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a b s t r a c t

A global visibility map is a spherical image built to describe the complete set of global visible view
directions for a surface. In this paper, we consider the computation of global visibility maps for regions on
the boundary of a polyhedron. Both the self-occlusions introduced by a region and the global occlusions
introduced by the rest of the surfaces on the boundary of the polyhedron are considered for computing a
global visibility map.We show that the occluded view directions introduced between a pair of polyhedral
surfaces can be computed from the spherical projection of the Minkowski sum of one surface and the
reflection of the other. A suitable subset of the Minkowski sum, which shares the identical spherical
projection with the complete Minkowski sum, is constructed to obtain the spherical images representing
global occlusions. Our method has been successfully tested on many CADmodels. It extends the previous
methods for computing global visibility maps using convex decomposition, and it exhibits a better
performance.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

A point p in a 3D scene is visible along a view direction v if the
ray starting from p goes to infinity, in the direction −v, without
intersecting any entities in the scene. The notion of point visibility
can be extended to higher dimensions, such as 1D curves or 2D
surfaces. A curve or a surface is visible along a direction v if all the
points on the curve or the surface are visible along the direction
v. Given a view direction, finding the set of entities that are visible
along this direction is a well-known problem in computer graphics
and is referred to as the hidden surface/line removal problem (under
orthographic projection) [1,2]. The inverse problem is called a
visible set problem, defined as: given an entity in the scene, find the
set of view directions along which the given entity is completely
visible. In this paper, we restrict our attention to the visible set
calculation for polygonal surface meshes. For a sub-region on the
boundary of a polyhedron, we calculate the complete set of view
directions alongwhich all points on the region can be seen from the
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exterior. The mapping of the visible directions on the unit sphere
is a spherical image called the global visibility map (GVM).
GVM calculation for polyhedral models has broad applications

in process planning for many manufacturing processes such as 3-
axis Numerical Controlled (NC) machining, inspection by Coordi-
nate Measuring Machines (CMMs) [3–5], and mold design [6,7].
Given a region, its GVM associates the set of global interference
free access directions by a tool or a probe, if one can ignore the
small radii of the tool or the probe. In mold design, the GVM of
a surface associates a set of candidate parting directions with the
corresponding mold piece that forms the surface. In general, the
GVM computation serves as a query base for further process plan-
ning applications in which the general objective is to minimize the
number of setups or the number of mold pieces. In addition, GVM
is inherently related to some machine vision-related tasks such as
object recognition and object inspection. These tasks require the
computation of the visible sets, with the viewpoints located at fi-
nite positions [8,9].

1.2. Related work

Earlier work on visible set calculation of 3D objects dealt with
the visibility map (or visibility cone) calculation for surfaces,
which was first introduced by Kim et al. [10,11] for computing
visibilitymaps of Bézier surfaces and further explored by Elber and
Cohen [12] to cover the visibility calculation for free-form surfaces.
The general idea behind computing a visibility map is to compute
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the dual image [10] of the Gaussian map on the unit sphere.
It ignores the fact that other surfaces on the object boundary
may occlude the visibility of the target surface. Therefore, the
visibility map applies only to applications such as the local tool
pathplanning inmachining ormolddesign,wherein a regionunder
consideration is the whole pocket [13–15].
Approximation methods for computing the visible set for a 3D

object were designed to build a visibility matrix based on the
discretized approximation of the object and solution spaces [5,8].
The elements of the visibility matrix encode the visibility of
discrete surface entities from each sampled point in a quantized
viewing sphere, which can be calculated using hidden surface
removal from given viewpoints. The computation can be done
using either ray casting techniques [8] or z-buffer method through
graphics hardware [5,16,17]. However, the drawback of this
sample-and-test approach is its incompleteness. No matter how
good the sampling of the solution space, it is still possible to falsely
report some visible entities as invisible when the whole visible set
contains no sampled viewpoints or directions.
A few complete visibility methods have treated the solution

space as continuous andhave sought an exact solution [18–23]. The
aspect graph approaches partition viewpoint space according to
the qualitative aspect of the view [24], while the visibility complex
dealswith the creation of a data structure that encodes all visibility
relations between objects in the collection [25]. Dhaliwal et al. [22]
presented an algorithm for computing the global visibility for
triangle meshes, based on the occlusion calculation between a
pair of triangle facets. Our previous work [18] extended Dhaliwal’s
work to the occlusion calculation between a pair of convex facets.
Besides, we considered the completeness of a GVM and treated
a GVM as a spherical image which might degenerate to lower
dimensions. A similar idea for calculating the occlusions between
a pair of convex facets was explored from a different perspective
in [23]. The bottleneck of the above convex decomposition based
method [18,22,23] exists in the complex intermediate spherical
arrangement calculation for obtaining a final GVM. The method
needs to perform union operations among all spherical polygons
representing pairwise occlusions among all convex facets.
For computing the GVMs of general polyhedral surfaces, we use

the Minkowski sum operations. The Minkowski sum of two sets is
the set of all possible vector sumsof a point fromone set and apoint
from the other. The Minkowski sum is a useful geometric tool that
has been used in a number of applications such as robotics [26,27],
morphing [28], assembly planning [29], and CAD/CAM [30,31]. The
computation of the exact Minkowski sum of two convex objects,
such as planar polygons or polytopes, is known [32]. For computing
theMinkowski sums of general polyhedra, a prevailing approach is
to decompose each polyhedron into convex pieces, then compute
the pairwise Minkowski sums of pieces of the two, and finally
compute the union of pairwise sums [33]. The limitations are that
the optimal convex decomposition is known to be NP-hard itself
and there is also a bottleneck in computing the union of pairwise
Minkowski sums. Until recently, Hachenberger [34] presented
the first robust implementation of the 3D Minkowski sum of
two non-convex polyhedra, based on convex decomposition.
Another approach for computing the Minkowski sums of general
polyhedra is based on the convolution of the boundary of two
polyhedra. Convolution was proposed originally on 2D planar
tracings [35] and later extended to 3D on polyhedra tracings
[36]. It can be considered as an implicit representation of the
Minkowski sum, while being smaller and easier to compute. Kaul
and Rossignac [28] used weighted Minkowski sums to construct
a smooth interpolation between two polyhedra for animation.
Ramkumar [37] and Wein [31] used convolution to compute the
outer boundary of the Minkowski sum of two polygons.
In this paper, we extend the previous works [18,22,23] on the

global visibility calculation. The terms, Global Visibility Map, Local
Visibility Map, and Global Occlusion Map are formally defined to
differentiate the set of self-occlusion free view directions, the set
of total occlusion free view directions, and the set of occluded view
directions introduced by other obstacles in a global environment.
A general method for computing the global visibility maps for
regions on the boundary of a polyhedron is proposed.Weborrowed
the M-region idea introduced by Halperin et al. [29] for global
occlusion map computation using Minkowski sums. We show that
the global occlusionmaps of a polyhedral surface can be computed
from the spherical projection of the Minkowski sum between the
reflection of the given surface through the origin, and the rest of
the surfaces on the given polyhedron.We differentiate ourmethod
from the M-region [29] by the way the spherical projections of the
Minkowski sum are computed. Specifically, we construct a suitable
subset of the Minkowski sum which shares the identical spherical
projection with the complete Minkowski sum; thus, our method
avoids the explicit Minkowski sum boundary calculation which is
computationally expensive. Compared to convex decomposition-
based methods, our method reduces the size of the intermediate
spherical arrangement generated for computing a GVM in general
cases.

2. Preliminaries

Throughout this paper, P denotes a polyhedron, which is a
watertight solid bounded by a piecewise linear surface. We denote
the boundary surface of P by ∂P and the interior of P by Int(P ).
The symbols ∂(·) and Int(·) are also used for denoting boundaries
and interiors of general sets. ∂P is a closed polyhedral surface and
is required to be an orientable 2-manifolds. S denotes a polyhedral
surface with border curves and S also represents a sub-region on
∂P in this paper.
The symbols VS , ES , and FS refer to a vertex, an edge, or a face

of a polyhedral surface S, while S.vertices, S.edges, and S.faces
refer, respectively, to the set of all vertices, edges, and faces of S.
Correspondingnotations are used for any other polyhedral surfaces
referred to in this paper. Each face F is associated with an outward
normal, denoted nF . The corresponding symbol of an outward
normal is used for any other face referred to in this paper.
A face F of ∂P is a hull facet, if F lies on the convex hull of P ;

otherwise, F is a non-hull facet. A maximal connected set of non-
hull facets on P forms a concave region of P .
Each face F on ∂P divides the three-space into two open half

spaces separated by the carrying plane of F : the positive half space
of F , or H+(F), is the open space on the side of F ’s outward normal
points, and the negative half space of F , or H−(F), is the half space
on the other side.
Face F is front-facing to a point p if p lies inH+(F), and F is back-

facing to p if p lies in H−(F). F is tangent-facing to p if p is on the
carrying plane of F . If all the faces of a polyhedral surface S have
the same facing type to point p, S is called a pure facing surface
to p. Corresponding notations of pure front-facing, pure back-facing
are defined for a surface S with respect to point p if S.faces are all
front-facing or back-facing to p.
The viewing sphere (or unit sphere), S2, represents the manifold

of all unit vectors. The spherical geometric terms spherical point,
spherical segment, and spherical polygon are directly analogous to
the point, line segment, and polygon in planar geometry. Note that
a spherical segment is always a geodesic arc onS2. A spherical image
is a point set on S2 which may present itself as a 2-dimensional
region (2-cell), 1-dimensional curve (1-cell), 0-dimensional point
(0-cell), or their combinations. Two spherical points u ∈ S2 and
v ∈ S2 are antipodal if u = −v, where u is the antipode of v
and vice versa. Two spherical images are opposite to each other if
and only if, for each spherical point in one image, there exists its
antipode in the other image. A spherical image is hemispherical if it
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Fig. 1. Dualities on the unit sphere.
(a)Φ(X). (b)ΦP .

Fig. 2. Spherical projections. (a) The spherical projection of a general point set X .
(b) When c is exterior to a closed polyhedron P , Φ(P ) is equal to the spherical
projections of all the back-facing faces on ∂P , and the red curves in (b) show
the border curves of those pure back-facing surfaces. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

is contained in any closed hemisphere. A spherical image is convex
if it is hemispherical and, for any pair of pointsu and v in the image,
the spherical segment uv is also in the image. The spherical convex
hull (SCH) for a spherical image X ∈ S2 is the minimal convex
spherical image containingX . Note thatwehave to consider special
geometric properties of the spherical geometry. For example, there
are special cases of spherical polygons, such as a polygon bounded
by two semi great circles (lune), a polygon bounded by a full great
circle (hemisphere), or an unbounded polygon (full sphere).
The dual image of a spherical point v ∈ S2 is a closed

hemisphere H , defined by H = {x | (v · x) ≥ 0, x ∈ S2, v ∈ S2}
and vice versa (see Fig. 1(a) and (b)). The dual of a spherical convex
polygon P with vertices v1, v2, . . . vn is also a spherical convex
polygon P∗. Let Hi be the dual hemisphere of vi, P∗ is defined by
H1 ∩ H2 ∩ · · · ∩ Hn. Each vertex of P corresponds to an edge of P∗
and vice versa (see Fig. 1(c)–(e)). More discussion on the details of
dualities on the unit sphere can be found in [10].
The spherical projection of a point set X ∈ R3 is defined as

Φ : X → S2 such thatΦ(p) =
{
Ecp
|cp| | p ∈ X

}
, where c is the center

ofS2. In thiswork, c is fixed at the origin and it is also used to denote
the origin. The spherical projection of a closed point set X is equal
to the spherical projection of its boundary, i.e.Φ(X) = Φ(∂(X)). If
a polyhedral surface S is pure facing to c, the boundary ofΦ(S) can
be computed from the spherical projection of the border curves of
S. For a polyhedron P ,Φ(P ) is equal to the union of the spherical
projections of all the pure back-facing surfaces on ∂P with respect
to c. See Fig. 2 for an illustration of spherical projections.

3. Local visibility vs. global visibility

Consider a surface S in a scene.When S is visible along direction
v, two conditions must be held. First, any line of sight along
direction v intersects S nomore than once. Second, any line of sight
along v intersects no other surfaces in the scene before it intersects
with S. If the first condition does not hold, we say S is self-occluded
in direction v; and if the second condition does not hold, we say
S is globally occluded in direction v. Using the concepts of self-
occlusion and global occlusion, the terms, local visibility map and
global visibility map, are defined for a surface. We let the direction
that tails at a spherical point and heads into the center of the unit
sphere be the corresponding view direction.

3.1. Local visibility map

Definition 1 (Local VisibilityMap (LVM)). The local visibilitymap of
a surface S, denoted by LVM(S), defines the set of spherical points
on S2 corresponding to all the view directions which are not self-
occluded by S itself.

LVM(S) can be calculated as the set of spherical points {v |
v · np > 0, p ∈ S, v ∈ S2}, where np is the outward normal of
surface S at point p [10].
For a single polygonal face F , its LVM is a closed hemisphere on

S2 dual to the outwardnormal or F . The LVMof a polyhedral surface
S is the intersection of all the hemispheres which are the LVMs of
S.faces [15]. That is,
LVM(S) = LVM(F1) ∩ LVM(F2) ∩ · · · ∩ LVM(Fn)

= H1 ∩ H2 ∩ · · · ∩ Hn, (1)
where {F1, F2, . . . Fn} = S.faces, and {H1,H2, . . .Hn} are the set of
hemispheres dual to {nF1 ,nF2 , . . .nFn}.
The calculation of LVMuses the notion of a Gaussianmap. Given

a surface S lying in R3, the Gaussian map is a continuous map
GM : S → S2 such that GM(p) is the normal vector to S at
p. We adapt the original definition of Gaussian map and define a
discrete Gaussian map for a polyhedral surface S or DGM(S) by
considering S as a bucket of facets and ignoring all the vertices and
edges of S. Each facet in S is then mapped to a point on S2, and
DGM(S) = {nF | F ∈ S.faces}.
An important relation established in [10,15] between the

discrete Gaussian map and the local visibility map for a polyhedral
surface is as follows.

Proposition 1. For a polyhedral surface S, if the discrete Gaussian
mapDGM(S) is not contained in a hemisphere, then LVM(S) is empty.
Otherwise, let SCH(DGM(S)) be the spherical convex hull (SCH) of the
DGM(S). LVM(S) is equal to the dual image of the SCH(DGM(S)).
The procedure for computing LVM(S) based on Proposition 1 is

illustrated in Fig. 3. More discussion on the local visibility map and
its properties can be found in [10,15].

3.2. Global visibility map

Definition 2 (Global Visibility Map (GVM)). The global visibility
map of a surface S, denoted byGVM(S), is the set of spherical points
on S2 corresponding to all the view directions free of both self-
occlusion and global occlusion.

In this work, if a ray emanating from S in direction v touches
another point on ∂P without intersecting Int(P ), −v is assumed
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Fig. 3. Illustration of LVMcalculation. (a) the surface S, (b) theDGM(S). The LVM(S)will be the intersection of all hemispheres dual to each point inDGM(S). (c) the boundaries
of all the hemispheres in this set. (d) the SCH(DGM(S)), and (e) the dual image of the spherical convex hull in (d). According to Proposition 1, the spherical polygon in (e) is
the LVM(S), which is equal to the intersection region in (c).
to be a global visible direction. Inmanufacturing applications,−v is
considered as ‘‘just touching’’ and is generally treated as accessible
direction. Since the boundaries of a GVM or a LVM correspond
to the extreme directions, GVM and LVM are defined as closed
spherical images.

Definition 3 (Global Occlusion Map (GOM)). The global occlusion
map introduced by a surface O to another surface S, or GOM(S,O),
is the set of spherical points describing all the globally occluded
view directions of S due to O.

Let the set of spherical points describing all the stabbing lines
from S to O beQ,

Q =

{
Epq
|pq|

∣∣∣∣ p ∈ S, q ∈ O} . (2)

For two disjointed surfaces S and O, ∂Q represents the set of
‘‘just touching’’ stabbing lines. The set of directions on ∂Q are not
considered as globally occluded directions of S due to O. Thus, for
two disjointed surfaces S and O, we have

GOM(S,O) = Int(Q). (3)

Since we only consider one polyhedron P in our scene, for
a sub region surface S ∈ ∂P , only the surfaces in (∂P − S)
might introduce global occlusions to surface S. The set of points
in LVM(S) excludes all possible self-occlusions by S itself while
GOM(S, ∂P − S) includes all possible global occlusions. Therefore,
the difference between LVM(S) and GOM(S, ∂P − S) represents
the set of global visible directions of S; i.e.,

GVM(S) = LVM(S)− GOM(S, ∂P − S). (4)

Practically, the global occlusionmaps due to the faces in ( ∂P −
S) are possibly overlaid with each other. We wish to define the
subset faces of (∂P − S) which can minimize the overlay. Assume
a ray emanating from a point on ∂P can only go into the positive
half space defined by the oriented tangent plane of the point.
(Otherwise, the ray is always blocked by ∂P itself.)

Property 1. The rays starting from a hull facet of P can always go
to infinity. The rays emanating from a non-hull facet F of P will
either go to infinity or be blocked first by another non-hull facet that
‘‘potentially faces’’ F [18,22].

Note that a pair of non-hull faces F ∈ ∂P and F ′ ∈ ∂P
‘‘potentially face’’ each other if all the following conditions are
satisfied: (1) F and F ′ are presented in the same concave region
of P ; (2) F and F ′ are not coplanar; (3) F lies fully or partially in
H+(F ′), and F ′ lies fully or partially in H+(F) [18].
Consider the set of parallel rays starting from the points in S

alongdirection v. If vdoes not belong to LVM(S), the direction vwill
be self-occluded. If v ∈ LVM(S), for a specific face F ′ ∈ (∂P − S),
if v · nF ′ > 0, none of the rays in direction v can reach F ′ from its
front side. Thus, we have the following property.
(a) Two faces sharing a
concave edge.

(b) GOM(FS , F ′) is a lunar region.

Fig. 4. Occlusionmaps between twoneighboring faceswhich share a concave edge.

Property 2. For a face F ′ ∈ (∂P −S), if the hemisphere dual to nF ′ is
a superset of the LVM(S), then without self-occlusion, no set of parallel
rays emanating from points of S can reach F ′.

To check whether the hemisphere dual to nF ′ is superset to
LVM(S), it is sufficient to check ifnF ′ ∈ SCH(DGM(S)). See theproof
in [15].
We have discussed the GOMs between two disjointed surfaces.

See Eq. (3). Now we consider the set of faces adjacent to S. When a
face F ′ in (∂P−S) is adjacent to FS ∈ S, depending on the convexity
of the common edge, the global occlusions between FS and F ′ have
different properties.

Property 3. If a face F ′ ∈ (∂P−S) shares a convex edgewith FS ∈ S,
no set of parallel rays emanating from S can reach F ′ without self-
occlusion.

This is obvious since the unblocked rays starting from FS go only to
the H+(FS).
When two neighboring faces FS and F ′ share a concave edge

(Fig. 4), all the stabbing lines from FS to F ′ have the direction v
satisfying {v · nFS > 0, v · nF ′ 6 0}. The set of stabbing lines
prescribes a lunar region on S2 representing the GOM(FS, F ′), see
Fig. 4(b). Assume the common edge of FS and F ′ be E. The stabbing
lines from FS to E form a semi-circle with a pole at nFS , bounded by
two spherical points, (nFS × nF ′ ) and its antipode. This semi-circle
corresponds to the GOM(FS, E) (Fig. 4(b)). An observation is that
any point in the interior of this semi-circle is a globally occluded
direction. The stabbing lines from E to F ′will be another semi-circle
with a pole at−nF ′ , bounded by the same two spherical points. The
set of stabbing lines forming this semi-circle touches the face of F ′
without going into Int(P ) there in F ′. Thus, the points on the later
semi-circle are not globally occluded by F ′ (see the dashed circles
in Fig. 4(b)). In summary, we have the following property.

Property 4. If two faces FS and F ′ share a concave edge, GOM(FS, F ′)
is equal to a lune dual to the spherical image defined by {nFS ,−nF ′}.
The semi-circle with the pole at nFS is in GOM(FS, F

′), while the semi-
circle with the pole at −nF ′ is not in GOM(FS, F ′). The two bounding
points of the lune are not in GOM(FS, F ′).
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(a) Polyline S ⊂ P ,NS and OS . (b) DGM(S). (c) DGM(S +NS ). (d) LVM(S +NS ). (e) GOM(S,OS ). (f) GVM(S).

Fig. 5. 2D Illustration of Eq. (6) for a polyline S on a polygon P .
Based on Properties 1–4, we classify the faces in (∂P − S) into
different categories.

Definition 4 (Neighboring Occluder). The neighboring occluderNS
for a surface S is the set of faces in (∂P−S)which shares a concave
edge with S.

Definition 5 (Potential Occluder). The potential occluder OS for a
surface S is the set of faces in (∂P − S)which ‘‘potentially face’’ S.
A face F ′ in (∂P−S) ‘‘potentially faces’’ S if the following conditions
are satisfied: (1) F ′ is disjointed with S; (2) F ′ ‘‘potentially faces’’ at
least one face of S; and (3) nF ′ 6∈ SCH(DGM(S)).

Besides the faces inNS andOS , all the other faces of (∂P−S) can
be ignored for global occlusion calculation because a ray emanating
from a point in S either touches another point in S or touches a
point inNS orOS before it can reach the points in (∂P − S−NS −
OS).
For each face F ′ in NS , F ′ shares a concave edge with one face

FS ∈ S. Using Property 4, GOM(FS, F ′) is a lune (see Fig. 4). If
one considers only the set view directions in LVM(S), the global
occlusions introduced to all the other faces in S, due to F , are
always subset to the lune GOM(FS, F ′). AssumeNS = {F ′1, . . . , F

′
n},

and the hemispheres dual to nF ′1 , . . . ,nF ′n are H1, . . .Hn, LVM(S)−
GOM(S,NS) is equal to LVM(S)∩H1 · · · ∩Hn, which is meanwhile
equal to LVM(S+NS). Therefore, the global occlusion effect due to
NS can be virtually merged to the self-occlusion for an augmented
surface (S +NS); i.e.,

LVM(S)− GOM(S,NS) = LVM(S +NS). (5)

In summary, theGVMof a polyhedral surface S canbe calculated
by,

GVM(S) = LVM(S +NS)− GOM(S,OS). (6)

It is obvious that the GVM of a surface containing only hull
facets, or a surface forming a whole concave region, is equal to
the LVM of the surface. In general, the GVM for a surface S ∈ ∂P
is subset to LVM(S). Fig. 5 gives a 2D example for illustrating the
spherical maps defined in this section and the relation established
in Eq. (6). For a polyline S = {l8, l9} on a polygon P bounded by
segment {l1, . . . , l12}, consider all the line segments for occlusion
testing. l1 to l4 are not potentially facing S since they are on the
convex hull of P . S is contained in the negative half space defined by
l5. Thus, l5 does not potentially face S. l6 belongs to SCH(DGM(S));
it is not a potential occluder of S either. l7 is convex connectedwith
S and is not a neighboring occluder. Therefore, OS = {l11, l12} and
NS = {l10}, as shown in Fig. 5(a). The discrete Gaussian map of
S contains two points describing the line normals of S (Fig. 5(b)).
To get the LVM(S + NS), one needs to construct DGM(S + NS)
(Fig. 5(c)) and compute its dual image (Fig. 5(d)). LVM(S + NS)
describes the set of view directions free of self-occlusion among S
and the global occlusion introduced byNS . GOM(S,OS) represents
the global occlusions introduced by OS , which is the spherical
image describing the stabbing lines from S to OS , as shown in
Fig. 5(e). The final GVM(S) is calculated as the non-regularized
Boolean difference between LVM(S + NS) and GOM(S,OS). The
final result is shown in Fig. 5(f). Note that the two bounding points
in GVM(S) are global visible directions.
The Boolean difference and union operators in Eqs. (4)–(6) are

non-regularized Boolean operators. A regularized Boolean opera-
tion between two bodies of the same dimension deletes the results
with lower dimensions. However, the non-regularized Boolean op-
eration maintains those degenerated outputs. Therefore, the final
GVM for a surfaces, calculated through Eq. (6) using non-regula-
rized Boolean operators, may contain lower dimensional elements.
The GVM for a polyhedral surface may contain 0-cell(s), 1-cell(s),
2-cell(s), or a combination. Low-dimensional GVMs play an impor-
tant role in many CAM applications since for the common features
such as slots, steps, bosses, etc., 0-cell and 1-cell GVMs occur fre-
quently and they represent tight passages of the tool’s accessibil-
ity [18].

4. Calculating global occlusion maps using Minkowski sums

The Minkowski sum of two sets, S1 ∈ R3 and S2 ∈ R3, denoted
S1 ⊕ S2, is defined as: S1 ⊕ S2 = {p + q | p ∈ S1, q ∈ S2}.
We now show that the global occlusion map of a surface S due to
another surface O can be derived from the spherical projection of
theMinkowski sumbetween−S andO, where−S = {−p | p ∈ S}.

Proposition 2. For two disjointed surfaces S and O,

GOM(S,O) = Int(Φ(O⊕−S)).

Proof. According to Definition 3, GOM(S,O) is the open spherical
image describing the vectors in the set

{
Epq
|pq| | p ∈ S, q ∈ O

}
. The

spherical point describing a normalized vector Epq is equal to the
spherical projection of the point (q − p). Therefore, GOM(S,O) is
equal to the spherical projections for all the points in {q − p |
p ∈ S, q ∈ O}, which is exactly equal to O ⊕ −S. Since GOM
is an open spherical image for two disjointed surfaces, we have
GOM(S,O) = Int(Φ(O ⊕ −S)). We illustrate the proof in Fig. 6
with a 2D example. �

The Minkowski sum of two polyhedral surfaces has the
following property.

Property 5. Let O and S be two polyhedral surfaces, and M = ∂(O⊕
S). Any face of M can be written as VO ⊕ FS , FO ⊕ VS or EO ⊕ ES [28].

We define all faces that can be written as VO ⊕ FS , FO ⊕ VS or
EO⊕ ES as tentative faces. The pair of VO and FS , FO and VS , or EO and
ES is the parent of the corresponding tentative face. A tentative face
is said to be of type VF , FV , or EE. Fig. 7 shows an example for the
different types of tentative faces on the Minkowski sum boundary
∂(O⊕ S).
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(a) Two 2D curves S
and O, and a
stabbing line from
p ∈ S to q ∈ O.

(b) GOM(S,O)
describes the
set of stabbing
lines from S to
O.

(c)−S and O. (d) (O⊕−S). (e)Φ(O⊕−S).

Fig. 6. 2D Illustration for the proof of Proposition 2. Note that the blue curve in (b) showing the GOM(S,O) is equal to the blue curve in (e), which is theΦ(O⊕−S).
Fig. 7. Different types of tentative faces on ∂(O⊕ S).
The set of tentative faces defines a superset of ∂(O ⊕ S); it
is, meanwhile, a subset of O ⊕ S. For a closed set, the spherical
projection of the set is equal to the spherical projection of its
boundary (see Section 2). Therefore,Φ(O⊕ S) is equal toΦ(∂(O⊕
S)); and it further equals the spherical projection of all the
tentative faces. The set of tentative faces has a size complexity of
O(mn), given that the two surfaces O and S have sizes m and n
respectively. But in fact, many tentative faces do not really show
up on ∂(O⊕ S). We wish to filter out the tentative faces which are
not on ∂(O⊕ S) thus, to save computation.
Each edge E in surface O or S associates with a tangent vector,

denoted tE , which is the unit vector parallel to E. Given a face F in
O or S, and an edge E incident to F , the inface normal nE,F is defined
as the unit vectorwith directionnF×tE , oriented such that it points
towards the interior of F .
A VF or an FV type of tentative face can be computed by

translating the face parent along the vector corresponding to the
vertex parent, and the normal direction of the tentative face is
parallel to the normals of the face parent. For an EE type tentative
face, it is a parallelogram with the normal parallel to (tEO × tES ),
where tEO and tES are the tangent vectors of the two edge parents.
Nowwe define two terms, the tentative normal nten and the critical
set Ccri, for a tentative face as follows.
For a VF or FV type of tentative face with the parent pair {V , F},

(V ∈ S.vertices, F ∈ O.faces, or V ∈ O.vertices, F ∈ S.faces), nten is
the normal of the face parent, i.e. nten = nF . Let the set of tangent
vectors for all the edges incident to V be T = {tEi} (each tEi ∈ T is
defined as pointing away from V ). Define the set of dot products in
nten · T as the critical set Ccri of the corresponding VF or FV type of
tentative face.
For an EE type of tentative face with the parent pair {EO, ES},

define nten = tEO × tES . Let N be the set of inface normals of the
edges EO and ES in their neighboring faces. The set of products in
nten · N is defined as the critical set Ccri for an EE type of tentative
face.
There are four types of tentative faces classified by their critical

sets Ccri.

∗ {0, 0}: a tentative face with all zeros in its Ccri.
∗ {+,−}: a tentative face with both negative and positive
numbers in its Ccri.
∗ {+, 0}: a tentative face with some positive numbers but
without negative numbers in its Ccri.
∗ {−, 0}: a tentative face with some negative numbers but
without positive numbers in its Ccri.

Lemma 1. A tentative face of O⊕ S is not on ∂(O⊕ S) if its Ccri has
the type {+,−}.

Lemma 2. If a tentative face of O ⊕ S is on ∂(O ⊕ S), and its Ccri
has the type {−, 0}, the outward normal of the tentative face is nten;
otherwise, if Ccri has the type {+, 0}, then the outward normal of the
tentative face is−nten.

The proofs for the above two lemmas are given in the Appendix.
Consider the case when the Ccri of a tentative face are all zeros.

This happens only when the two parents of the tentative face are
in non-general positions. In a non-general position, the normal for
a tentative face is unstable since the tentative face might belong to
a degenerated region of O ⊕ S. In this work, we consider all non-
general positions and record the normal for tentative faces with
type {0, 0} as parallel to nten and pointing to the direction such that
the tentative face will be back-facing to the origin c.
Recall that, for a closed polyhedron, its spherical projection is

equal to the spherical projections of its pure back-facing surfaces.
In a general position, ∂(O ⊕ S) is a closed polyhedron, while
in a non-general position, ∂(O ⊕ S) may contain open surfaces
corresponding to degeneratedMinkowski sums. Asmentioned, we
set all the tentative faces resulting from non-general positions as
back-facing to c. Therefore, to obtain Φ(O ⊕ S), it is sufficient
to compute the spherical projection for the set of back-facing
tentative faces to c.

Definition 6 (Effective Minkowski Envelope (EME)). Given two
disjointed surfaces S and O, the effective Minkowski Envelope for
O⊕S, denoted as EME(O⊕S), is defined as the set of backing-facing
tentative faces ofO⊕S (with respect to origin c), whose critical sets
are not in the type {+,−}.
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(a) Input:a polyhedronP and surface
S (the red surface).

(b) Concave regions of P . The hull
facets are colored in grey while the
non-hull facets in each concave
region are colored differently.

(c) The neighboring occluderNS
(yellow) and the potential occluder
OS (green).

(d) LVM(S +NS). (e) GOM(S,OS). (f) Output:GVM(S).

Fig. 8. The procedural for GVM calculation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
We have shown that the set of tentative faces whose critical
sets are not in the type {+,−} defines a superset for ∂(O ⊕ −S)
and a subset to O ⊕ −S. Therefore, the set of back-facing faces of
this set shares an identical spherical projection with the complete
Minkowski sum O⊕−S. Thus,

GOM(S,O) = Int(Φ(O⊕−S)) = Int(Φ(EME(O⊕−S))). (7)

Note that, among the faces of EME(O ⊕ S), the adjacency
relations can be inherited from their parents’ adjacency relations.
For instance, in Fig. 7, two tentative faces F 1O ⊕ V

1
S and F

2
O ⊕

V 1S are adjacent to each other because they share the common
edge E5O ⊕ V

1
S . Therefore, we can record EME(O ⊕ S) as a set of

maximal connected pure back-facing surfaces with respect to the
origin. For each connected pure back-facing surface, its spherical
projection can be computed through projecting its border curves
onto S2. Thus, it is sufficient, during implementation, to record only
the border curves of each pure back-facing polyhedral surface of
EME(O⊕ S).

5. Calculating GVMs of polyhedral surfaces

5.1. GVM algorithm

The overview method is listed, step by step, in Algorithm 1
and graphically illustrated with an example in Fig. 8. In the first
step, the convex hull of P is calculated and the hull facets and
the non-hull facets are labeled (Fig. 8(b)). Then in the second step,
the potential occluder and neighboring occluder of S are located
using the criteria discussed in Section 3.2. In step 3, the algorithm
augments the surface S by its neighboring occluder and calculates
the LVM for (S + NS) using Proposition 1 (Fig. 8(c)). If LVM(S +
NS) is empty, the algorithm returns an empty set for GVM(S).
Otherwise, if theOS are empty, the algorithm returns LVM(S+NS)
as GVM(S). If none of the LVM(S + NS) and the OS are empty, the
algorithm goes to step 9 to calculate the GOM between S and its
potential occluder OS , by computing the EME(OS ⊕−S) using the
methoddescribed in Section 4. The algorithm returns LVM(S+NS)-
GOM(S,OS) as the final result of GVM(S) (see Fig. 8(f)).
Algorithm 1 GlobalVisibilityMap
Input: A polyhedron P and a user defined polyhedral surface S ⊂
∂P
Output: GVM(S)
begin
1: Calculate the concave regions of P . Classify faces on ∂P into
hull facets and non-hull facets.

2: Find the potential occluderOS and the neighboring occluderNS
for S.

3: Calculate LVM(S +NS) as dual to SCH(DGM(S +NS)).
4: if LVM(S +N ′S ) ≡ ∅ then
5: return GVM(S) as ∅
6: else if OS ≡ ∅ then
7: return GVM(S)⇐ LVM(S +NS)
8: else
9: Calculate GOM(S,OS)⇐ Int(Φ(EME(OS ⊕−S)))
10: GVM(S)⇐ LVM(S +NS)- GOM(S,OS)
11: end if
12: return GVM(S)
end

5.2. Implementation details

Sections 3 and 4 have shown that the approach described in
Algorithm 1 theoretically leads to exact global visibility maps.
However, numerical accuracy problems common to geometric al-
gorithms may affect us and make the implementation difficult.
There has been a great deal of progress in developing techniques
for robust geometric computations [38,39]. However the imple-
mentation of these approaches for a different purpose is non-trivial
and believed to be a research issue in its own right, from a pure
computational geometry point of view. This is beyond the scope of
the paper.
For the LVM computation in step 3 of Algorithm 1, we imple-

mented the hemispherical testing and spherical convex hull algo-
rithm introduced in [15]. Note that, in general cases, LVM(S) is a
2-cell convex spherical image. There are cases when a LVM dege-
nerates to a low dimensional spherical image. LVM(S) degenerates
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(a) The semi-circle sweep line. (b) The hemispherical sweeping for
the example in Fig. 8(e).

Fig. 9. Extension of the plane sweep algorithm to hemispherical space.

to a pointwhen SCH(DGM(S)) is a hemisphere and it degenerates to
an edgewhen SCH(DGM(S)) is a lunar face or a semi-circle. The data
structure for representing a LVM or a GVM (GVM has degenerate
cases too) contains a ‘‘points pool’’, an ‘‘edges pool’’, and a list of
0-cells, 1-cells, and 2-cells representing isolated spherical points,
segments, or polygons.
For computing LVM(S + NS)-GOM(S,OS), a spherical arra-

ngement is to be computed by overlaying LVM(S + NS) and
Φ(EME(OS⊕−S)). During the implementation, we first interfaced
with theNef polydedra data structure embedded on the sphere and
the related algorithms implemented in CGAL [40] for computing
the arrangement. Cartesian kernel with the Gmpq (arbitrary
precision rational number) number type, which uses the exact
arithmetic for numerical operations, is utilized to ensure the
numerical accuracies. This implementation performed nicely for
different simple inputswith orwithout degeneracies. But it usually
ran out ofmemory formedium size inputs, such as an arrangement
with 103 spherical points. (We used 2 GB of RAM and 4 GB of swap
space.)
We further implemented the plane sweep algorithm described

in [41] onto the hemispherical space for computing the intersec-
tions among the overlay, and we turned to the floating point num-
ber type. For the adapted plane sweep algorithm, a semi-circle
scans a hemisphere containing LVM(S+NS). The intersection point
among all these polygons is computed along with the sweep, with
the time complexity O((n + k) log n), where n is the number of
spherical points in the input polygons, and k is the total number
of intersection points among the input spherical segments. Fig. 9
gives the idea of the hemispherical sweeping (see Fig. 9(a)) and the
process of the sweeping for the example in Fig. 8(e) (see Fig. 9(b)).
We use the following parametrization of the unit sphere. The first
vertex v of the spherical image LVM(S+NS) is set as the north pole
and the spherical segment L of LVM(S + NS) reaching v is aligned
with the Prime Meridian. Every spherical point p in R3 is parame-
terized into a parameter {θ, φ}, where θ is in [0, π] denoting the
angle between the two unit vectors v and p, and φ is in (−π, π]
denoting the spherical angle between the Prime Meridian and
the spherical segment pv. The hemispherical sweeping method
scans the hemispherewith parameter φ in [0, π]. As expected, this
implementation was much faster than the exact computation im-
plemented before. But we had to be very careful handling the de-
generate inputs using floating point numbers (e.g., more than two
segments intersect in the same spherical point, or the spherical
segments are collinear with the scanning semi-circle).

5.3. Complexity analysis

Let the combinatorial sizes of (S + NS) and OS be m and n,
respectively. The LVM(S + NS) takes the time of O(m log(m)) and
it has a linear size complexity of O(m) (see [15]). To compute
LVM(S + NS)-GOM(S,OS), a spherical arrangement is generated
by overlaying LVM(S + NS) and Φ(EME(OS ⊕ −S)). Since the
EME(OS ⊕ −S) is composed of several pure back-facing surfaces,
the size of Φ(EME(OS ⊕ −S)) is dependent on the size of the
border curves of all the pure back-facing EME surfaces. The time
complexity for building Φ(EME(OS ⊕ −S)) is O(mn). We now
analyze the size complexity of Φ(EME(OS ⊕ −S)) and compare
it with the arrangement generated by the convex decomposition
based method.
EME(OS ⊕ −S) has the worst case size complexity of O(mn).

For instance, when every tentative face has a type {0, 0} (which
happens when OS and S contain only pairwise parallel faces in an
extreme non-general position), then every tentative face is a face
in EME(OS ⊕ −S). This example leads to the worst case for the
size of EME(OS⊕−S). In a general position, one assume that there
exists no parallel cases inOS and S (including pairs of parallel faces
or edges). We let ∂P be represented by convex faces too, so that
the input to the EME basedmethod and the convex decomposition
based method are the same. We want to show that, in a general
position, the size ofΦ(EME(OS⊕−S)) is less than or at most equal
to the size of arrangement generated by the convex decomposition
based method.

Lemma 3. For two disjointed convex faces FS and FO in a general
position, EME(FS⊕FO) contains a single connected polyhedral surface.
We give an informal proof here. Let M = (FS ⊕ FO). M be a

convex polyhedron, with its faces subset to the set of tentative
faces (see the top figure in Fig. 10(a)). In a general position, the
parents of any face ofM are unique [28].M can be considered as the
union of Minkowski sums between FS and all points of FO, which
are the set of parallel faces with normals parallel to nFS . Along
the direction nFS and its antipode, there are two local minimum
points in FO. Minkowski sums of FS and these two local minimum
points correspond to the two FV types tentative faces, which have
the types {+, 0} or {−, 0}. These two FV types tentative faces are
on ∂M (middle-left figure in Fig. 10(a)). Similarly, M can also be
considered as the union of Minkowski sums between FO and all
points of FS . Therefore, there are correspondingly two VF types
tentative faces generated by the Minkowski sum of FO and the
two local minimum points of FS in the directions parallel to nFO .
These two FV types of tentative faces are also on ∂M (middle-right
of Fig. 10(a)). The four tentative faces are connected through EE
type of tentative faces. Each of them is of type {+, 0} or {−, 0},
representing the unified local minimum edges along the directions
nten or −nten (bottom row of Fig. 10(a)). Therefore, in a general
position, EME(FS ⊕ FO) defines the set of backing facing faces of
∂M , which is a single connect polyhedral surface.
When OS and S are polyhedral surfaces containing more than

one face, the process of building maximum connected surfaces
among all faces in EME(OS⊕−S) is related to finding themaximum
sub-component of (OS ⊕ −S), whose boundary faces are simple
connected EME faceswhich do not self-cross each other. Therefore,
several pairwise Minkowski sums of convex faces are connected
and projected together. We use the example in Fig. 10(b) for an
illustration. By the convex decomposition method, Φ(OS ⊕ −S)
produce a spherical arrangement by the overlay ofΦ(FO⊕ FS) and
Φ(FO ⊕ F ′S). The two spherical images have an overlapped region
corresponding to the spherical projection ofΦ(FO⊕ES), where ES is
the common edge of FS and F ′S . ButΦ(EME(OS⊕−S)) only contains
a single spherical map. Therefore, a deduction of Lemma 3 is that
in a general position, the arrangement size of Φ(EME(OS ⊕ −S)) is
less than or at most equal to the arrangement size of Φ(OS ⊕ −S)
generated by convex decomposition based methods.
The computation of GVM is output-sensitive to the intermedi-

ate arrangement size of GOMs. In the worst case, the EME-based
method and the convex decomposition-based method generate
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(a) Minkowski sum of two convex faces FS and FO .

(b) Minkowski sum of a surface Owith one face FO and a surface S with two faces FS and F ′S .

Fig. 10. Illustration for the proof of Lemma 3 and its deduction.
arrangements with the same size complexity of O(m2n2). There-
fore, the time complexity of computing GVM in the worst case is
O(m2n2(logm + log n)) for both methods, while in general cases,
we found the number of overlayed spherical images is reduced
to a large extent compared with the convex decomposition-based
method. Therefore, the arrangement size ismuch smaller than that
of a convex decomposition method. The runtime size and time
comparison of the two methods will be shown in our experiments
and described in the next section.

6. Experiments

We show some of our testing results on different CAD
polyhedra. All the testing models in this paper can be downloaded
from the website http://purdue.edu/shapelab. In each model, the
selected surface S for GVM calculation is colored in red and its
neighboring occluder is colored in yellow. The potential occluders
of S are colored in green. For simplicity of rendering, we show only
the boundaries for the spherical polygons in all the 2-cell types of
spherical images.
Figs. 11 and 12 give two examples where both the neighboring
occluder and the potential occluders of S are empty. The GVM(S)
in each of these two cases is equal to LVM(S).
Fig. 13 through Fig. 16 give four examples inwhich the potential

occluders of S are not empty; thus, GVM(S) ⊂ LVM(S) in these
examples. In each figure, (a) gives the polyhedronP together with
the selected surface S, its neighboring occluderNS , and its potential
occluder OS ; (b) and (c) shows the LVM(S + NS) and GOM(S,OS)
respectively; and (d) shows the final result for GVM(S).
We compared the Minkowski-based method with the convex

decomposition-based method, and verified that the two meth-
ods give an identical result for all testing models. For the con-
vex decomposition-based method, we extended our previous
work [18] to the calculation of GVM for polyhedral surfaces by cal-
culating pairwise occlusion maps among all convex faces. See the
details in [18]. The memory consumptions and the execution time
of the two methods are different. Tables 1 and 2 show the runtime
performance comparison. In the two tables, the notations ‘‘# S’’ and
‘‘# OS ’’ represent the size of the selected surface S and its poten-
tial occluders. ‘‘# GOM’’, ‘‘# Arng.S2’’, and ‘‘# GVM’’ are the size of

http://purdue.edu/shapelab
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(a) P and S. (b) DGM(S). (c) GVM(S).

Fig. 11. Example part I. OS andNS are both empty.
(a) P and S. (b) DGM(S). (c) GVM(S).

Fig. 12. Example part II. The selected surface is the whole concave region.
(a) S,NS and OS . (b) LVM(S +NS ). (c) GOM(S,OS ). (d) GVM(S).

Fig. 13. Example part III.
Table 1
Implementation results using the Minkowski sum-based method.

Model # S # OS # GOM # Arng. S2 # GVM Exec. time (s)

Fig. 8 27 189 324 315 122 <1
Fig. 13 9 9 20 16 15 <1
Fig. 14 9 157 510 920 34 2
Fig. 15 99 323 1471 6653 35 5
Fig. 16 143 5461 3275 10380 394 24
Table 2
Implementation results using the convex decomposition based method.

Model # S # OS # GOM # Arng. S2 # GVM Exec. time (s)

Fig. 8 27 189 1224 2662 122 <1
Fig. 13 9 9 15 16 15 <1
Fig. 14 9 237 1382 9681 34 5
Fig. 15 195 337 57068 100378 35 37
Fig. 16 143 5461 362217 1983774 394 226



678 M. Liu et al. / Computer-Aided Design 41 (2009) 668–680
(a) S,NS and OS . (b) LVM(S +NS ). (c) GOM(S,OS ). (d) GVM(S).

Fig. 14. Example part IV.
(a) S,NS and OS . (b) LVM(S +NS ). (c) GOM(S,OS ). (d) GVM(S).

Fig. 15. Example part V.
(a) S,NS and OS . (b) LVM(S +NS ). (c) GOM(S,OS ). (d) GVM(S).

Fig. 16. Example part VI.
(a). (b). (c).

Fig. 17. Arrangements on S2 for GOM(S) generated by the convex decomposition based method. (a), (b) and (c) are the occlusion maps for the example parts IV, V, and VI
in Figs. 14, 15, 16 respectively.
the GOM, the arrangement size generated on the unit sphere, and
the final size of GVM(S), respectively. Fig. 17 gives the spherical
arrangements ofGOMsgeneratedusing the convexdecomposition-
based method for the testing parts in Figs. 14–16, respectively.
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(a) The vertex V (left) and the face F (right). (b) F ⊕ Ea(tEa · nten > 0). (c) F ⊕ Eb(tEb · nten < 0).

Fig. 18. Proof of Lemma 1, considering the FV or VF type of tentative faces.
(a) The two edges EO and ES with the four inface normals. (b) FO1 ⊕ ES(nEO,FO1 · nten > 0).

(c) FO2 ⊕ ES(nEO,FO2 · nten < 0). (d) FS1 ⊕ EO(nES ,FS1 · nten > 0). (e) FS2 ⊕ EO(nES ,FS2 · nten < 0).

Fig. 19. Proof of Lemma 1, considering the EE type of tentative faces.
Apparently, the sizes of the spherical arrangements generated by
the convex decomposition based method are much larger than
those of the Minkowski sum based method. It also indicates that
theMinkowski sumbasedmethod requires less execution time and
consumes less memory for storing the intermediate data.

7. Conclusion

In this paper, we have presented a provably sound algorithm
for determining the set of view directions along which a region on
the boundary of a polyhedron is fully visible. We showed that the
difference between the local visibilitymap and the global occlusion
map forms the final global visibility map. We further showed that
the global occlusion map of a surface on a polyhedron can be
computed from the spherical projection of the Minkowski sums
between the refection of the surface through the origin and its
occluders. To avoid the expensive computation of the complete
boundary of a Minkowski sum of two polyhedral surfaces, our
method calculates a smaller subset of the Minkowski sum, which
shares the same spherical projectionwith the completeMinkowski
sum. This work substantially extends the previous methods which
obtain GVM based on occlusion testing among convex polygons.
We believe the method presented here has broad applications in
tool path planning in NC machining and CMM inspection, as well
as in mold design.
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Appendix

Proof of Lemma 1. For the VF or FV type tentative faces, the
normal of the tentative face V ⊕ F is parallel to nF. In the set of
incident edges of V , consider an edge Ea with incident vertices V
and V ′ (Fig. 18(a)). Assume F is bounded by m edges {E1, . . . Em}.
TheMinkowski sum Ea⊕F is a polyhedron bounded by two parallel
polygons corresponding to V ⊕ F and V ′ ⊕ F , in addition to m
parallelograms corresponding to (Ea⊕E1), . . . (Ea⊕Em) (Fig. 18(a)).
The tangent vector tEa = EVV ′. If tEa · nF > 0, then E ⊕ F

forms volume in the side of the face V ⊕ F where nF points to (see
Fig. 18(b) for example). Suppose an edge Eb has the tangent vector
tEb , and tEb ·nF < 0, then the Minkowski sum Eb⊕ F forms volume
in side −nF points to (see Fig. 18(c)). Therefore, if the critical set
Ccri for tentative faces V ⊕ F contains both negative and positive
signs, it means there is volume existing on both sides of V ⊕ F , so
the corresponding tentative face V ⊕ F is not on the boundary of
O⊕ S when its Ccri is in the case of {+,−}.
For an EE type tentative face EO ⊕ ES , it is a parallelogram with

its normal parallel to tEO×tES . Let the two incident faces of EO be FO1
and FO2, and the two incident faces of ES be FS1 and FS2. Consider the
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Minkowski sums of the four pairs: FO1⊕ ES , FO2⊕ ES , EO⊕ FS1, and
EO⊕FS2 (see Fig. 19(b)–(e)). These four Minkowski sumswill share
the same tentative face EO ⊕ ES (the grey face in Fig. 19(b)–(e)).
Each of the four Minkowski sums forms a volume from the side of
EO ⊕ ES where the corresponding inface normal points to.
If the critical set Ccri has both negative and positive signs, it

means for the tentative face EO ⊕ ES , there exist subsets of O ⊕ S,
which has subset volumes in both sides of the tentative face EO⊕ES .
Therefore, an EE type tentative face EO⊕ ES is not on the boundary
of O⊕ S when its Ccri is in the case of {+,−}.

Proof of Lemma 2. When the critical set Ccri for a tentative face
in O ⊕ S is in the case of {+, 0}, it means there exists a volume of
theMinkowski sumO⊕S on the side that the tentative normal nten
points to; therefore, the outward normal of the tentative face, if it is
on the boundary of O⊕S, has to be in the opposite direction of nten.
Similarly, if Ccri is in the case of {−, 0}, it means there is a volume
of the Minkowski sum on the opposite side of which the tentative
normal nten points to. The outward normal of the tentative face, if
it is on the boundary of O⊕ S, will be equal to nten.
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