
Computer-Aided Design 40 (2008) 537–553
www.elsevier.com/locate/cad
An extension on robust directed projection of points onto point clouds

Ming-Cui Du, Yu-Shen Liu∗

Tsinghua University, Beijing 100084, PR China

Received 3 August 2007; accepted 21 January 2008

Abstract

Azariadis and Sapidis [Azariadis PN, Sapidis NS. Drawing curves onto a cloud of points for point-based modelling. Computer-Aided Design
2005;37(1):109–22] introduced a novel method of point directed projection (DP) onto a point cloud along an associated projection vector. This
method is essentially based on an idea of least sum of squares by making use of a weight function for bounding the influence of noise. One problem
with their method is the lack of robustness for outliers. Here, we present a simple, robust, and efficient algorithm: robust directed projection (RDP)
to guide the DP computation. Our algorithm is based on a robust statistical method for outlier detection: least median of squares (LMS). In order
to effectively approximate the LMS optimization, the forward search technique is utilized. The algorithm presented here is better suited to detect
outliers than the DP approach and thus finds better projection points onto the point cloud. One of the advantages of our algorithm is that it
automatically ignores outliers during the directed projection phase.
c© 2008 Elsevier Ltd. All rights reserved.

Keywords: Directed projection; Robust statistics; Least median of squares; Forward search; Point clouds
1. Introduction

Point projection is one of basic problems in many point-
based modelling techniques [1–3]. It can be used in the moving
least squares (MLS) technique [4], the point cloud collision
detection [5], the ICP (iterative closest point) algorithm for
shape registration [6], parameterization of unstructured point
clouds [1], drawing curves onto point clouds [2], and others.
The reader may consult Refs. [1–3] for a detailed review of the
related works.

Traditionally, there are many methods for projecting a point
onto a parametric or implicit surface [7]. A review of many
available methods for computing the projection point onto the
parametric or implicit surface is beyond the scope of this paper.
The reader may consult Ref. [7] for detailed expositions. The
existing methods require a parametric or implicit representation
for the surface. However, an unorganized point set does not
contain any extra information of the surface, except for the
geometric position. One possible solution is to reconstruct,
globally or locally, surfaces from the point set and then use
common techniques to project points onto the reconstructed
∗ Corresponding author. Tel.: +86 10 62795455; fax: +86 10 62795460.
E-mail addresses: dmc02@mails.tsinghua.edu.cn (M.-C. Du),

liuyushen00@gmail.com, liu28@purdue.edu (Y.-S. Liu).

0010-4485/$ - see front matter c© 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2008.01.010
surface. There are several limitations on indirect methods based
on explicit or implicit surface reconstruction. First, it is a non-
trivial task to build a surface representation that is faithful to
the point sets, and an error of the projection approximation
would be introduced by various surface reconstruction methods.
Second, it often fails to reconstruct surfaces from large and
complex point sets acquired by 3D scanning devices such
that the projection operation is unsuccessful. Furthermore,
the explicit or implicit surface reconstruction requires the
expenditure of large amounts of time and space if the number
of points is gigantic.

Based on the MLS method, Alexa et al. [8,9] define a point
set surface approximated locally for a certain neighborhood
by a polynomial, and then project the point near the point
set onto this surface. Some improved MLS methods are also
proposed [4]. Their methods are essentially reconstruction-
based methods and need a certain neighborhood of the test
point. In addition, since it is common for a point set acquired
by 3D scanning devices to include some under-sampled
areas [2], it becomes difficult to find a suitable neighborhood
for performing the MLS projection operation in those under-
sampled areas. Though the closest point can also be simply
computed as the one with the minimal Euclidean distance of
the test point to all points of the point cloud, point sets acquired
by 3D scanning devices typically contain noise and irregular

http://www.elsevier.com/locate/cad
mailto:dmc02@mails.tsinghua.edu.cn
mailto:liuyushen00@gmail.com
mailto:liu28@purdue.edu
http://dx.doi.org/10.1016/j.cad.2008.01.010

538 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
samples, resulting in larger approximation errors. Another
possible solution is to find k-nearest neighborhoods of the test
point, and then compute the average of the k neighborhood
points. This method is not related to a measurement error
analysis, and it is also faced with the same problem how to
choose a suitable neighborhood.

Recently, Azariadis and Sapidis [2] introduced a novel
algorithm of point directed projection (DP) onto a point
cloud along an associated projection vector in a point-based
CAD/CAM system. The algorithm in Ref. [2] is simple and fast
due to operating directly on the point cloud without any explicit
or implicit surface reconstruction procedure. Furthermore, no
triangulation and complex data structure is used in their
algorithm. Their algorithm has two advantages due to an
iterative property with weight functions [2]. The first advantage
is that no particular neighborhood is fixed for the test point,
so it is suitable for point sets with noise and irregular samples.
The second advantage is that an appropriate point cloud error
function is given to solve the problem of directed projection
onto a point cloud. The DP algorithm is essentially based on
an idea of least sum of squares by making use of a weight
function for bounding the influence of noise. However, one
main problem with their algorithm is a lack of robustness
for outliers. In this paper, we present an extension of the DP
algorithm for outlier detection by combining robust statistics
methods.

1.1. The review of the DP algorithm

We review the DP algorithm by considering the following
problem. Let CN = {pi |i = 1, . . . , N } be a set of unorganized
data points, where pi = (xi , yi , zi)

T is a 3D vector. The
set CN of data points is assumed to be a sampling of an
unknown surface S, called the point-sampled surface, with or
without boundary. We suppose that the unorganized data points,
often referred to a point cloud or scattered data points in the
literature, may be dense and have non-uniform distribution with
considerable noise. Such data point sets are common in reverse
engineering processes, where the surface of a sculptured object
is measured by a 3D scanner or by a coordinate measurement
machine. Let p be an arbitrary 3D point and n an associated
projection vector. The DP problem is to find the projection
point of p onto the point-sampled surface S, which consists of
the point cloud CN , in the direction n by minimizing an error
function.

Azariadis and Sapidis [1,2] proposed an error function and
used it to solve the DP problem. Their DP algorithm can be
summarized two phases [1,2]: (1) defining an error function for
measuring the distance between the point to be projected and
the point cloud; (2) projecting the point of interest onto the point
cloud by minimizing the above error function. We first review
the detail of the error function. Consider a point cloud CN and
a test point p = (x, y, z)T with an associated projection vector
n = (nx , ny, nz)

T . Each pi in CN is associated to a positive
weight αi . Let p∗

= (x∗, y∗, z∗)T be the projection point of p
onto CN for the DP problem. p∗ is computed by minimizing the
following weighted sum of the squared distances:
E(p∗) =

N∑
i=1

αi‖p∗
− pi‖

2. (1)

For the given weights {αi }, which will be referred to in
Section 1.2.1, p∗ can be written as

p∗
= p∗(t) = p + tn, t ∈ R. (2)

Then, by substituting Eq. (2) into Eq. (1), the solution of
minimizing Eq. (1) is [1]

t =
λ − p · n

‖n‖2 , (3)

where · denotes dot product and

λ =
c1nx + c2ny + c3nz

c0
, and

c0 =

N∑
i=1

αi , c1 =

N∑
i=1

αi xi , c2 =

N∑
i=1

αi yi , c3 =

N∑
i=1

αi zi . (4)

Intuitively, the projection process defined by Eqs. (2) and (3)
can be regarded as intersecting a given point cloud with the
semi-infinite line defined by p and n [2]. Independently, Liu
et al. [10] have given a simple result for the similar problem of
intersecting a line with a point cloud.

1.2. Strengths and weaknesses of the DP algorithm

In the DP algorithm, the weights αi play a dominant role in
the computation of p∗, so they should be chosen carefully [2].
If the weights αi ≡ 1 in Eq. (1), the DP method corresponds
to the method of least squares. In spite of mathematical beauty
and computational simplicity of the method of least squares,
this estimator is now being criticized more and more for its
dramatic lack of robustness [11]. Indeed, a single sample with a
large error, an outlier, can have an arbitrarily large effectiveness
on the estimate. To overcome the lack of robustness using
the method of least squares, some robust methods might be
used for improving it. The commonly used techniques for
excluding outliers are to make use of some weight functions
for bounding the influence of outliers. Jones et al. [12] and
Fleishman et al. [13] have applied the bilateral filter to mesh
denoising, which gives low weight values to outliers using the
Gaussian weight function.

1.2.1. Analyzing the influence of two weight functions
The weight αi of pi ∈ CN should be correlative with the

distance between pi and the projection p∗, such as αi =

1/‖pi − p∗
‖

4. However, this results in a complex nonlinear
optimization problem for Eq. (1) due to the unknown p∗ [3].
Azariadis and Sapidis [1,2] assumed that all weights αi are
pre-computed, so the DP problem is simplified as a linear
optimization problem of least squares. In general, the weight
αi can be considered to take a larger value when pi is closer
to the test point p and a decreasing value as the distance from
pi to p increases in Eq. (1). Azariadis and Sapidis [1,2] gave
two weight functions for bounding the influence of noise. One

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 539
weight function, which only takes into account the distance
between pi and p [1], is

αi =
1

‖pi − p‖4 , αi ∈ [0, ∞). (5)

The other weight function, which also considers the direction n
associated to the given point p [2], is

αi =
1

1 + ‖pi − p‖2‖(pi − p) × n‖2 , αi ∈ [0, 1]. (6)

The former takes a maximum value for points in the vicinity
of p while the latter is maximized at points near the projection
axis defined by p and n. When noise and outliers are close to
p, the experiments have led to the conclusion that Eq. (6) can
obtain better projection than Eq. (5) for point-based modelling
[2]. The main reason is that Eq. (6) considers not only the
distance between p and pi , i.e. ‖pi − p‖, but the quantity
‖(pi − p) × n‖, measuring the distance between pi and the
projection axis, as well. However, in the case where noise and
outliers are near both p and the projection axis, two weight
functions both make the erroneous estimation.

Fig. 1(b) and (c) give the difference between Eqs. (5) and
(6) for a simple 2D example. In the figures, we show the points
with the large weights, which are used for the final computation
of p∗, using red. In this example, two outlier points are close
to the test point p and also the projection axis (see the input
point cloud in Fig. 1). Therefore, based on Eq. (5) or Eq.
(6), the larger weights are erroneously assigned to the two
outliers. Furthermore, for this case where the projection axis
goes through the point cloud multiple times (see Fig. 1(c)),
Eq. (6) will also take large weights for some points near the
projection axis on the farther side, while the points should be
regarded as outliers.

1.2.2. Forward vs. backward methods
The DP algorithm is achieved through an iterative procedure

with the aid of a local variable cn which is a working sub cloud
of CN ; initially, cn ≡ CN . During the projection calculation, the
cardinality of cn is gradually reduced by removing some points
from its point cloud using the weight function in Eq. (6). In this
way, one is able to reduce processing time and also increase the
accuracy of the projection procedure.

The reviewed DP algorithm [2] can be regarded as a
backward method. The strategy of backward methods for
projecting a point onto a noisy data first estimates the projection
to the entire sample set and then tries to delete bad samples [4].
A backward method identifies the outliers with respect to the
initial guess, thus points with large weight values computed
using Eq. (5) or Eq. (6) will not be removed. The main
disadvantage for the DP algorithm presented by Azariadis and
Sapidis [1,2] is that outliers with large weight values can not be
detected due to the limitation of the backward method. Fig. 1(b)
and (c) also show the projection results of the DP algorithm
using Eqs. (5) and (6), respectively. Note that the computed
projection points p∗ using two weight functions both are far
from the given point cloud.
Our work is based on a powerful, relatively recent robust
statistic technique called the forward search paradigm [4,14].
The basic idea in forward search is to start from a small set
of robustly chosen samples of the data that excludes outliers;
then to move forward through the data adding observations to
the subset while monitoring certain statistical estimates [4].
In this paper, we use the forward method to guide the DP
computation for outlier detection instead of the backward
method. In Fig. 1(d), we show that our method can ignore both
noise and outliers, and thus produces the expected result.

2. Robust directed projection

In this section, we present a simple, robust, and efficient
algorithm: robust directed projection (RDP) to guide the DP
computation. The proposed algorithm uses the forward search
method [14] for outlier identification.

2.1. Least median of squares

The least median of squares (LMS) is a robust regression
method that estimates the parameters of the model by
minimizing the median of the absolute residuals. In other
words, LMS replaces the sum of least squares by a median.
LMS satisfies a 50% breakdown point [11], where a breakdown
point might be loosely defined as the smallest percentage of
outliers that can cause the estimator to take an arbitrarily large
aberrant values [4,11]. The resulting estimator using LMS can
resist the effect of nearly 50% of contamination in the input
data, which is a larger breakdown point than least squares. In
our work, we use LMS to replace the least squares used in the
DP algorithm. Similar to Eq. (1), we also define the absolute
residual as the distance between pi and p∗: for the i th point the
residual ri = ‖p∗

−pi‖ = ‖(p+tn)−pi‖, where p∗ is defined in
Eq. (2). This definition of residuals is different from Ref. [4], in
which the residuals are defined as the difference between two
scale values, i.e. the measurement and estimation, by locally
fitting a number of polynomials to points. We define the DP
problem by searching for a best solution t along the projection
direction n that minimizes the median of the residuals:

min
t

median
i

‖(p + tn) − pi‖, t ∈ R. (7)

Rousseeuw [11] has also pointed out there always exists a
solution for LMS.

In order to consider the effective of the distance between p
and pi , as well as the distance between pi and the projection
axis defined by p and n, we improve the optimization in Eq. (7)
by also using the weight function in Eq. (6)

min
t

median
i

αi‖(p + tn) − pi‖, t ∈ R. (8)

Eq. (8) is essentially a weighted LMS optimization. Note that
the i th point’s absolute residual is redefined as the weighted
distance between pi and p∗, i.e. ri = αi‖p∗

− pi‖ = αi‖(p +

tn) − pi‖, for optimization in Eq. (8).
The above LMS optimization can be solved using the

following random sampling algorithm, which is similar to

540 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 1. Comparison between the DP algorithm and our algorithm. Here p is the test point to be projected (the blue point), n is the projection direction vector, p∗ is
the computed projection point (the other blue point), and the set of red points with large weights is the final working point cloud. In (a) we show the original point
set with two outlier points (the top-left part of p). The results of the DP algorithm using Eqs. (5) and (6) are shown in (b) and (c), respectively. The DP algorithm
can not detect the two outliers and it makes the erroneous projection points. In (d) our projection ignores the outliers and thus produces the expected result. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fleishman et al.’s strategy [4]. First, k points are selected at
random, and the projection point is computed using the standard
DP algorithm to the points. Next the median of the residuals of
the remaining N −k points is computed. The process is repeated
T times to generate T candidate solutions. The solution with
the minimal median is selected as the final solution t . A small
value of k does not use all of the available points to projection
computation, while a larger value of k requires more iterations.
If k is too large, the algorithm becomes sensitive to outliers [4].

2.2. The forward search algorithm

The forward search algorithm [14] is a robust method that
avoids the need to fix k. Fleishman et al. [4] applied this
technique to reconstruct surfaces from point clouds. Being
different to the backward algorithms, which first fit a model to
the entire data points and then delete bad samples, the forward
algorithm first searches a small outlier-free subset and then
iteratively refines the subset by adding one sample at a time.
Fleishman et al. [4] show that a single outlier might cause a
fitting to fail based on the backward algorithms, whereas the
forward algorithm will give satisfactory results. First, the initial
subset is computed for Eq. (8) using the LMS method with a
small k value, typically k = p for a model with p parameters
(p = 3 in the 3D case).

During the forward search, a number of parameters can be
monitored to detect the influential points. Typically, the forward
search will add the good-samples first and only when these are
exhausted, will outliers be added. Atkinson et al. [14] suggested
several statistics, including the residual-plot, Cook’s distance
and others, were monitored. For their purposes, these are
plotted on a graph and inspected visually. The maximal residual
rt is monitored by Fleishman et al. [4], where rt is the threshold
of maximal tolerated residual. They use a strategy from Ref.
[13], in which the users interactively mark a small smooth
region on the surface and then the system fits a polynomial to
that region and measures the largest residual to set the value
rt. The above monitoring techniques are essential to determine
the termination conditions for the forward search iteration. In
our application, we monitor the maximal residual, and we will
discuss it in the next section.

Using the forward search technique for solving Eq. (8), we
present the main procedure of computing the projection point
p∗ of p onto a point cloud CN as follows:

1. Choose a small outlier-free subset Q using LMS.

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 541
2. The solution is computed using the original DP algorithm to
the current subset Q.

3. The point with the lowest residual in the remaining points is
added into Q.

4. Repeat steps 2 and 3 until the error is larger than a predefined
threshold and identify the points in CN − Q as outliers.
Finally, recompute the projection position for the final Q
using the original DP algorithm.

2.3. Initial robust estimator

In the first step of the forward search algorithm, the initial
subset is computed using the LMS algorithm with a small k
value. In this procedure, the used random sampling algorithm
requires a large iteration number T to achieve a high probability
of finding a good estimator. The LMS, as a statistical method,
assumes that the samples (points) are independent. If g is the
probability of selecting a single good sample at random from
the original point set CN , then the probability P of successfully
finding k good samples after T iterations can be computed by
P = 1 − (1 − gk)T [4]. Furthermore, for every iteration, LMS
requires a sort of the residuals of the remaining N − k points
to find their median, so this will also require the expenditure of
large amounts of time and space for sorting for a large T if N
is very large.

In order to reduce processing time and also increase the
accuracy of the projection procedure, we first filter the original
point cloud CN using the weight function in Eq. (6) and get
a small working point cloud cn ⊆ CN . This is particularly
useful for large data sets with tens or hundreds of thousands of
points, improving considerably the efficiency of the algorithm.
We have tried two ways that reduce CN for obtaining a working
point cloud cn . One is Azariadis and Sapidis’s strategy [2] by
setting a constant K as follows. All weights {αi } of points in
CN are first computed and another local variable named αlimit is
defined

αlimit =


αmean +

αmax − αmean

10 − K
, K < 9

αmean +
αmax − αmean

2
, otherwise

(9)

where the real parameters αmax and αmean correspond to the
maximum and mean value of the computed weights {αi }. Eq.
(9) is defined in such a way that cloud points with a small
influence (i.e. small αi < αlimit) are discarded in the given K .
In our application, we found that it is not easy to control K for
point clouds with different sizes. In our implementation, we sort
the weights {αi } in a decreasing order and then choose the nth
weight as αlimit. In this way, cn may be set to a fixed size, such
as n = 300 for large point clouds or n = N/100.

2.4. The implementation for the RDP algorithm

The outline of an algorithm for projecting an arbitrary
point onto a cloud of points along a projection vector, called
RobustDP, is given in Algorithm 1. The algorithm takes as
input a point cloud CN , a test point p and the projection vector
n, and computes the projection p∗ of p onto CN along n.
This is achieved through the forward search with the aid of
a local variable Q which is a subset of CN . The procedure
starts from a small set Q of robustly chosen samples of the
data that excludes outliers using the LMS algorithm. During
the projection calculation, the cardinality of Q is gradually
increased by adding a point with the lowest residual from its
cloud points at each iteration.

According to Algorithm 1, a small working point cloud cn
is first obtained from the input CN using FilterPointCloud,
as shown in Algorithm 3. In the FilterPointCloud procedure,
the significance of each point in CN is determined by the
corresponding weight, calculated using Eq. (6); the n points
with the largest weights are collected as cn . In this way, one
is able to reduce processing time and also increase the accuracy
of the projection procedure.

Then an initial subset Q is computed by passing cn into the
LMS algorithm (see Algorithm 2), and in the meantime the
projection p∗ computed using the DP algorithm for the output
Q is also returned. According to Algorithm 2, a loop of T
times begins. At each time, k points are selected at random
and stored in a temporary set ctemp. Then the projection point
p∗ is computed using the standard DP algorithm to ctemp. Next
the median rhalf of the residuals of the remaining n − k points,
stored in cremain (cremain ⇐ cn − Q), is computed. The process
is repeated T times to generate T candidate solutions. Q and
p∗ with the minimal median rhalf are put back into Algorithm 1,
i.e. RobustDP.

In Algorithm 1, the forward search is implemented using
an iteration procedure. At each iteration, the point p̃ with the
lowest residual in the remaining points in cremain (cremain ⇐

cn − Q) is added into Q. If the Euclidean distance between
the current projection estimation p∗ and p is larger than a
threshold rt, the procedure is terminated. In the opposite case,
p is moved to the current p∗ (p ⇐ p∗) and a new iteration
commences with a redefined Q. The maximal iteration number
MAX ITERS is usually a predefined integer to ensure that the
number of points in Q is more than 50% in cn (generally
[0.5n] ≤ MAX ITERS ≤ n).

Fig. 2 shows an illustration of the RDP procedure.
Note 1. In Algorithm 1, p∗ is computed using the DP algorithm
for the current updated p, so the weights of points in ctemp need
also be recomputed at each iteration.
Note 2. In Algorithm 1, rt is the threshold of maximal tolerated
difference between the current projection estimation p∗ and
the updated point p. In our experiments, we have found that
rt = 0.01ε gives good results, where ε is the distance between
the input p and p∗ computed using the initial subset with k
points, i.e. the output of Algorithm 2. A small value of rt does
not use all of the available samples to compute the projection
point, while a larger value for rt requires more iterations and
the algorithm becomes sensitive to outliers. If rt is too large,
so that the final Q is equal to cn , i.e. no outlier is detected, the
projection using the proposed RDP algorithm is similar to one
using the DP algorithm. In some sense, the DP algorithm is only
one special case of our algorithm.
Note 3. The computation costs of the RDP algorithm mainly
depend on two factors. One factor is the initial subset selection

542 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 2. The illustration of the RDP procedure. The input point cloud, a test point p (blue), and the projection direction n are shown in (a). First, a small working
point set cn (green points in (b)) is extracted from the input point cloud using the weight function of Eq. (6). Then, an initial subset (red points in (c)) is selected
by passing cn using the LMS algorithm, and the initial projection point p∗ (another blue point in (c)) is computed using the DP algorithm. Next, we iteratively add
points with the smallest residual and recompute the projection point p∗ (blue) to the updated subset (red points in (d)). The final projection point calculated using
the forward search is shown in (e). The remaining points are regarded as outliers to the DP procedure, and these are not used for computation of the final projection
point. In contrast, the result using the original DP algorithm is given in (f), where some outliers affect computation of the projection point. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
using the LMS algorithm. The process is repeated T times, and
the DP problem is solved for the current k points selected ran-
domly at each time. Since we limit the LMS process to a small
working point cloud cn by filtering the original point cloud CN ,
a small T is sufficient for our implementation. In Algorithm 2,
we typically choose T = 1000 that can obtain both small errors
and little computation time. The other factor is that the forward
search algorithm described in Algorithm 1 adds a single sample
at each iteration and solves a DP problem at each iteration. In
the tests that are presented below, we allow the adding of mul-
tiple points at each iteration as long as their residuals are within
the allowed tolerance and the maximal number of points that
we add is not more than 40% of the size of the working point
cloud cn . In this way, we can approximate the projection point
through the forward search after a few iterations.
An in-depth experimental evaluation of the accuracy and
robustness of the proposed RDP method is given in the
following section.

3. Experimental results

We have applied the proposed RobustDP algorithm to some
point clouds, which are sampled from two B-spline surfaces
(see Figs. 3 and 4). The algorithms described above are
implemented in C++. The execution time is given in seconds on
a Pentium IV 1.70 GHz processor with 512M RAM (excluding
the time of loading point clouds).

The experiments focus on the efficiency of our algorithm
for point clouds, with outliers, by comparing the true results
of projecting some test points onto one surface and the
approximate results of projecting the same test points onto point

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 543
Algorithm 1 : RobustDP(CN , p, n, p∗, Q)
Input:
CN ∈ R3×N : the given point cloud with N points
p: the test point
n: the projection direction vector

Output:
p∗: the projection point of p
Q ⊆ CN : the subset of points for computing p∗

Local variables:
k: the number of random samples
rt: the maximal tolerated residual
I : the current iteration
cn ⊆ CN : the working point cloud with n points
ctemp ⊆ cn : a point set used for temporary storge
cremain ⊆ cn : the set of the remaining points, i.e. cn\Q
MAX ITERS: the maximal number of iterations

begin
1: FilterPointCloud(CN , p, n, cn);
2: Q ⇐ Ø;
3: LMS(cn , p, n, k, Q, p∗);
4: I ⇐ 0;
5: ctemp ⇐ Q;
6: while (I + + < MAX ITERS) do
7: cremain ⇐ cn − Q;
8: Compute the residuals to p∗ for all points in cremain;
9: Get the point p̃ with the lowest residual from cremain;

10: ctemp ⇐ ctemp + p̃;
11: Compute p∗ using ctemp based on the DP algorithm

through Eqs. (2), (3) and (6);
12: if (I > 1 and ‖p − p∗

‖ > rt) then
13: return
14: end if
15: p ⇐ p∗;
16: Q ⇐ ctemp;
17: end while
end

clouds sampled from the surface. Furthermore, in all results
shown in this section paper, we use T = 1000 iterations
in Algorithm 2 for obtaining both small errors and short
computation time.

3.1. Example 1

Fig. 3(a) shows an example of projecting a set of 20 points,
sampled from a line segment, onto a B-spline surface. First we
use a modified Newton–Raphson method [7] to pre-compute
the closest point for orthogonal projection onto the B-spline
surface. Suppose pi (i = 1, . . . , l) are the test points sampled
from the line segment, where l = 20 is the number of test
points sampled. We obtain 20 true projection points pS

i by
projecting pi onto the given B-spline surface using the modified
Newton–Raphson method. For each pi , the vector

ni = (pS
i − pi)/‖pS

i − pi‖, i = 1, . . . , l (10)

are assumed as the input projection direction vector for testing
the RobustDP algorithm.
Algorithm 2 : LMS(cn , p, n, k, Q, p∗)
Input:

cn ∈ R3×n : the working point cloud with n points
p: the test point
n: the projection direction vector
k: the number of random samples

Output:
Q ⊆ cn : the initial subset
p∗: the projection point of p

Local variables:
T : the number of iterations
ctemp ⊆ cn : the subset selected randomly
cremain ⊆ cn : the set of the remaining points, i.e. cn\ctemp
r ∈ Rn−k : the vector of residuals
rhalf: the median of residuals
rmin: the minimal residual

begin
1: rmin ⇐ ∞;
2: for (j = 0; j < T ; j + +) do
3: Select randomly a subset ctemp with k points;
4: Compute p∗ using ctemp based on the DP algorithm

through Eqs. (2), (3) and (6);
5: cremain ⇐ cn − ctemp;
6: /∗ Compute r as the residuals of points in cremain∗/
7: for (i = 0;i < |cremain|;i + +) do
8: pi ⇐ cremain(i);
9: r(i) ⇐ ‖pi − p∗

‖;
10: end for
11: Compute the median rhalf by sorting r;
12: if (rhalf < rmin) then
13: rmin ⇐ rhalf;
14: Q ⇐ ctemp;
15: end if
16: end for
end

For this experiment, an initial point cloud with 60,000 points
is generated by sampling from the B-spline surface in Fig. 4 (a).
Then, a series of noisy point clouds are produced by randomly
adding Gaussian noise to each point cloud along the positive
normal directions with increasing variances ρ, where ρ is the
point cloud’s “thickness factor” [2] with respect to the surface
bounding box. For all results in the example, we have used five
scales ρ ∈ {γ, 5γ, 10γ, 15γ, 20γ }, where γ is 1.0% of the
length of the diagonal of the bounding box of the model. In
addition, the working point cloud cn is chosen as 300 points for
Algorithm 3 for this example.

Table 1 lists the accuracy and execution time for the point
clouds with outliers, where “Relative error” is defined by the
projection error relative to the corresponding pS

i . All data are
the average of projecting equally 20 spaced points onto the
given B-spline surface and the corresponding CN . The accuracy,
i.e. relative error, is the average error, which is computed by

l∑
i=1

‖p∗
i −pS

i ‖

‖pi −pS
i ‖

l
. (11)

544 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Table 1
Results of point projection onto noisy point clouds sampled from the B-spline surface in Fig. 3 with increasing density

ρ Time (s) Relative error RDP Relative error DP1a Relative error DP2b

1γ 0.175753 0.00704593 0.00711199 0.0151443
5γ 0.176754 0.00711019 0.0888141 0.0127748
10γ 0.173750 0.00754417 0.367748 0.0131383
15γ 0.178757 0.00831023 0.661613 0.0143648
20γ 0.174251 0.00903053 0.671681 0.0145268

a DP1 is the DP algorithm using Eq. (5).
b DP2 is the DP algorithm using Eq. (6).
Algorithm 3 : FilterPointCloud(CN , p, n, cn)
Input:
CN ∈ R3×N : the given point cloud with N points
p: the test point
n: the projection direction vector

Output:
cn ∈ R3×n : the working point cloud with n points

Local variables:
a ∈ Rn : the weights vector
αlimit ∈ R: the nth weight of a sorted in a decreasing order

begin
1: cn ⇐ Ø;
2: Compute weights a through Eq. (6);
3: Sort weights a in a decreasing order;
4: αlimit ⇐ a(n);
5: for (i = 0;i < N ;i + +) do
6: if (αi > αlimit) then
7: cn ⇐ cn + CN (i);
8: end if
9: end for

end

The experimental data shows that the new method has good
approximation.

3.2. Example 2

Fig. 4(a) shows an example of projecting a set of 20
points pi (i = 1, . . . , l), sampled from a NURBS curve,
onto another B-spline surface. First we also use the modified
Newton–Raphson method to pre-compute the closest point for
orthogonal projection onto the B-spline surface, and obtain 20
true projection points pS

i by projecting pi onto the given B-
spline surface. Next we use Eq. (10) for computing the input
projection direction vector for each pi to test the RobustDP
algorithm. For this experiment, an initial point cloud with
60,000 points is generated by sampling from the B-spline
surface in Fig. 4. Then, a series of noisy point clouds are
produced by adding Gaussian noise to each point cloud along
the positive normal directions with increasing variances ρ

with respect to the surface bounding box. The accuracy and
execution time for different point clouds are given in Table 2.
The experimental data shows that the new method has good
approximation.
3.3. Example 3

Fig. 5(a) gives an example of projecting a set of 20 points
pi , sampled from a NURBS curve, onto a point cloud of the
mans head model. First we use the method proposed in [3] to
pre-compute the closest point for orthogonal projection onto the
model, and obtain 20 true projection points pS

i . Next we use Eq.
(10) for computing the input projection direction vector for each
pi for testing the RobustDP algorithm. For this experiment,
the model has added Gaussian noise along the normals with
ρ = 20γ . Note that the results in Fig. 5(b) and (c) using
the DP algorithm make erroneous projection points, whereas
our projection ignores outliers and thus produces the expected
result.

4. Discussion

In this section, we will discuss the differences with
Fleishman et al.’s works, applications, and limitations on the
RDP algorithm.

4.1. Orthogonal projection vs. directed projection

We first focus on the differences with Fleishman et al.’s
works. The problem of point projection onto point clouds is
classified as two types: orthogonal projection and directed
projection. The standard moving least squares (MLS) algorithm
[4,8,9] deals with the former, whereas our algorithm, presented
in this work, focuses on the latter. The goal of orthogonal
projection is to find the closest point (footpoint) on a point
cloud surface, where there is no constraint on the projection
direction that is determined by the input test point and the final
projection point computed. One main application of MLS is to
smooth a point cloud by orthogonally projecting each point of
the point cloud onto the fitted surfaces [4,8,9], which will move
noisy points onto the virtual surfaces and provide a clean point
cloud surface for point-based modelling. In contrast, the goal
of the directed projection or DP problem discussed in our paper
is to find the projection point of a test point along a constraint
projection direction. The DP problem is actually equivalent to
the intersection problem of a ray and a point cloud surface,
where the ray is determined by the test point and the given
projection direction. The projection point of the DP algorithm
approximates the first intersection point between the ray and
the point cloud surface. Two constraint conditions in the DP
optimization are that the computed projection point is on the ray

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 545
Fig. 3. Comparing the results of projecting points onto a B-spline surface and onto noisy point clouds consisting of 60,000 points sampled from the surface. The
projection points are blue and red, respectively. Here the test points (the black points) are sampled from a line segment. (a) The pre-computed closest point for
orthogonal projection onto the B-spline. (b) The result of our algorithm. (c) The result of the DP algorithm using Eq. (5). (d) The result of the DP algorithm using
Eq. (6). Note that the DP algorithm using Eq. (5) can not detect the outliers and makes erroneous projection points, and the DP algorithm using Eq. (6) can get a
good projection result for most test point due to the outliers being far from the direction vector. In contrast, our projection ignores outliers and thus produces the
expected result. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Results of point projection onto noisy point clouds sampled from the B-spline surface in Fig. 4 with increasing noise

ρ Time (s) Relative error RDP Relative error DP1a Relative error DP2b

1γ 0.175252 0.000912825 0.00265534 3.45114
5γ 0.178256 0.00127872 0.0065534 3.46366
10γ 0.177255 0.00216594 0.0862853 3.47652
15γ 0.177255 0.00344006 0.0468185 3.48209
20γ 0.177255 0.0035093 0.442069 3.48902

a DP1 is the DP algorithm using Eq. (5).
b DP2 is the DP algorithm using Eq. (6).
(see Eq. (1)) and should be close to the point cloud surface (see
Eq. (2)). Some applications of the DP problem will be discussed
in Section 4.3.

In spite of of the fact that the mathematical tools used in our
RDP algorithm and robust moving least squares (RMLS) [4]
are same, i.e. replacing “least squares” by “least median of
squares” and approximating the LMS optimization with the
forward search, the defined optimization equations are different
between RDP and RMLS as follows. The original DP algorithm
needs to solve a minimal error function (i.e. Eq. (1)) with a
projection direction constraint (i.e. Eq. (2)). In contrast, the
standard MLS algorithm only solves the minimal error function
similar to Eq. (1) without any extra constraint. In some sense,
the DP optimization contains one more constraint than MLS.

The common motivation between our RDP algorithm and
Fleishman et al.’s RMLS algorithm [4] is to replace “least
squares” by “least median of squares”, such that the improved
algorithms are robust. At each iteration of the forward search
used for approximating the LMS optimization, our algorithm
can obtain a faster convergence than RMLS. This improves on
the original DP algorithm which gives a closed form solution
Eq. (3) in a linear optimization. In contrast, RMLS is based
on the standard MLS algorithm whose solution is a non-
linear optimization problem [8]. In our algorithm, we assume
that the weights are pre-computed at each iteration such that
the optimization function is simple. In the future we plan to
optimize the projection computation together with the weight
function. This is an area for the future (and challenging)
research for the DP problem.

4.2. Disturbing points

The DP problem has three input conditions: the test point,
the projection direction, and point clouds. Actually, an further
post-processing based on smoothing or de-noising could clear
up the point cloud [15], but it can not ensure that the projection

546 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 4. Comparing the results of projecting points onto a B-spline surface, and onto noisy point clouds consisting of 60,000 points sampled from the corresponding
surface. The projection points are blue and red, respectively. Here the test points (the black points) are sampled from a NURBS curve. (a) The pre-computed closest
point for orthogonal projection onto the the B-spline. (b) The result of our algorithm. (c) The result of the DP algorithm using Eq. (5). (d) The result of the DP
algorithm using Eq. (6). Note that the DP algorithm using Eq. (6) can not detect the outliers due to the folded surface and makes erroneous projection points, whereas
our projection ignores outliers and thus produces the expected result. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
works well for the DP problem. The main reason is that both
the test point position and the projection direction also affect
the final projection computation. In fact, not only noisy points
of point cloud but also some other points can result in projection
error. In Fig. 6, a simple example shows the weakness of the DP
algorithm on a noiseless point cloud. In Fig. 6(b), some red non-
noisy points, which are far from the input test point but close
to the projection axis, disturb the final projection computation.
We call these points of a point cloud, which are not noisy
points of point cloud itself but disturb the position of the final
projection point, disturbing points of the point cloud surface
relative to the given test point and the projection direction.
In this paper, we classify the outliers defined in this paper
as two types: noisy points and disturbing points of the point
cloud surface. Noisy points could be removed by some existing
smoothing or denoising algorithms. In contrast, the disturbing
points can not be detected by smoothing techniques, since they
are correct points relative to the given point cloud itself but
they are, however, wrong points relative to the test point and
projection axis in the DP problem. Disturbing points are usually
non-noisy points close to the test point or the projection axis.

Now we analyze the reason for the failure of the original DP
algorithm in the example in Fig. 6. In Fig. 6(a), a point cloud is
randomly sampled from a curve, where the ray determined by

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 547
Fig. 5. Comparing the results of projecting points onto a mans head model consisting of 62,202 points. The projection points are red. Here the test points (the black
points) are sampled from a NURBS curve. (a) The pre-computed closest point for orthogonal projection onto the point cloud and the projection direction vectors. (b)
The result of the DP algorithm using Eq. (5). (c) The result of the DP algorithm using Eq. (6). (d) The result of our algorithm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
the test point and the projection direction goes through the point
cloud four times. In Fig. 6(b), Eq. (6) also takes large weights
for points near the projection axis on the farther side, while
the points on the farther side are disturbing points and should
be ignored for the final projection computation. The disturbing
points in Fig. 6(b) result in computed projection points that
are far from the given point cloud. Fig. 6(c) demonstrates the
result using the RDP algorithm, which produces a reasonable
approximation.

Another example is shown in Fig. 7 to illustrate the effect of
the disturbing points. Eq. (5) tends to find the average position
of the nearest points of a test point as its projection point. In
this figure, the left hand of dinosaur is close to several test
points, which leads to a large projection error using Eq. (5) (see
Fig. 7(e)). In addition, Eq. (6) is usually invalid for the closed
model. When there are two or more intersection points between
the point-based model and the ray determined by a test point
and the projection direction, Eq. (6) actually tends to find the
average position between all intersection points. Fig. 7(f) shows
that most of the projection points computed using Eq. (6) are
inside this model. Fig. 7(d) shows the result of our algorithm.
Although our method is based on Eq. (6), our method can
ignore the effect of disturbing points and approximate the first
intersection point as the final projection point by combining
LMS and the forward search.

Although the currently existing algorithms for the DP
problem can deal with noise by combining some smoothing
techniques, they can not sufficiently solve the case of disturbing
points. In contrast, we treat the noise and disturbing points
together as outliers, and detect them by using the LMS
optimization and forward search. Our method does not depend
on the smoothing and denoising procedure.

548 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 6. Comparing the results of directed projection of points onto a noiseless point cloud. (a) An input point cloud, a test point (blue) and the projection direction,
where points of the point cloud are randomly sampled from a B-spline curve without additional noise added. (b) The projection result of the DP algorithm using
Eq. (6), where the projection point is another blue point. (d) The result of our algorithm. Here the red points make up of the final working point set that is used for
computing the projection point. Note that the original point cloud has no noise, but the projection result computed using the original DP algorithm is still affected by
the disturbing points of point cloud (some red points far from the test point in (b)), whereas our algorithm can give a reasonable approximation. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Comparing the results of projecting points onto a noiseless point cloud representing the dinosaur model with 70,526 points. Here the test points (black
points) are sampled from a B-spline curve around this model, and the projection direction of each test point is chosen by the vector from the center of the B-spline
to the test point itself. The computed projection points are red. (a) The result of our algorithm. (b) The result of the DP algorithm using Eq. (5). (c) The result of
the DP algorithm using Eq. (6). The magnified views of (a), (b) and (c) are shown in (d), (e) and (f), respectively. Although the input point cloud does not contain
additional noise, the projection results computed using the DP algorithm can not give satisfactory results for part of test points. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 549
4.3. Application on computing intersections of ray/point cloud
surface

As stated in Section 4.1, the DP problem is equivalent to the
problem of computing the first intersection point between a ray
and a point cloud surface. There are some applications that can
benefit from the RDP algorithm. Designing curves onto a point
cloud is an important problem for many applications in reverse
engineering (RE), such as segmentation, parameterization [1],
reconstruction, and point-based modelling [2]. A general
approach of reconstructing surfaces from an unorganized point
cloud first needs to divide the point cloud into subsets which
correspond to certain regions of the object surface where a
single surface can be fitted [1]. In some RE software, users
usually finish the segmentation through interactively designing
curves onto a point cloud, but this step is not easy. Azariadis
et al. [2] developed a new technique, called drawing curves onto
a cloud of points, for point-based modelling. Their technique is
based on the DP method of projecting points onto a point cloud,
where the projection vectors are usually specified through a
graphics interface tool. Although the work in [1,2] can also
handle noisy points in point clouds in some sense, their work
can not sufficiently solve the case of disturbing points. For
example, when the ray determined by the test point and the
given projection direction goes through the point cloud surface
many times, the original DP algorithm mistakenly computes
the average position between all intersection points as the
projection point.

Apart from some applications [1,2] in a point-based
CAD/CAM system, some papers have referred to some
additional applications for this intersection problem. For
instance, some point-based rendering techniques using ray
tracing algorithms need to compute the intersection points
between the ray from a viewpoint and point clouds [16–18].
In addition, Liu et al. [10] presented to use Cauchy–Crofton
formula for computing areas of point-sampled surfaces, without
any surface reconstruction procedure, where a key technique
is to count the number of intersection points between the
lines created randomly and the point-sampled surfaces. Another
application might be interactive selection for a point cloud
surface, which usually needs to compute the intersection.

Traditionally, there are two approaches to compute the
intersection of a ray and the point cloud surface. One indirect
approach is based on surface reconstruction techniques, and
then uses general ray/surface intersection methods. To speed
up the intersection computation, Adamson et al. [16] define
a point set surface approximated locally by polynomial, and
then compute the intersection of a ray and the point set
surface. The other approach described by Schaufler et al. [17]
computes directly the intersection between a ray and the point
set by placing a disk at each point of the point set without
reconstructing any surface. Their method first intersects a
cylinder around the ray with those disks. Then, the intersection
is computed as a weighted average of disks whose centers are
inside the cylinder. However their method can only find the
average position of all intersection points for this case with
multiple intersection points. Liu et al. [10] extended Schaufler
et al.’s approach for finding all intersection points of a ray
with the point cloud surface based on a clustering technique.
However, one major drawback of this approach is that the
results of classifying intersecting points are dependent on the
orientation of the normal vector of original points of the point
cloud surface. The original DP algorithm also belongs to the
latter, which can not find the first intersection point at all.
Although several intersection algorithms for the DP problem
have been implemented [10,16–18], all are backward methods
like the original DP algorithm and might be not robust even for
the noiseless point cloud surface (or after smoothing).

Our method can be directly applied to compute the first
intersection point by projecting the star point from the ray onto
the point cloud surface. In Fig. 8, an example is given for
showing the application of computing intersections of multiple
rays and a point cloud sampled from a curved surface (see
Fig. 8(a)). Here 20 test points (black points in Fig. 8(b))
are sampled from a B-spline curve around this surface, and
the projection direction of each test point is chosen by the
vector from the center of the B-spline curve to the test point
itself. Every ray is determined by one test point and the
corresponding projection direction. Some rays intersect the
point cloud surface for five times at most, and our algorithm can
approximate the first intersection point for each ray well(see
Fig. 8(b)). However, the original DP algorithm can not give
satisfactory results for most of the rays. In Fig. 8(c), note that
the intersection points between the left seven rays and the point
cloud surface are inside. The main reason is that the original DP
algorithm is achieved through an iterative procedure. It initially
computes a projection point for the whole point cloud, and then
the current projection point is regarded as the new test point
for the next iteration computation on a shrinking working point
cloud. Since Eq. (5) gives the first projection points as inside
for the left seven rays, the final projection points approximate
the inside part of point cloud. In Fig. 8(d), the DP algorithm
using Eq. (5) apparently finds the average position of multiple
intersection points as the final intersection point for every ray.

To determine the positions of multiple intersection points
between a ray and a point cloud CN , we might use an iterative
algorithm as follows. Like the RDP algorithm, we first filter
the original point cloud CN using the weight function in Eq.
(6) and get a small working point cloud cn ⊆ CN . Then, we
search a subset Q ⊆ cn to compute the projection point by
the RDP algorithm and identify the rest Q1 of cn as outliers
(i.e. Q1 = cn − Q). The computed projection point is regarded
as the first intersection point. Next, we remove the samples Q
from cn and update cn as cn = cn − Q. Then we repeat the RDP
process and obtain the second projection point (as the second
intersection point) for the updated cn . The iteration process is
terminated when cn is empty or enough small.

4.4. Limitations

Although the RDP algorithm has been presented for
strengthening the robustness of the original DP algorithm, there
are still some limitations in real computation and applications.
This section will discuss them.

550 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 8. One application on computing the intersection points between rays and point cloud. A point cloud consists of 80,000 points sampled from a curved B-spline
surface in (a), and no additional noise is added. The computed projection points are red. (b) The result of our algorithm. (c) The result of the DP algorithm using
Eq. (5). (d) The result of the DP algorithm using Eq. (6). Note that there are multiple intersection points between each ray and the curved surface. Our algorithm can
find the first intersection point, whereas the original DP algorithm can not give satisfactory results for most of rays. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
Non-uniform sampling. Point sets acquired by 3D scanning
devices usually contain irregular samples. When a point set
CN sampled from an underlying surface S is insufficient, it is
impossible to approximate point projection onto S with high
accuracy. The original DP algorithm is actually to interpolate a
projection point by some candidate points of the point cloud by
bounding a weight function. Our main improvement for the DP
algorithm is the choice of candidate points based on the LMS
optimization that rejects outliers including noise and disturbing
points. If no outlier is detected in our algorithm, the projection
result is same as the one using the original DP algorithm. The
effectiveness of the original DP algorithm for point clouds
with a varying density has been investigated. Azariadis and
Sapidis [2] concluded that when the density is increased the
corresponding projection error is reduced. A similar conclusion
has been given in Ref. [10]. Fig. 9 shows an example of directed
projection of points onto a point cloud with high nonuniform
sampling. In this example, our algorithm can perform better
than the original DP algorithm for most of test points. However,
since the sampling on the roof of the car is very sparse, there are
two projection points going through the roof. Highly irregularly
sampled point clouds are uncommon in the CAD systems and
scanned data-sets. If the sampled points are not uniformly
distributed over the underlying surface, our method may lead
to large approximation errors like the DP algorithm. In fact,
the users do not directly operate with the original uncompleted

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 551
Fig. 9. Comparing the results of projecting points onto a car model with high nonuniform sampling. This model consists of 34,945 points. Here the test points
(black points) are sampled from a B-spline curve around this model, and the projection direction of each test point is chosen by the vector from the center of the
B-spline to the test points itself. The computed projection points are red. (a) The result of our algorithm. (b) The result of the DP algorithm using Eq. (5). (c) The
result of the DP algorithm using Eq. (6). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
point cloud in most practical CAD/CAM systems. In general,
it must follow two steps of preprocessing of the point cloud as
follows: (1) smoothing the point data and removing the noise;
(2) filling in the holes and other uncompleted regions in point
cloud. The DP problem can also benefit from preprocessing.

High curved point cloud surfaces. In addition, since our
method is based on the DP algorithm by interpolating a
projection point by some weighted candidate points of the point
cloud, there is also the same problem for high curved point
cloud surfaces as the DP algorithm. In fact, our method can
also be combined with some fitting techniques for the final
projection computation for high curved point cloud surfaces.
The strategy is as follows: first, the candidate points are
obtained using our algorithm; then fit a bivariate polynomial
surface of degree two to the candidate points; finally, compute
the directed projection point onto the fitted polynomial surface.
The main advantage is to accelerate the speed of projection
computation. For this DP solution based on fitting, our method
can offer a better candidate point set for fitting than the
backward methods.

Multiple intersection points. The influence of disturbing
points on final projection has been weakened by the RDP
algorithm, as shown in Figs. 6 and 7, but it has not been solved
thoroughly. For the case that the ray determined by the test
point and the given projection direction goes through the point
cloud surface many times, the RDP algorithm might be invalid.
Fig. 10(a) illustrates a 2D invalid example for this problem.
The reason for the failure is that the initial subset is selected
wrongly. At the phase of initial subset selection, the original
LMS uses the random sampling algorithm for selecting k initial
points with a small value of k. At each iteration, (1) k points
are first selected from the current working point set at random;
(2) then the median of the residuals of the remaining points
is computed; (3) finally, k points with the minimal median are

552 M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553
Fig. 10. If the ray determined by the test point and the given projection direction goes through the point cloud many times, the RDP algorithm based on the minimal
median measurement might be invalid. (a) The result of using the minimal median measurement. (b) The improved result through changing the parameter of the
RDP algorithm, i.e. replacing the median (50%) by the first quartile (25%).
selected as the initial subset for the forward search. Instead
of the minimal median measurement, we may use the mth
smallest value from the residuals of the remaining points for
improving the initial subset. In Fig. 10(b), we use the first
quartile (25%) instead of the median (50%) for cutting out the
largest 75% outliers. The new projection point is reasonable.
In fact, we found that the standard median measurement can
obtain satisfactory results for most point clouds acquired by 3D
scanning devices.

5. Conclusions

We have presented a robust, simple and efficient algorithm,
so-called RDP, for projecting points onto a point cloud along an
associated projection vector. The new method is based on the
directed projection (DP) algorithm [1,2] and does not need any
complex data structure. Our experiments show that the RDP
algorithm obtains high accuracy without requiring an explicit
or implicit reconstruction of the underlying surface from the
point cloud. The main theoretical/methodological contributions
of our work can be summarized as follows:

- We use the least median of squares (LMS) for replacing the
least sum of squares used in the DP algorithm. In contrast
to the original DP optimization equation, which minimizes
the weighted sum of the squared distances between the
point to be projected and the point cloud, our algorithm
minimizes the median of the residuals. In order to effectively
approximate the LMS optimization, the forward search
technique is utilized instead of the backward method.

- The major advantage in the RDP algorithm is to
automatically detect outliers during the directed projection
phase.

- We treat the noise and disturbing points together as outliers.
Noisy points could be removed by some existing smoothing
algorithms, whereas the disturbing points can not be detected
or removed by smoothing techniques. Our method does not
depend on the smoothing procedure.
- Our method can be directly applied to approximate the first
intersection point of ray/point cloud surface by projecting
the star point from the ray onto the point cloud surface.

Furthermore, we also discuss the differences with the existing
works, applications, and limitations on the RDP algorithm.
We believe that there are numerous other applications that can
benefit from the RDP algorithm.

Acknowledgements

The authors appreciate the comments and suggestions of all
anonymous reviewers, whose comments significantly improved
this paper.

References

[1] Azariadis PN. Parameterization of clouds of unorganized points using
dynamic base surfaces. Computer-Aided Design 2004;36(7):607–23.

[2] Azariadis PN, Sapidis NS. Drawing curves onto a cloud of points for
point-based modelling. Computer-Aided Design 2005;37(1):109–22.

[3] Liu Y-S, Paul J-C, Yong J-H, Yu P-Q, Zhang H, Sun J-G, et al. Automatic
least-squares projection of points onto point clouds with applications in
reverse engineering. Computer-Aided Design 2006;38(12):1251–63.

[4] Fleishman S, Cohen-Or D, Silva CT. Robust moving least-squares fitting
with sharp features. In: Proceedings of SIGGRAPH’05. 2005. pp. 544–52.

[5] Klein J, Zachmann G. Point cloud collision detection. Computer Graphics
Forum 2004;23(3):567–76.

[6] Mitra N, Gelfand N, Pottmann H, Guibas L. Registration of point
cloud data from a geometric optimization perspective. In: Proceedings of
Eurographics symposium on geometry processing. 2004. p. 23–2.

[7] Piegl L, Tiller W. The NURBS book. Berlin: Springer; 1995.
[8] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C. Point set

surfaces. In: Proceedings of IEEE visualization’01. 2001. p. 21–8.
[9] Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva C. Computing

and rendering point set surfaces. IEEE Transactions on Visualization and
Computer Graphics 2003;9(1):3–15.

[10] Liu Y-S, Yong J-H, Zhang H, Yan D-M, Sun J-G. A quasi-Monte Carlo
method for computing areas of point-sampled surfaces. Computer-Aided
Design 2006;38(1):55–68.

[11] Rousseeuw PJ. Least median of squares regression. Journal of the
American Statistical Association 1984;79(388):871–80.

M.-C. Du, Y.-S. Liu / Computer-Aided Design 40 (2008) 537–553 553
[12] Jones T, Durand F, Desbrun M. Non-iterative, feature-preserving mesh
smoothing. In: Proceedings of SIGGRAPH’03. 2003. p. 943–49.

[13] Fleishman S, Drori I, Cohen-Or D. Bilateral mesh denoising. In:
Proceedings of SIGGRAPH’03. 2003. p. 950–53.

[14] Atkinson A, Riani M. Robust diagnostic regression analysis. Springer;
2000.

[15] Weyrich T, Pauly M, Keiser R, Heinzle S, Scandella S, Gross M. Post-
processing of scanned 3D surface data. In: Proceedings of eurographics
symposium on point-based graphics 2004. 2004. p. 85–94.
[16] Adamson A, Alexa M. Ray tracing point set surfaces. In: Proceedings of

shape modeling international 2003. 2003. p. 272–79.
[17] Schaufler G, Jensen H. Ray tracing point sampled geometry. In:

Proceedings of the 11th eurographics workshop on rendering. 2000.
p. 319–28.

[18] Wald I, Seidel H. Interactive ray tracing of point based models. In:
Proceedings of symposium on point based graphics. 2005.

	An extension on robust directed projection of points onto point clouds
	Introduction
	The review of the DP algorithm
	Strengths and weaknesses of the DP algorithm
	Analyzing the influence of two weight functions
	Forward vs. backward methods

	Robust directed projection
	Least median of squares
	The forward search algorithm
	Initial robust estimator
	The implementation for the RDP algorithm

	Experimental results
	Example 1
	Example 2
	Example 3

	Discussion
	Orthogonal projection vs. directed projection
	Disturbing points
	Application on computing intersections of ray/point cloud surface
	Limitations

	Conclusions
	Acknowledgements
	References

