Our main goal in this
paper is to ignore the effect on the minor regions of 3D shapes
during the principal axes computation.
More recently, Passalis et al. [12] introduced a method for

improving PCA by combining the symmetry planes of a 3D model.
Theirmethod relies on the assumption thatmost of real life objects
are symmetrical with respect to a plane. First, a symmetry plane
of the model is determined using a global optimization technique.
Then the perpendicular vector to the symmetry plane is used
as the first axis, and the remaining two axes are determined by
projecting all vertices of the model onto the plane of symmetry
and performing a 2D PCA. This strategy actually reduces 3D into
2D by projecting 3D points into the symmetry plane, but for
the 2D case there is still the same problem as 3D using PCA.
Certainly, for classes of objects with more symmetry planes, their
method can completely eliminate PCA by seeking the primary and
secondary symmetry planes. However,most 3D life objects contain
deformation, somultiple symmetry planes are difficult to be found.
In addition, the determination of symmetry is also a non-trivial
task [18,19].
In general, the partial approaches first segment the model

into some patches, and then the patches on major regions
are used for the final pose computation. Recently, Gal and
Cohen-Or [4] presented a partial shape matching method for
shape alignment. Their method first segments the models into
some salient geometric features, and then searches for matching
between pairs of salient features from each model. This partial
method can produce better results than those using PCA applied
to the whole model. However, segmentation is a non-trivial task
itself. It often fails to segment surfaces sampled fromnon-manifold
or large and complex point sets acquired by 3D scanning devices,
and consequently results in an unsuccessful pose determination.
Furthermore, both segmentation and partial matching require the
expenditure of large amounts of time and space if the number of
points and patches is gigantic.
Another class of approaches focuses on topological or graph

comparison for determining the pose. The topology-based ap-
proaches rely on the fact that 3D model topology is an important
shape characteristic. For instance, Hilaga et al. [20] proposed the
use of the skeleton of an object for retrieving. A drawback of topo-
logical approaches is that relatively small anomalies on the object’s
surface can have a significant impact on the topological properties
of the object [12]. In addition, the topological approaches also have
some problems similar to partial shapematchingmethods for non-
manifold and complex objects.

1.2. Robust statistics methods

Determining the principal axes of point sets using PCA is
similar to the linear regression using least squares [16]. The linear
regression belonging to a statistical method is considered to be
robust if it has a large breakdown point. A breakdown point might
be loosely defined as the smallest percentage of outliers that can
cause the estimator to take an arbitrarily large aberrant values [17,
7]. For instance, the breakdown point of the median of a set of
values is 50% [17], whereas least squares has a breakdown point
of 0%.
Robust statistics methods have been applied to various

computer vision applications [21]. For example, Torre and Black
[22] proposed a robust PCA approach for automatic learning of
linear models from data that may be contaminated by outliers.
However, there is little attention on 3D computer graphics. Jones
et al. [23] and Fleishman et al. [24] have applied the bilateral filter
to mesh denoising, which can be considered as a robust statistics
technique. Pauly et al. [25] introduced a method for analyzing
the uncertainty and variability of a point set. Their method can
be regarded as a backward method that can not detect masked
outliers [7]. Masked outliers are outliers that can not be identified
from the statistics of amodel that is dealt with to the entire sample
set. The strategy of backwardmethods for fitting amodel first fits a
model to the entire sample set and then tries to delete bad samples.
The reader may consult Ref. [7] for other several works related to
robust statistics methods in computer graphics.
Fleishman et al. [7] recently presented a new robust fitting

method from a set of points in order to overcome the drawback
of backward methods. The main tool that they use is the forward
search algorithm which has a significant advantage in detecting
outliers over commonly used backward methods. The main
strategy of their algorithm is as follows. A subset of the data is first
fitted using the second degree polynomials based on the forward
search algorithm, and then the rest of the data is identified as
outliers. To fit multiple surfaces, the above procedure is repeated
for the remaining point sets. Our work presented in this paper is
in the same spirit and applies the forward search to the principal
axes determination.

1.3. Contributions

The work most related to ours is Fleishman et al.’s work [7].
From statistical view point, the method in [7] treats the points
across the discontinuities as outliers in order to define sharp
features. Unlike their method for defining a surface from a point
cloud, our goal is to determine the principal axes of 3D shapes.
Our work is based on a powerful statistic technique, called least
median of squares (LMS) [17,26], to improve the PCA limitations.
Using this method, an outlier-free major region of a 3D shape
is extracted, which ignores the effect on other minor regions
regarded as the outliers of the shape. At the last phase of our
algorithm, the principal axes of the major region are regarded as
the final ones of the shape. In order to effectively approximate the
LMS optimization, the forward search technique [27] is utilized.
The basic idea in forward search is to start from a small subset
of robustly chosen samples of the data that excludes outliers.
To accelerate the extracting of the initial subset, we exploit the
octree for approximating the shape and sampling points. Then
the principal axes are computed iteratively by adding one sample
into the subset at a time while monitoring certain statistical
estimates. We can use the method to deal with noise, outliers, and
minor regions on shapes. The presented algorithm is simple and
effective and can give good results for point-based 3D shapes. The
application on shape alignment is considered for demonstration
purpose. The main contributions of our work can be summarized
as follows:

– Propose a new robust technique for principal axes determina-
tion by guiding the classical PCA computation based on least
median of squares and the forward search technique. The pro-
posed algorithm automatically disregards outliers and distin-
guishes the shape as the major and minor regions during the
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principal axes determination. Our algorithm can be applied to
large and complex point sets acquired by 3D scanning devices
or sampled from multi-surfaces (or non-manifold).

– The octree-based approximation and point sampling methods
accelerate the extraction of the initial subset in forward search.

– Apply our algorithm to some shape matching techniques, such
as shape alignment.

– Investigate the effect on noise and sampling density and
compare our method with previous works.

2. Robust estimation

In this paper, we consider the following input conditions. For
this case in 3-dimensional space, let CN = {pi|i = 1, . . . ,N} be
a set of unorganized data points, where pi = (xi, yi, zi)T is a 3D
vector. The set CN of data points is assumed to be a sampling of
underlying surfaces of a 3D shape with or without boundary. We
suppose that the unorganized data points, often referred to a point
set, point clouds, or scattered data points in the literature, may have
non-uniform distribution with considerable noise.
The most commonly used technique for determining the

principal axes of 3D shapes is the PCA technique. In this section,
we will investigate the reasons and limitations on the application.
Then a robust statistics method, i.e. least median of squares
(LMS), will be introduced to overcome the PCA limitations. Finally,
the forward search technique is utilized in order to effectively
approximate the LMS optimization.

2.1. Review of PCA

In statistics, PCA is a technique for simplifying a data set by
reducing multi-dimensional data sets to lower dimensions for
analysis. The basic idea of PCA is to seek a projection that best
represents the data in a least squares sense [16]. We first review
this procedure by considering a 3D shape represented by a point
set CN . The specified reference frame for the 3D shape consists of
an origin and three principal axes. PCA assumes the origin is at
the sample mean point o. PCA wants to find a vector e through
the origin o such that the sum of the squared distances between
various pi ∈ CN and the corresponding projection point p∗i onto
e is as small as possible. The squared-error criterion function is
defined by

J(p∗1, . . . , p
∗

N , e) =
N∑
i=1

‖p∗i − pi‖
2. (1)

Let e be a unit vector. Then the equation of the line through the
origin o in the direction of e can be written as x = o + αe, where
the scalarα corresponds to the distance of any x from themeano. If
each projection point p∗i of pi ∈ CN onto the line is represented by

p∗i = p∗i (αi) = o+ αie, αi ∈ R. (2)

We can find an optimal set of coefficients αi by substituting Eq. (2)
into Eq. (1) and minimizing the squared-error criterion function

J(α1, . . . , αN , e) =
N∑
i=1

‖(o+ αie)− pi‖
2. (3)

By adding the constrain ‖e‖ = 1 and setting the derivative to
zero for finding the best direction e, the solution to this problem
involves the so-called covariance matrix A [16] defined by

A =
N∑
i=1

(pi − o)(pi − o)T. (4)
The eigenvector corresponding to the largest eigenvalue of the
covariance matrix A is the first principal axis e.
In fact, PCA is similar to the linear regression in a least-squares

sense. However, a single sample with a large error, an outlier,
can change the principal axes arbitrarily. This results in that the
derived principal axes might be quite different for some similar
shapes [3,4].

2.2. Least median of squares

To overcome the lack of robustness using least squares in
Eq. (1), some robust methods might be used for improving PCA,
such as making use of some weight functions for bounding the
influence of outliers. However, most robust methods are least sum
of squares by replacing the square by something else, and they can
not raise a high breakdown point [17].
In our case, we assume that a 3D shape represented by a point

set CN consists of two parts: a major region and the remaining
minor regions, and there is no overlap between them. The major
region is expected to contain at least 50% points of the entire
point set, so the remaining minor regions have up to 50% points.
In our work, not only the noise but also the minor regions are
considered as outliers for determining the principal axes of the
point-based shape. Our motivation is to improve the least sum of
squares in PCAwith a high breakdownpoint (up to 50%). This above
assumption, i.e. the major and minor regions making up of the 3D
shape, is similar to the partial shape alignment [4], in which the
major region is defined by the set of some salient features and the
remaining can be considered as minor regions.
The least median of squares (LMS) is a robust regression method

that estimates the parameters of the model by minimizing the
median of the absolute residuals. In other words, LMS replaces the
sum of least squares by a median. LMS satisfies a 50% breakdown
point [17]. The resulting estimator using LMS can resist the effect of
nearly 50% of contamination in the input data, which is applicable
to our case. In our case, we define the absolute residual as the
distance between the test point pi and the projection point p∗i
onto the first principal axis through the origin: for the ith point
ri = ‖p∗i − pi‖ = ‖(o+ αie)− pi‖. In this paper, we search a best
direction e that minimizes the median of the residuals as follows:

min
e
median

i
‖(o+ αie)− pi‖, (5)

where e is the first principal axis that will be computed.
Rousseeuw [17] has also pointed out there always exists a solution
for LMS.
Eq. (5) can be solved using the following random sampling al-

gorithm (i.e. RANSAC) [7,28]. First, k points are selected at random,
and the first principal axis is computed using the standard PCA al-
gorithm to the points. Next the median of the residuals of the re-
maining N− k points is computed. The process is repeated T times
to generate T candidate axes. The axis with the minimal median is
selected as the final principal axis e. For the remaining two prin-
cipal axes, we might use the similar strategy acquired by project-
ing all points onto the plane perpendicular to e and through o and
performing a 2D resolution for Eq. (5). A small value of k does not
use all of the available points to PCA computation, while a larger
value of k requires more iterations. If k is too large, the algorithm
becomes sensitive to outliers including noise and minor regions.

2.3. The forward search algorithm

The forward search algorithm [27] is a robust method that
avoids the need to fix k. Fleishman et al. [7] applied this technique
to reconstruct surfaces from point clouds. The forward algorithm
first searches a small outlier-free subset and then iteratively refines
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Fig. 1. The illustration of determining the principal axes with the forward search technique. (a) The input data points sampled from the contour of a handwritten digit ‘‘9’’.
(b) First, determine robustly the principal axes to a small subset (4 red points) using PCA, where the red and green lines are the first and second principal axes, respectively.
(c) Next, add points with smallest residual (blue points) into the subset and recompute PCA to the updated subset, where the result after five iterations is shown. (d) The final
principal axes of the forward search is shown. In (d), the remaining points (black points) are regarded as outliers or minor regions, and the final principal axes are defined
using the major regions (blue and red points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the subset by adding one sample at a time. This is in contrast to the
backward algorithms, which first deal with the entire data points
and then delete bad samples. Fleishman et al. [7] show that some
outliers with a large breakdown point usually fail on fitting based
on the backward algorithms, whereas the forward algorithm will
give satisfactory results. The initial model is computed for Eq. (5)
using the LMS method with a small k value, typically k close to p
for a model with p parameters [27,7] (p = 3 in the 3D case). In our
implementation, we choose k = 4.
During the forward search, a number of parameters can be

monitored to detect the influential points. Typically, the forward
search will add the good-samples first and only when these are
exhausted, outliers will be added. Atkinson et al. [27] suggested
several statistics, including the residual-plot, Cook’s distance and
others, to be monitored. For their purposes, these are plotted
on a graph and inspected visually. The maximal residual rmax
is monitored by Fleishman et al. [7]. In our technique, we also
monitor the maximal residual similar to Fleishman et al.’s strategy
[7]. However, we compute rmax based on the initial subset. It will
be discussed in Section 3.3.
Using the forward search technique for solving Eq. (5), we

present the main procedure of determining the principal axes of
a point set CN as follows:

1. Choose a small outlier-free subset Q using LMS.
2. The principal axes and the origin are computed using PCA to Q .
3. The point with the lowest residual in the remaining points is
added into Q .

4. Repeat steps 2 and 3 until the error is larger than a predefined
threshold rmax and identify the points in CN − Q as outliers.

Fig. 1 shows an example of this process in two dimensions (see
caption). The process is simple, but there are some limitations for
effective computation for large and complex point sets acquired
by 3D scanning devices. We will take advantage of the octree and
point sampling to significantly accelerate the process and improve
its stability. The overall algorithm will be introduced in the next
section.

3. Robust principal axes determination

3.1. Initial robust estimator

In the first step of the forward search algorithm, the initial
subset is computed using the LMS algorithm with a small k
value (see Section 2.3). If the number N of points in CN is small,
the choice of the initial subset can be performed by exhaustive
enumeration of all

(
N
k

)
; otherwise, the LMS uses the RANSAC
Fig. 2. The illustration of robust principal axes determination for a point set
representing the drill hand model with 23,400 points. (a) First, an octree of depth
d = 5 is constructed with. (b) Next, the initial subset with 4 points (red) is chosen
after 5000 iterations. (c) The final major region (blue points) is shown using the
forward search technique. (d) The final principal axes are determined using the
points on the major region, In this paper, the red, green, and blue axes correspond
to the first, second, and third principal axes, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

algorithm (see Section 2.2) that requires a large iteration number
T to achieve a high probability of finding a good estimator. The
LMS, as a statistical method, assumes that the samples (points)
are independent. If g is the probability of selecting a single
good sample at random from the original point set CN , then
the probability P of successfully finding k good samples after T
iterations can be computed by P = 1− (1− gk)T [7]. Furthermore,
for every iteration, LMS requires a sort of the residuals of the
remaining N − k points to find their median, so this will also
require the expenditure of large amounts of time and space for
sorting for a large T if N is gigantic. In general, there is a large
number of points for a 3D shape acquired by 3D scanning devices.
For instance, Fig. 2 shows a 3D shape with 23,400 points, and the
running time for finding an initial subset (k = 4) is about 401.8
s with T = 5000 iterations, where the process of computing and
sorting the remaining residuals is repeated 5000 times.

3.1.1. Octree-based approximation
In this phase, we use octrees described by Adams et al. [29]

to accelerate the initial subset searching, where the points of CN



Y.-S. Liu, K. Ramani / Computer-Aided Design 41 (2009) 293–305 297
are considered as surfels with zero radius. In some point-based
processing, such as Boolean operations [29], surface reconstruc-
tion [30], and area computation of point-based models [9], the oc-
tree can be utilized. Thus, it is not an additional price for the point
set. In the preprocessing step, an axis-aligned octree of depth d [29]
can be constructed. Adams et al. [29] suggested that d = 4 or 5 can
lead to both a small approximation error for shapes and little com-
putation time. We typically choose d = 5 in our implementation.
Suppose that we have constructed an octree for CN , and have

classified the cells of the octree as two types: boundary cells
containing points of CN , and empty cells containing no point of
CN [29]. For each boundary cell of the octree, we compute a center
of points in the boundary cell as a feature point that characterizes
all points inside the boundary cell. LetF be the set of feature points
for all boundary cells of the octree. For every iteration, k points
are first selected at random from the original point set CN , and
three principal axis are determined using PCA. Let e be the first
principal axis obtained using PCA. Next the residuals are computed
by projecting feature points in F onto e. Unlike the original LMS
method, we compute the median of the residuals of feature points
in F instead of ones of N − k points in CN . The octree-based
approximation yields both the good approximation results and
little computation time. Some other tree data structure can also
be used for approximating the point set, such as B-Trees [11].

3.1.2. Octree-based point sampling
In the first step of the forward search algorithm, k points

are selected at random for every iteration for computing three
principal axes. Point sampling is an intermediate step for a variety
of computer graphics applications, and specialized sampling
strategies have been developed to satisfy the requirements of each
problem (such as Refs. [31–33]). A simplest sampling strategy is
to choose k points randomly from N points in CN using pseudo-
random number generators, but it might occur the chance of point
clustering. For example, k points appear on the same boundary cell
of the octree of CN , which results in an invalid sample. Plenty of
invalid samples will result in a low convergence rate.
Instead, our method for generating unbiased random points

with respect to the number of points in each boundary cell
proceeds as follows. First, for each boundary cell, we count the
number of points inside the boundary cell, which is also called the
density of the boundary cell. Then, we store the density of each
boundary cell in an array along with the cumulative density of
boundary cells visited so far. Next, k boundary cells are selected
with probability proportional to their densities. This procedure is
finished by generating k random numbers between 0 and the total
cumulative density and performing a binary search on the array of
cumulative densities. For each selected boundary cell, one sample
point is chosen randomly from the points inside the boundary cell.
Intuitively, the above sampling method gives k uniform random
points with respect to the density of the boundary cells. Our idea
is similar to the area-based sampling strategy presented by Osada
et al. [33]. They uniformly sample points from a trianglemeshwith
probability proportional to the area of triangles.
We find that the sampling based on octree can offer a faster

convergence rate than one using the direct sampling from points
of the original model. Of course, other sampling methods that
sample according to curvature or other surface properties would
be possible as well. However, these methods usually require the
large expense of computation time, and this is not applicable to
fast computation in our applications.
Fig. 2(a) illustrates an octree of depth d = 5 for a point-

based shape, where the octree has 499 boundary cells that are
displayed. In Fig. 2(b), a good initial subset with k = 4 points (red)
is obtained with T = 5000 iterations using the above octree-based
approximation and point sampling methods, and its running time
is about 1.822808 s.
Fig. 3. Determining principal axes for point sets sampled from surface patches. The
input is a wedge data with 14,687 points sampled from two planes. (a) PCA. (b) Our
method. Here four red points are the initial subset and blue points aremajor region.
Note that the points sampled from the small plane do not effect our method unlike
PCA. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

3.2. Residual computation

In Section 2.2, we defined the residual as the distance between
the test point pi and the corresponding projection point p∗i .
Eq. (5) minimizing the median of projection distance onto the first
principal axis is an extension of PCA. In the special 2D case, LMS
corresponds to finding the narrowest ‘‘strip’’ covering half of the
points [17]. In our case, the optimization in Eq. (5) also implies
that the major region of 3D shapes is nearly a cylinder-like shape
surrounding the first principal axis. The assumption can work well
for most mechanical parts (such as pipeline and bearing) and real
life objects (such as human, animal, and tree). However, there are
still some limitations for point sets sampled from surface patches.
The cylinder-like shape is not expected to be similar for most
surface patches whosemajor regions are near planes. To overcome
the disadvantage for surface patches using LMS, wemight redefine
the residual as the distance between the test point pi and the
projection p∗i onto the reference plane defined by the first and
second principal axes. Based on the new residual definition, the
LMS optimization can be implemented by projecting all points
onto the reference plane, which is determined by two principal
axes using PCA, at every iteration. Fig. 3 shows an examples for
determining the principal axes for a point set sampled from surface
patches using the new residual definition. Of course, some other
residuals can also be defined for being suitable for some special
style of shapes. For some shapes without obvious major regions,
our algorithm is also incapable as the standard PCA.

3.3. Forward search on point sets

After a robust estimator is computed for a small number of
points using the above algorithm, the results are three reference
principal axes and an initial outlier-free subset Q . The threshold of
maximal tolerated residual rmax is computed using Q as follows.
The k points in Q are projected onto the first principal axis (or
a reference plane in Section 3.2). Suppose that rt is the maximal
residual of k points. We define rmax to be proportional to rt
rmax = λrt , (6)
where λ is the value of residual band. We typically use λ = 1.25.
A small value of λ does not use all of the available samples to
determine the major region, while a larger value for λ requires
more iterations. The second step of the forward search is to
iteratively add one point with lowest residual to the set Q at
each iteration by sorting the residuals of the remaining points. The
iteration is terminated until the lowest residual is larger than rmax.
Since we expect a less iteration and little computation time

for the forward search, instead of only adding one point at each
iteration, we add more points every time. The numberm of adding
points can be set by users. We typically choose m = 60 or more
for the dense point sets. Fig. 2 illustrates the procedure of robust
principal axes determination for a 3D shape.
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Algorithm 1 : RobustPrincipalAxes(CN , o, e1, e2, e3, Q )
Input:
CN ∈ R3×N : the given point set with N points
Output:
o: the origin of the reference frame
e1, e2, and e3: the first, second, and third principal axes
Q ⊆ CN : the working subset, i.e. the major region
Local variables:
k: the number of random samples
rmax: the maximal tolerated residual
I: the current iteration
crem ⊆ CN : the set of the remaining points
m: the number of points added into Q at every iteration
MAX_ITERS: the maximal number of iterations
begin
1: Q ⇐ ∅;
2: LMS(CN , k, Q );
3: Compute rmax using Q via Eq. (6);
4: I ⇐ 0;
5: while (I ++ < MAX_ITERS) do
6: Compute the origin o and three principal axes: e1, e2 and e3

for Q using PCA;
7: crem ⇐ CN − Q ;
8: Compute the residual as the distance between each point in

crem and its projection point onto the line through o in the
direction of e1;

9: Getm points with lowest residuals for crem;
10: if (the maximal residual of them points> rmax) then
11: The pointswhose residuals are smaller than rmax are added

into Q ;
12: return
13: end if
14: Add them points into Q ;
15: end while
16: Project CN onto the plane determined by e2, e3 and o, then
perform a 2D robust PCA for updating the principal axis e2 and
e3;

end

3.4. The algorithm implementation

The outline of an algorithm for robust principal axes determi-
nation, called RobustPrincipalAxes, is given in Algorithm 1. The
algorithm takes as input a point set CN and computes the origin o
and three principal axes e1, e2, and e3 of the reference frame. This
is achieved through an iterative procedure with the aid of a vari-
ableQ which is a working subset ofCN . Initially,Q is computed us-
ing the LMS algorithm through selecting k points at random with
T iterations, as illustrated in Algorithm 2. Here, the LMS procedure
is accelerated for approximating and sampling using an octree of
depth d for CN . The octree can also be constructed in the prepro-
cessing step.
According to Algorithm2, the proposed algorithm is passed into

a point set (cn ⇐ CN ), and a loop with T iterations begins. At each
iteration, a subset ctempwith kpoints is randomly selectedusing the
octree-based sampling, and the first principal axis e1 and the origin
o is computed for ctemp using the classical PCA. Then, the residuals
of cn are calculated as the distance between the feature point of
each cell and its projection point onto the line through o and e1.
Next, themedian rhalf of the residuals is obtained. If rhalf is less than
the minimal residual rmin, rmin and Q are updated as rhalf and ctemp,
respectively.
During the iterative procedure in Algorithm 1, the cardinality of

Q is gradually increased by addingm points with lowest residuals
every time. In this way, one is able to increase Q regarded as the
Algorithm 2 : LMS(cn, k, Q )
Input:
cn ∈ R3×n: the working point set with n points
k: the number of random samples
Output:
Q ⊆ cn: the initial subset
Local variables:
d: the depth of the octree for cn
T : the number of iterations
ctemp ⊆ cn: the initial subset
o: the origin of the reference frame
e1: the first principal axis of the reference frame
rhalf: the median of residuals
rmin: the minimal residual

begin
1: Construct the octree of depth d for cn; /∗ the octree can also be
constructed in the preprocessing step ∗/

2: rmin ⇐∞;
3: for (i = 0;i < T ;i++) do
4: Select randomly a subset ctempwith k points using the octree-

based sampling;
5: Compute the first principal axis e1 and the origin o for ctemp

using PCA;
6: for (boundary cells of the octree of cn) do
7: Compute the residual as the distance between the feature

point of each cell and its projection point onto the line
through o in the direction of e1;

8: end for
9: Compute the median rhalf by sorting the residuals;
10: if (rhalf < rmin) then
11: rmin ⇐ rhalf;
12: Q ⇐ ctemp;
13: end if
14: end for
end

major region in the forward search. If the residuals of the remaining
points (CN − Q ) are more than a threshold rmax, the procedure is
terminated. Finally, the points in the major region Q are used to
compute the first principal axis e1, and the remaining points are
identified as outliers or minor regions.
Algorithm 1 is mainly used to compute the first principal axis

e1. The remaining two principal axes might be computed using the
strategy similar to Ref. [12] by projecting all points of CN onto the
plane perpendicular to e1 and through the origin o. Then a 2D case
for Algorithm 1 is performed for computing e2 and e3.

4. Results and applications

We have implemented the technique presented in the previous
section and tested it on a large number of different point-based 3D
shapes. The algorithm described above is implemented in C++. In
this paper, the execution time is given in seconds on a Pentium IV
1.70 GHz processor with 512M RAM excluding the time of loading
point sets.
Before computing the principal axes, a preprocessing step

includes an octree construction that can be performed in a short
time. Table 1 gives the time in seconds for somepoint-based shapes
referred to in this paper, where ‘‘N ’’ is the number of points of
the models, ‘‘Major%’’ is the percentage of the major region that
belongs to the original point set, ‘‘m’’ is the number of points
added at each iteration (see Section 3.3), ‘‘T1’’ and ‘‘T2’’ are the
time of constructing an octree and computing the principal axes.
The computation time increases with the number of points of the
models used. The time also depends on the size of major region
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Fig. 4. Testing the major regions (blue points) of similar models using our method. (a) One dinosaur with different poses. (b) One horse with different poses. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1
Results of the RobustPrincipalAxes algorithm for some point-based shapes.

Model Fig. N Major% m T1a(s) T2b(s)

Drill 2 23,400 74.4 60 0.07 9.32
Wedge 3(b) 14,687 80.3 60 0.06 3.89
Gun 6(a) 15,412 66.5 60 0.06 3.42
Cat 9 17,633 71.4 60 0.07 7.91
Dancer 5(a) 75,206 63.8 300 0.42 16.4
Neptune 5(b) 112,220 51.6 300 0.28 21.3
a T1 is the time of constructing an octree at depth 5.
b T2 is the time of computing the principal axes.

and the number of iterations. In all examples, we use T = 5000
iterations in Algorithm 2.

4.1. Testing major regions for articulated and scanned models

One important issue of principal axes computation using our
method is its robustness of computing the major regions for
different poses of the same object. We test the 3D models with
multiple poses in Gal et al.’s database [34], which contains some
similar articulated models with multiple poses. All models in this
database are represented by triangled meshes, so we first sample
the triangled meshes to generate the point sets as the tested
models. Then our method is applied to the point-based models
for obtaining the major regions. Most of real life objects in this
database, such as animal models, contain the similar major region
with a cylinder-like shape. Fig. 4 shows some results of major
regions for the dinosaur and horse models, respectively. Here, our
method can recognize that the body of animal is the major region.
Themajor regions computed by ourmethod are insensitive to pose
changes of the same object.
In addition, some real point sets acquired by 3D scanning

devices are also tested for computing the major regions and the
final principal axes (see Fig. 5). These selectedmodels are obtained
from AIM@SHAPE Shape Repository. Fig. 5(a) shows the result
of a dancer model. In this example, the computed major region,
which contains automatically the portions: one leg, the head and
hands, and part of body, captures the main pose of the dancer.
In Fig. 5(b), another complex example is given for the Neptune
model. Although the lance and pedestal hold part of the model,
the principal axes on the major region are still determined on the
Neptune’s body. In Fig. 5(c), the major region is captured as the
body of the pig, not its legs. Our results show that our method
works good on both scanned or articulated objects.
4.2. Shape alignment

Many shape matching methods require an alignment step in
order to position all objects in a standard orientation [4,12].
These searching methods rely on the ability to align models by
some global similarity transformation (rotation +uniform scale)
that normalizes the models and establishes some correspondence
between them. Most global alignment methods first determine
a rigid-body transformation and a uniform scale, which align
two models together as closely as possible, before measuring the
distance between them. This is typically achieved by PCA applied to
the whole model. The PCA method does not discriminate between
the major regions, and can easily cause similar local features to
be misaligned. Our alignment algorithm based on robust principal
axes determination first searches the major region of each model.
Then for each model, the origin and three principal axes are
computed for the corresponding major region as a specified frame
of reference. Finally, the transformation is applied to two reference
frames for finishing the final alignment.
In Fig. 6, a 3D example is shown for aligning two gun models,

where the gun in Fig. 6(b) is part of one in Fig. 6(a) only through
removing the cartridge clip. Fig. 6(c) shows that a global PCA
alignment fails to align them correctly, whereas our method
correctly aligns as shown in Fig. 6(d). Comparison between two
major regions for Fig. 6(a) and (b) is given in Fig. 7. Another
example is shown in Fig. 8, where two point sets are sampled from
the drills with different angle-rotation hands. Our alignment (see
Fig. 8(d)) is better than a global PCA alignment (see Fig. 8(c)).
In addition, an animal example is shown in Fig. 9, where the

same models appear in two different poses. In spite of the obvious
difference between them, our algorithm aligns the two better than
a global PCA alignment, where the body of the cat is automatically
identified as the major region not its legs. Our alignment is based
on a majority scheme that finds the transformation which satisfies
the major regions not the whole shapes.

5. Discussion

In this section, we will discuss some parameters used in our
algorithm, influences on noise and irregular samples, comparison
with previous works, and limitations of our algorithm.

5.1. Parameters

In Algorithm 1 and 2, the parameters of the algorithms are:
rmax, T , m, and MAX_ITERS. In our implementation, the maximal



300 Y.-S. Liu, K. Ramani / Computer-Aided Design 41 (2009) 293–305
Fig. 5. The major regions and principal axes of the scanned models using our method. (a) One dancer model. (b) Another dancer model with different pose. (c) The Neptune
model. (d) The pig model.
Fig. 6. Shape alignment based on the global PCA and our method. (a) A point set sampled from a gun model. (b) Another point set sampled from the same gun, but without
the cartridge clip. (c) The alignment result using PCA. (d) The alignment result using our method.
Fig. 7. Comparison between two major regions (blue points) for Fig. 6(a) and (b)
using ourmethod. Here twomajor regions are almost consistent. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

tolerated residual rmax in Eq. (6) is determined by both the scale
λ and the initial outlier-free subset Q , as described in Section 3.3.
Eq. (6) can be regarded as a rough approximation for the narrowest
strip covering half of the points in CN . The reason of choosing
Eq. (6) as the threshold duringmonitoring is that the principal axes
of Q approximates the final principal axes of CN . In general, when
the good samples are added in the forward search, the updated
principal axes will change a little; there will be a clear change,
otherwise. One may choose a large λ and increase the number of
iterations. If λ is too large so that the major region is equal to CN ,
the principal axes using our method is same as ones using PCA. In
some sense, PCA is only one special case of our algorithm.

5.1.1. The maximal residual
Fig. 10 shows the angle difference between the initial and final

first principal axes e with respect to the various scale λ of rmax
in Eq. (6) for two models, which are referred to in Table 1. We
vary the threshold of the maximal residual, using λ from 0 to 2.5,
to determine its effect on the the initial and final first principal
axes. The value of angle difference between them increases with
λ until the major region is equal to CN . This reason is that the
forwardmethod adds the pointswith theminimal residual into the
current subset at each iteration until all point sets are exhausted.
We observe that the value of λ between 1.0 and 1.5 can leads to
a small angle change between the initial and final first axes. For
example, λ = 1.25 can get an angle difference close to 2 degree. In
fact, we found the initial subset can introduce the good direction
for the first principal axis, but it is not sufficient for the center
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Fig. 8. Aligning two models sampled from a drill with the different angle-rotation hand. (a) and (b) show the input data. (c) is the alignment result using PCA. (d) is the
alignment result using our method.
Fig. 9. Aligning two models of a cat in different poses. In spite of the obvious difference between them, our algorithm aligns the two (bottom left) better than a global PCA
alignment (bottom right).
computation due to the few points in the subset, as described in
Fig. 1. The main goal of the forward searching procedure in our
method is tomainly refine the center position and slight adjust the
direction for the frame of reference.
Eq. (6) is only a simply linear function for estimating the bound

of the major region. A potential improvement considered is to
choose a non-linear function instead of Eq. (6), such as Gaussian
function. In fact, some standard methods in regression analysis for
identifying outliers, such as the residual plot [27], can also be used
for monitoring the termination of iterations during the forward
search. In the future we plan to take advantage of the statistics
methods to find a way to automatically select rmax such that the
forward search is adaptively achieved.
The forward search algorithm as described in Section 2.3 adds

a single sample into the current subset at each iteration. In our
implementation that presented in Section 3.4, we allow adding
multiple (m) points at each iteration as long as their residuals are
within the allowed tolerance. For sparse point sets, a small m can
be considered. Furthermore, in all results shown in this paper,
we use T = 5000 iterations in Algorithm 2 for obtaining both
small errors and little computation time. The maximal iteration
number MAX_ITERS is usually a predefined integer to ensure that
the number of points on the major region is more than 50% in CN
(generally [0.5 N/m] ≤ MAX_ITERS ≤ [N/m]).

5.1.2. Multiple objects
The method presented in this paper focuses on a set of points

with no connectivity. This permits one to deal with multiple and
non-manifold objects. In Fig. 12(d), we show an example from
Ref. [35] for determining the principal axes for a point set sampled
from two objects, where the large object is identified as the major
region.

5.2. Noise and sampling density

Models created from 3D scanners usually contain noise [6,
23,24]. Noise tends to increase point-error (or ‘‘point cloud
thickness’’) [10]. Our method uses tools from robust statistics
to operate well in the presence of noise, identifies outliers and
ignore them. The main tool that we use is the forward-search
algorithm which has a significant advantage in detecting outliers
over commonly used ‘‘backward’’methods. To test the ability of the
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Fig. 10. The angle difference between the initial and final first principal axes ewith
respect to the various scale λ of rmax in Eq. (6) for two models: gun and drill hand.

procedure to handle noise, we have added uniformly distributed
random noise (along the normals with 30.0% variances of the
diagonal of the bounding box of the model) to the gun model.
Fig. 11(a) and (a) shows the original and noisy models with the
major regions colored by blue. Fig. 11(c) gives the alignment result
between the original model and the noisy one using our method.
Ourmethod can keep the almost consistent principal axes between
two models.
Highly irregularly sampled point sets are uncommon in scanned

data sets [24]. If the sampled points are not uniformly distributed
over the underlying surfaces of 3D shapes, our method may lead
to large errors for approximating the principal axes. The forward
search method approximates the LMS optimization using the
PCA computation for the currently working point sets on each
iteration, as seen in Algorithm 1 and 2. The only information
used in our current implementation is the position of the points
in CN . However, the PCA analysis is blind to the position of
the points [11], even though we only use PCA for computing a
subset of CN . Recently, Kalaiah et al. [11] presented a randomized
rendering method for a point-based model. They use multi-
attribute PCA to represent the geometry and attributes of the
point-based model in a high dimensional space. In their case, the
input is a set of N points with three attributes: spatial position,
normal, and color. The mean, variance, and the basis of each of
these attributes are identified, respectively, to obtain the high
dimensional eigenvectors. In practice, normal and color of points
can be estimated from scanners. To overcome in part the effect on
irregular data sets, wemight also apply the additional attributes of
the points, including normal and color, to achieve the intermediate
PCA computation inAlgorithm1and2. In addition, another hopeful
strategy is to pre-compute the sampling densities of points as
weights of points, and achieve a weighted PCA in Algorithm 1.

5.3. Combination with ICP

One main application of our method is shape alignment.
Another widely used geometric alignment technique is Iterative
Closest Point (ICP) [36,37], which is employed tomatch two clouds
of points to reconstruct 3D surfaces fromdifferent scans, to localize
robots, to match bone models with measures in real-time, etc.
The ICP algorithm starts with two point clouds and an initial
guess for their relative rigid-body transform, and iteratively refines
the transform by repeatedly generating pairs of corresponding
points on the models and minimizing an error metric. One main
limitation of ICP and its variants is that, as a local optimization
method, it is not guaranteed to find the globally optimal alignment.
Therefore, ICP is only effective when the initial position of the
input shapes is close to the correct alignment [36,37]. For the shape
registration application, PCA is typically used to compute an initial
guess between two input models, and then the initial guess is
refined with ICP for finding the final transform. Our method can be
expected to obtain a better initial position than PCA for improving
the robustness of the ICP step.

5.4. Comparison with previous works

5.4.1. Backward vs. forward methods
Although there are different types of robust statistical meth-

ods (such as SVD [38], Least Trimmed Squares (LTS) [38], It-
erative Reweighted Least-Squares (IRLS) [39], and RANSAC [28]
techniques) being available for improving PCA computation that
are used in solving practical problems in computer vision,most ex-
isting works are backward methods and they do not work well in
our case. Backward methods fit a model to noisy data work by fit-
ting a model to the entire sample set and then trying to delete bad
samples. Backward methods identify the outliers with respect to
the initial guess. For example, LTS first fits the data using ordinary
least squares; then identifies some points with the largest residu-
als and discards these; finally re-fits the remaining data. One main
problem of backward methods is that some large outliers may af-
fect the final fit or principal axes computation. The main tool that
we use is the forward-search algorithmwhich has a significant ad-
vantage in detecting outliers over commonly used backwardmeth-
ods [7].
Recently, Cortadellas et al. [39] presented an approaches for

normalizing silhouettes of 2D images. The key technique used in
this paper involves the computation of the center of gravity and the
orientation of the principal axis for 2D shapes with deformation.
The main idea is to improve IRLS for principal axis computation
with a 2D shape dependent weighting function. This algorithm
works well when being applied to 2D shapes whose measured
orientation changes under slight deformations. However, it does
not work well when being directly applied to our works due
to two reasons. The first one is that their weighting function
is not suitable for 3D point-based shapes. The presented shape
dependent weighting function needs to compute distance maps.
Although, this method can be implemented for 2D images, but
it is not a trivial task to determine distance maps of 3D point-
based shapes without any connectivity and parameterization
information. The second one is that Cortadellas et al.’s method is
a backward method, which identifies the outliers with respect to
the initial guess. In our experiment, we test Cortadellas et al.’s
IRLS algorithm for 3Dpoint-based shapeswith the standardweight
function. Since Cortadellas et al. only presented the first principal
axis computation, we compare the results of four methods (PCA,
IRLS, LTS and our method) for the first principal axis. The principal
axis determined by IRLS perhapsmight be affected by large outliers
or deformation regions. Fig. 12 shows comparison of four methods
for a point set sampled from two objects. PCA, IRLS and LTS are
affected by the small object, while our method ignores the small
object regarded as outliers and identifies the large object as the
major region for the final principal axis computation and thus
produces the expected result.

5.4.2. RANSAC vs. Forward Search
RANSAC (RANdom SAmple Consensus) is a general procedure

for fitting models to data that has clearly separated outliers. Given
a fitting problemwith parameters x, the RANSAC algorithm can be
described as follows [28,38].
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Fig. 11. An alignment between the original model and the noisy. (a) The original point set and the computed major region (blue points). (a) The noisy point set and the
computed major region (blue points). (c) The alignment result between the noisy model and the original one. Note that our method keeps the almost consistent major
regions and principal axes between two models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Comparison of four methods for determining the principal axis for a point
set sampled from two objects. (a) PCA. (b) IRLS [39]. (c) LTS. (d) Our method. Note
that the large object is identified as the major region for the final principal axis
computation using our method. In contrast, PCA, IRLS and LTS are affected by the
small object.

1. Randomly select k data items;
2. Estimate the parameter x;
3. Find howmany data items (ofCN ) fit themodel with parameter
vector xwithin a user given tolerance. Call this Q .

4. if Q is big enough, accept fit and exit with success;
5. Repeat steps 1–4 until the best fitting to the remaining data is
retained.
Least Median of Squares (LMS) can be solved by RANSAC in
which the median error is used to evaluate RANSAC. One limit
of RANSAC for solving LMS is that it is difficult to choose an
appropriate k value [7]. A small value of k does not use all of
the available points to PCA computation, while a larger value of
k requires more iterations. If k is too large, the algorithm becomes
sensitive to outliers including noise and minor regions.
The forward search algorithm [27] is a robust method that

avoids the need to fix k. In this procedure, a small subset of inlying
points is first identified (e.g. using RANSAC or perhaps manually),
and then this set is grown by iterating the following steps:

1. Add the data point with the lowest residual to the currently fit
model;

2. Re-fit the model to the new set of points.

The iteration is terminated when the lowest residual is larger
than some threshold reflecting an outlier. In our works, we use
RANSAC for the extraction of the initial subset in forward search.
Meantime, we present the octree-based approximation and point
sampling for accelerating this RANSAC procedure. RANSAC is only
one step of our works.
Robust least squares techniques are receivingmore attention in

computer graphics. For example, Pighin and Lewis [38] presented
a ACM SIGGRAPH 2007 courses for an overview of the least squares
technique and its robust variants for computer graphics. Using
robust least squares for resolving the deformation shapes is a
potential research direction by regarding deformation region as
outliers.

5.4.3. Limitations
The first principal axis of a shape can also be used for

determining shape orientation [39,40], which provides a properly
oriented frame of reference and has been shown to affect
performance of object recognition in the human visual system.
However, note that there are many situations in which, even
without noise, the principal axis approach is ill defined, resulting
in orientation estimation failing [40]. To overcome this problem, a
new shape descriptor, called shape orientability, is introduced [40],
which describes the degree to which a shape has distinct (but
not necessarily unique) orientation. Orientability quantifies the
likely reliability and stability of orientation estimates. For instance,
even minor changes in a shape due to digitization or noise effects
can substantially alter orientation estimates for shapes with low
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orientability. A future work is to combine shape orientability with
our robust algorithm for principal axis computation of 3D point-
based shape.

6. Conclusion

We have presented a robust method for determining the prin-
cipal axes of point-based 3D shapes. The method is based on least
median of squares (LMS) for guiding the classical principal compo-
nent analysis (PCA) computation. Using the method, we can au-
tomatically identify portions of a shape as the major region or
minor regions. The forward search technique is used for approx-
imating the LMS optimization by combining the octree-based
approximation and sampling. Our experiments show that the
proposed method can efficiently obtain the reasonable principal
axes without requiring any extra segmentation procedure. We
have presented one application on shape alignment for demon-
strating the effectiveness of our method. The method presented
in this paper can help many point-based processing applications,
such as shape registration andmatching. In summary, the theoret-
ical/methodological contributions of the paper are three-fold:

– The paper shows that interpreting PCA as a least-squares
minimization drives the development of a LMS algorithm with
higher breakdown point.

– The paper develops a forward search algorithm for efficiently
determining/growing the major region defining the pose.

– The paper presents an efficient method for finding and initial
estimator (voxel/octree-based approximation) for the forward
search.

Two future works can be considered for extending the current
work.

– In our experiments, we only use the point position for guiding
the robust principal axes computation. The principal axes
might be effected by sample density of 3D shapes. In some
applications, the normals of points are also the important
information for 3D shapes. Improving the robustness of this
method while using sample density and normals is a topic for
future work.

– Furthermore, since numerous shape-matching algorithms de-
pend on pose estimation, we also plan to apply the robust prin-
cipal axes determination to improves retrieval of point-based
models by combining the known shape-matching algorithms.
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