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a b s t r a c t

3D shape normalization is a common task in various computer graphics and pattern recognition
applications. It aims to normalize different objects into a canonical coordinate frame with respect
to rigid transformations containing translation, rotation and scaling in order to guarantee a unique
representation. However, the conventional normalization approaches do not perform well when dealing
with 3D articulated objects.

To address this issue, we introduce a newmethod for normalizing a 3D articulated object in the volu-
metric form. We use techniques from robust statistics to guide the classical normalization computation.
The key idea is to estimate the initial normalization by using implicit shape representation, which pro-
duces a novel articulation insensitive weight function to reduce the influence of articulated deformation.
We also propose and prove the articulation insensitivity of implicit shape representation. The final solu-
tion is found by means of iteratively reweighted least squares. Our method is robust to articulated defor-
mation without any explicit shape decomposition. The experimental results and some applications are
presented for demonstrating the effectiveness of our method.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

3D shape normalization is a common task in various computer
graphics and pattern recognition applications. It aims to normalize
different objects into a canonical coordinate frame in order to guar-
antee a unique representation [1]. One important premise about
normalization is that only shapes with obvious orientation could
be normalized easily and naturally because their principal axes
could be easily obtained and accepted [2–4]. Many conventional
normalizationmethods treat shapes as rigid bodies and usually use
the centroid, principal axes, and the size of the bounding box for
normalizing the localization, orientation, and scale of the shapes.
However, a large number of 3D objects, such as humans and ani-
mals, are not rigid, but flexible to change their spatial poses. The
conventional normalization methods do not handle shape defor-
mation of flexible objects well. Thus, there is a growing need to de-
velop new normalization algorithms for non-rigid shape analysis.
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To address this issue, we introduce a new method for robust
shape normalization of 3D articulated objects. The core idea is
to combine robust statistical methods with a naturally defined
shape representation—implicit shape representation. The presented
method is robust with respect to articulated deformation and
it avoids any explicit shape decomposition. In contrast to shape
alignment/registration, which operates between the original ob-
ject and reference ones, the normalization process presented in
this paper only depends on the given individual object itself with-
out referring to any other objects. For this reason, the proposed
normalization can be computed off-line and this property is of
great importance tomany further applications that require fast and
effective processing, such as shape retrieval and shape matching.

1.1. Related work

Although the main issue of this paper is shape normalization
for 3D objects, many techniques are connected to 2D shape nor-
malization. Therefore, reviewing the 2D case will provide a good
understanding for the 3D situation. Note that shape normalization
discussed in this paper is in terms of rigid transformations.
Although a number of previous studies [5–7] are also named ‘‘nor-
malization’’ in 2D, they are actually related to affine transforma-
tion, which mainly handle skew distortion. A review of the many
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available methods for affine invariant normalization is beyond the
scope of this paper. In this section, the work most related to ours
will be reviewed.

1.1.1. Normalization of 2D shapes
The existing methods for 2D shape normalization can be

roughly divided into two categories: boundary-basedmethods and
region-based ones [4]. The former is dependent on the boundary
points of shapes [3,4]. The latter takes into account all points
that are not only on the boundary but also inside the boundary,
and shape normalization is usually determined by the axis of the
least second moment of inertia [1]. Many related studies focused
on the shape orientation as the sub-problem of normalization.
For instance, some methods determine the orientation of a shape
using Feret’s diameter (a line between the two points on the
periphery that are farthest apart), the major axis of an ellipse
fitted to the silhouette contour, or the angle of the axis of the
least moment of inertia. It is worth mentioning that Žunić et al.
proposed a series of methods for 2D shape orientation, such as
boundary based shape orientation [4] and curvature weighted
gradient based shape orientation [8]. Ref. [3] pointed out that, in
some situations, the principal axis of normalization is debatable
for the definition of shapes even without noise or deformation.
However, most principal axis approaches are quite sensitive to
shape deformations, which result in that the position of the center
and the scaling size are also affected by deformations. The reader
may consult [1–4,8] for a broader introduction of the relevant
work.

The work most related to ours is Cortadellas et al.’s work [1]
and Jiang et al.’s work [9]. Ref. [1] presented a 2D shape
normalization method to cope with the silhouette deformations
in the image domain. The orientation of a shape is computed
based on solving a weighted least squares problem through a
robust algorithm, called iteratively reweighted least squares (IRLS).
The center of the shape is refined iteratively with respect to
the updated weight function. Finally, the size of the shape is
determined by the area of a silhouette. Although they illustrated
the effectiveness of the algorithmwith some experiments, there is
no theoretical proof guarantee that the weight function used in [1]
is robust to articulated deformations. Ref. [9] introduced a shape
normalization method based on the implicit shape representation
without any iterative process. Such representation was used for
designing an intensity function to obtain a center and principal
axis of a 2D shape. Although thismethod is robust to deformations,
the final principal axis obtained by this method strongly relies
on a good initial estimation, which may be deflected from the
real position significantly if deformation exists. In this paper,
we borrow some advantages from these two methods [1,9] and
propose a new robust normalization method on 3D volumetric
articulated shapes.

1.1.2. Normalization of 3D shapes
3D objects obtained by various modeling and scanning systems

often have different coordinate frames, since the objects’ shapes
are always created in a particular coordinate system [10–12]. The
coordinate frame normalization often needs to be accomplished
at first for many further applications. For instance, many 3D
shape retrieval techniques require a priori normalization for a
given query object and the database’s models, and then all of
the normalized models are aligned into a common coordinate
system before they are matched [13,14]. Another application is
shape registration in which the most widely used technique is
Iterative Closest Point (ICP). But ICP is only effective when the
initial normalization of the input shapes is close to a correct
shape alignment [15]. Furthermore, automatically selecting good
viewpoints for 3D objects often seeks the shape normalization that
can help determine the position of a camera for viewing an object
in a natural way [10,16]. Analogously, normalization can help
to easily generate the recognizable thumbnail images of objects,
which is useful for themanagement of large 3D shape repositories.
Some extra applications can be considered as sub-problems of
shape normalization, such as generating 2D drawings from 3D
models [17], principal axes determination [12], orientation and
stable pose estimation [2–4,8,10].

One of the most popular approaches for normalizing 3D shapes
with respect to rigid transformations involves computation of
the center of gravity, the orientation of the principal axis, and
the size of the bounding box [1,9–11]. Several early studies have
been developed for shape normalization of volumetric models
[18–20]. Galvez and Canton [19] presented an approach of shape
normalization for recognition of 3Dobjects using the principal axes
method. Bribiesca [18] normalized a volumetric shape based on the
major axis defined by the line joining two voxels furthest away
from each other, and this method was also applied to optimum
transformation of 3D objects [20].

The simplest and most commonly used technique for this task
is based on principal component analysis (PCA), in which the center
of gravity is chosen as the origin, the principal axes are chosen
as the canonical axes, and the size of the bounding box is set
as the scale factor of the shape [21]. The main advantages of
PCA is that it is simple, fast, and applicable for most 3D models.
However, it is well known that PCA is not robust under shape
deformation [13]. The normalization derived by PCAmight be quite
different for some similar shapes due to small local differences
between them [13]. Ref. [11] made a detailed analysis of PCA’s
uncertainty in the coordinate direction normalization of meshes.
Recently, Passalis et al. [14] improved PCA for normalization by
considering the symmetry planes of a 3D mesh object. Their
method relies on an assumption that most of real life objects are
symmetrical with respect to a plane. However, it is a separate
challenge to locate multiple symmetry planes for 3D objects [22].
Fu et al. [10] presented a solution to detect the object’s upright
orientation, but this method is not appropriate when dealing with
deformable shapes. Lian et al. [23] introduced a new method to
evaluate a 3D polygonal mesh based on rectilinearity measure,
which is defined as the maximum ratio of the surface area to the
sum of three orthogonal projected areas of themesh. Theirmethod
could be used to normalize the pose of a 3D mesh by finding the
fitted localization and orientation thatmaximizes its rectilinearity.
The normalization method using rectilinearity measure is usually
better than that using PCA. However, themethod [23] does not deal
with the articulated models either.

Recently, Liu and Ramani [12] proposed a robust statistical
method for determining the principal axes of 3D point-based
shapes. It is based on least median of squares (LMS) optimization
for guiding the classical PCA computation. The method in [12] can
automatically identify portions of a flexible shape as the major
region or minor regions. Here the forward search technique is
used for approximating the LMS optimization. The forward search
technique starts from a small outlier-free subset robustly chosen
as the initial major region. Then, the principal axes and the origin
are computed using PCA to the chosen subset, and the point with
the lowest residual in the remaining points is added to the subset.
The step is repeated until the error is larger than a predefined
threshold, and the three principal axes obtained by PCA during the
last iteration are regarded as the final results. One main advantage
of [12] is that it automatically disregards outliers and distinguishes
the shape as the major and minor regions during the principal
axes determination without any extra segmentation procedure.
Nevertheless, Ref. [12] deals with the point-based shape with only
its boundary points and it is sensitive to the density of sample
points on the boundary surfaces. In addition, the method is time-
consuming due to the forward search procedure and it has not been
extended to the volumetric shapes in our current application.
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1.2. Contributions

To address the issue of normalizing a 3D articulated shape,
we propose a robust normalization algorithm for estimating the
localization, orientation and scale of the shape. We first assume
the shape representation to be an implicit function [24,25], which
takes into account all points that belong to the shape. Meanwhile,
we prove that such a representation is insensitive to articulated
deformations. Our goal is to find a consistent normalization for
a given articulated object. Our method can be considered as a
variation of the conventional normalizationmethods by combining
robust statistical techniques and implicit shape representation.
Themain contributions of ourwork can be summarized as follows.

– A new robust normalization algorithm is proposed for esti-
mating the localization, orientation and scale of 3D articulated
shapes based on solving a weighted least squares problem uti-
lizing IRLS and implicit shape representation. A natural artic-
ulation insensitive weight function is proposed to reduce the
influence of articulated deformation during the normalization
procedure.

– The articulation insensitivity of the implicit shape represen-
tation is proved. We show that the relative change of such a
representation for each object point is always bounded by and
dependent on the maximal diameter of the junctions.

– We apply our algorithm to some shape analysis applications
such as, shape alignment and major regions localization for
articulated models.

Before we go on, we would like to point out that the shape
alignment/registration between anoriginal object and its reference
objects would not be included in our normalization process. The
remainder of this paper is organized as follows. Section 2 gives
some preliminaries used in this paper. Section 3 describes the
implicit shape representation for an articulated shape and proves
the articulation insensitivity of this representation. Section 4 is
devoted to the algorithm of our shape normalization based on the
robust statistical techniques and the implicit shape representation.
Section 5 presents our experimental results and Section 6 gives
some discussions about our method including limitations. Finally,
Section 7 concludes the paper.

2. Preliminaries

In this section, we first introduce the input 3D shape in a vol-
umetric form. Then, we define some basic concepts for articu-
lated shapes. Finally, the classical PCA is reviewed for deriving our
method.

2.1. Volumetric models

Some techniques have been studied for the normalization prob-
lem of 3D shapes in variant surface forms, such as meshes [11,14]
and point-sampled surfaces [12]. However, one known limitation
is that it strongly depends on the sampling rule on boundary sur-
faces, which affects the result of normalization [11,12,14]. In fact,
it is better to utilize not only the boundary surface but also the in-
terior domain of 3D shapes. In this paper, we consider the input 3D
shape as a digitized 3D object in the volumetric form, it encloses
a volume properly and allows computation that is more robust to
noise and perturbations. A volumetric object takes into account all
of the voxels of the shape, which often make normalization better
than those based on boundary samples because they are less in-
fluenced by the presence or absence of a single voxel around the
periphery [1]. The volumetric models are also common to many
applications inmedical scanners, scientific simulations, articulated
shapedescription and computational biology [26–29].We consider
a volumetric model as a uniform 3D lattice consisting of object
points O and background points O. Let O = {pi|i = 1, . . . ,N},
where each lattice point pi = (xi, yi, zi)T is a 3D vector.

In this paperwe present a newmethod of normalization for vol-
umetric objects, but we do not restrict ourselves to the volumetric
form. Our method only utilizes a set of discrete points (e.g. vox-
els) and consequently,many discrete shape representations should
be suited too. Another argument for using the volumetric form is
that there are a variety of good algorithms for volumetric approxi-
mations of surface forms, such as PolyMender [30] and binvox [31],
which produce a binary 3D voxel grid that approximates the origi-
nal surface. Volumetric data canbe generated byplacing a 3D shape
into a 3D cubic grid (such as 128 × 128 × 128), compactly fitting
the shape to the grid. Each lattice point is assigned either 1 or 0; 1
for object points O and 0 for background points O.

2.2. Articulated shapes

Non-rigid shapes are ubiquitous in the world and, due to their
physical properties, can undergo deformations [32]. Non-rigid
shape analysis has been receiving growing attention inmany appli-
cations in pattern recognition [24,32–35]. One simplified strategy
to non-rigid shape analysis is based on the articulated shapemodel,
which assumes that the non-rigid shape is composed of rigid parts,
each of which has a certain freedom to move. In our work, we deal
with the input 3D shape as a model of an articulated object defined
roughly as follows based on Refs. [9,34,35].

Definition 1 (Articulated Shape). An articulated shape O consisting
of K disjoint rigid parts R1, . . . , RK and L flexible junctions
J1, . . . , JL, such that

O = (R1 ∪ · · · ∪ RK ) ∪ (J1 ∪ · · · ∪ JL). (1)

Intuitively, O is an articulated object if it satisfies the following
conditions:

(1) O can be decomposed into several rigid parts connected by
junctions.

(2) The junctions between parts are very small compared to the
rigid parts they connect.

(3) LetΦ be a transformation that changes the pose of an object O.
Φ is roughly considered as an articulated transformation if the
transformation of any part ofO is rigid (rotation and translation
only) and the transformation of junctions can be non-rigid or
flexible.

(4) The new shape O′ achieved from articulation of O is again an
articulated object and can articulate back to O.

Besides the above definition, the articulated shapes discussed in
our work are specially motivated by some classes of shapes, such
as some human-like shapes or animal-like shapes. Within each of
these classes, an articulated shape is usually composed of both a
‘‘main body’’ (e.g. the trunk or torso of a human being or an animal)
and ‘‘branches’’ (e.g. head, limbs and tails). The similar assumption
was also presented in Ref. [9]. Observing that the main body is
usually ‘‘fat’’ and near the natural principal axis,while the branches
are often ‘‘thin’’ and far away from the principal axis. Another
fact needs to be emphasized that only the shapes with obvious
orientation could be normalized easily and naturally because their
principal axes could be explicitly obtained and accepted [2–4]. The
shapeswith unnatural orientations, such as rotationally symmetric
shapes and other irregular shapes, cannot be normalized because
their principal axes are confusing in some sense.

From Definition 1, the articulated transformation from an ar-
ticulated shape O to the corresponding shape O′ is considered as a
one-to-one reversible mapping Φ(O) = {Φ(p) : p ∈ O}, where
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Fig. 1. Illustration of articulated shapes. (a) An articulated shape O = (R1 ∪ R2 ∪

R3) ∪ (J1 ∪ J2) with three rigid parts and two junctions. (b) The corresponding
articulated shape O′ of O after one articulation deformation Φ by rotating R1 and
R2 with flexible deformation of J1 and J2 . The reversible mapping is Φ−1 . Note that
R3 of rigid parts is the main body while R1 and R2 belong to the branches of O.

Φ−1 denotes an articulated transformation that maps O′ to O. Then
we have

O′
= Φ(O) and O = Φ−1(O′).

Meanwhile, Φ can also be utilized on the rigid parts and junctions,
i.e.

R′

i = Φ(Ri) and J ′j = Φ(Jj),

where i = 1, 2, . . . , K , and j = 1, 2, . . . , L. The same happens
on each single object point, i.e. p′

= Φ(p), ∀p ∈ O. Note that
R′

i and J ′j are still rigid parts and junctions in O′, respectively. This
preserves the topology between the articulated shapes after artic-
ulated transformation (see Fig. 1).

The four intuitions in Definition 1 are fundamental and very
important to our analysis next. Especially, the junctions between
parts are very small compared to the parts they connect, which
means that each junction Jj (j = 1, 2, . . . , L) of an articulated shape
O satisfies the following constraint condition about its size [35]

diam(Jj) ≤ ε, (2)

where diam(Jj) is the diameter of a junction Jj, and it can be
computed as the length of maximal distance between all pairs
of points in Jj [35]. Eq. (2) means that the diameter diam(Jj) of
a junction Jj lies within a constant bound ε ≥ 0, where ε is
very small compared to the size of rigid parts. A special case is
ε = 0, which means that all the junctions degenerate to the single
points and O can be called an ideal articulated shape. In particular,
since the deformable junctions stand flexible during articulated
deformation, they still have the similarly constrained condition
about their sizes, i.e.

diam(J ′j ) ≤ ε′, (3)

where the diameter of J ′j lies within a constant bound ε′, which is
also very small compared to the size of rigid parts.

2.3. Review of PCA

One of most widely used methods in the principal axis based
normalization applications is the classical PCA. As a least squares
optimization process, PCA is widely used to compute the principal
axes at a fixed center. Considering a 3D shape O = {pi|i =

1, . . . ,N}, PCA wants to find a orientation vector e through a
specified center o such that the sum of the squared Euclidean
distances between various points pi ∈ O and the corresponding
projection points p∗

i onto e are as small as possible, as described by
the following minimization problem [21]:

min
e

N
i=1

∥pi − p∗

i ∥
2. (4)
By adding the constraint ∥e∥ = 1 for finding the best direction
e, the solution to this problem involves the covariance matrix
defined by

A =

N
i=1

(pi − o)(pi − o)T . (5)

The eigenvector corresponding to the largest eigenvalue of the
covariance matrix A is the first principal axis e. PCA is a linear
transformation for 3D point sets. In fact, PCA is similar to the linear
regression in a sense of least squares. However, a single sample
with a large error can change the principal axis arbitrarily. This
results in that the derived principal axis might be quite different
between some similar shapes [13]. In other words, PCA is quite
sensitive to the silhouette deformations if the principal axis is used
to orientate the articulated models. Therefore, a robust method is
needed to estimate the orientation of articulated shapes.

3. Implicit shape representation (IS-rep)

Shape representation plays a central role in shape analysis and
its task is the selection of an appropriate representation for the
shapes of interest. Point clouds, parametric curves/surfaces, and
medial axes representations are often considered in various ap-
plications [24,25,36]. Although these representations are power-
ful, they usually require a large number of parameters to deal with
shape deformations. For our purpose, the implicit shape represen-
tation (IS-rep) described by Paragios et al. [24,25] is chosen. The
IS-rep uses the Euclidean distance maps to represent the shapes. It
provides an excellentmeans to characterize shape variations under
articulated deformation. Next wewill first provide amathematical
definition of the IS-rep, and then prove the articulation insensitiv-
ity of such a representation.

Let f be a function of the Euclidean distance for a given shape
O with respect to its boundary surface S. The shape O defines a
partition of the space: the boundary S, the inside region [O−S], and
the background region O. The IS-rep could be defined as follows.

Definition 2 (Implicit Shape Representation). The implicit shape
representation of O is defined by a signed distance function:

f (p) =

0 p ∈ S,
+D(p, S) > 0 p ∈ [O − S],
−D(p, S) < 0 p ∈ O,

(6)

where D(p, S) refers to the minimum Euclidean distance from the
point p to the boundary S, i.e.

D(p, S) = min
q∈S

{∥p − q∥}. (7)

The f (p) in Definition 2 is called the implicit intensity value of
each point p. It is essentially a level set representation of shapes
[24,37]. The fastmarching algorithm or other advanced techniques
can be used for the construction of such implicit shape represen-
tation [24,25,37]. Note that it is unnecessary to discuss the im-
plicit functions of the points outside O because we only concern
the points inside O and on the boundary S in our application.

There are two appealing features of implicit representation
when dealing with 3D shape normalization. Both features are
directly derived from Definitions 2 and 1.

Proposition 1. The implicit shape representation in Eq. (6) is in-
variant to translation and rotation. When a shape undergoes scale
variation, the intensity values of its associated distance map scale
accordingly.

The proof of Proposition 1 has been given in [24,25]. What’s
more, the implicit shape representation is also insensitive to
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Fig. 2. Illustration of the IS-rep. (a) A 2D shape of a humanmodel. (b) Another shape with different pose of the same humanmodel in (a). (c) and (d) are the implicit distance
maps of (a) and (b), respectively. The darker colors denote the higher implicit intensity values of points and the lighter colors denote the smaller ones.
articulated transformation. Intuitively, this is true since any
articulated shape can be decomposed into rigid parts and small
junctions connecting them. Here we will formally prove the
articulation insensitivity feature of the IS-rep.

Proposition 2. Let O be an articulated object and Φ be an articula-
tion transformation of O as defined in Definition 1 such that O′

=

Φ(O). ∀p ∈ O, and suppose p′
= Φ(p) ∈ O′. Let f be the implicit

shape representation defined in Definition 2, then

|f (p′) − f (p)| ≤ max{ε, ε′
}, (8)

where ε and ε′ are the upper bounds of junction sizes of O and O′, as
defined in Eqs. (2) and (3), respectively.

Proof. According to Definition 1, an articulated objectO can be de-
composed into a set of rigid parts {Ri} and small junctions {Jj}, i =

1, 2, . . . , K , and j = 1, 2, . . . , L. According to Proposition 1, it is ob-
vious that the value of the implicit function f for eachpointp ∈ {Ri}

stands constant during articulation transformation (rotation and
translation only), i.e. f (p′) = f (p), ∀p′

= Φ(p). That means
that the implicit function of rigid parts {Ri} is unchangeable during
articulation transformation.

For each point p from junctions, since the junctions are flexi-
ble and may undergo a small deformation, the implicit intensity
value f (p′) might change. However, according to the constraint
conditions about the original junctions and deformed junctions, i.e.
Eqs. (2) and (3), the change of the implicit function of each point
p ∈ {Jj} can be represented as
0 ≤ f (p) ≤ diam(Jj) ≤ ε ∀p ∈ {Jj},
0 ≤ f (p′) ≤ diam(J ′j ) ≤ ε′ p′

= Φ(p),

where ε and ε′ are theupper bounds of the diameters of {Jj} and {J ′j },
respectively. Then, the relationship between the implicit functions
of p and p′ is as follows:

|f (p′) − f (p)| ≤ |ε − ε′
| ≤ max{ε, ε′

}, ∀p ∈ {Jj}.

Combining the above discussion of parts and junctions, this im-
plies Eq. (8). �

Eq. (8) proves that the relative change from f (p) to f (p′)
is always bounded and depends on the maximal diameter of
junctions.When ε and ε′ are very small compared to the size of the
rigid parts, the change is tiny such that the two implicit function
values can be roughly regarded as equivalent. This consequently
means that the implicit function of junctions is almost invariant
during articulated transformation. Fig. 2 illustrates the IS-reps for
a 2D articulated shape and its deformation. The comparison of the
IS-reps of the two shapes shown in Fig. 2(c) and (d) indicates that
the implicit intensity values of points, such as the ones of the head,
trunk and the four limbs, stay roughly consistent after articulated
transformation.

We further clarify several issues. The above proof depends
on the size limitation of junctions. The assumption is that a
junction should have a relatively smaller size compared to parts;
otherwise, it is more like a part itself. Amore precise part–junction
definition may provide a tighter upper bound but sacrifice some
generality [35]. The definition also captures our intuition about
what distinguishes articulation from other types of deformation.
In fact, one advantage of using the implicit shape function is that it
implicitly captures the part structure of an articulated shape.

4. Robust shape normalization

The approaches of shape normalization generally involve the
determination of the localization, orientation and size of the shape.
In this section, we will first introduce the procedure of our new
normalization method and describe each step of the method
in detail. Finally, the implementation details are given and the
computational complexity of our algorithm is discussed.

During the normalization process, the key step is to compute
the center and three principal axes to present the localization
and orientation of the shape. Of the three principal axes, the
first one presents the orientation of the shape and the other two
could be computed based on the center and the first one. The
center and the first principal axis obtained by solving the sum
of squares minimization problem shown in Eq. (4) by PCA are
sensitive to articulation deformations. One possible solution to
reduce the sensitivity is to decrease the influence of deformation
of the shape during computation. A general strategy is to weight
the contribution of each object point during the principal axis
computation. By advancing the minimization problem by PCA, we
present the robust orientation problem as follows.

Definition 3 (The Robust Orientation Problem). Given a center o
and weight function ωi of each point pi from a shape O, the
problemwants to find the orientation vector e through o such that
minimization of the sum of weighted squared Euclidean distances
described below is achieved [21]:

min
e

N
i=1

ωi∥pi − p∗

i ∥
2, (9)

where p∗

i is the projection point of pi onto the line through o in the
direction of e.

The problem shown in Eq. (9) cannot be solved linearly due
to the diversity of weight function ωi. One commonly used
method to solve the problem is the iteratively reweighted least
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Fig. 3. Illustration of the procedure of the robust shape normalization. (a) An original shower-like shape. (b) The cross-section of the shape presenting the IS-rep.
(c) Computing the initial center (green ball) and first principal axis (red arrow). (d) Computing the center and first principal axis iteratively (the dashed line denotes the
moving direction of the center and axis during the iterative process). (e) The cross-section of the shape presenting the final weights after iterative computation. (f) Final
shape after size, position and orientation adjustment. The rightmost color bar maps the variation of weight function values. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
squares (IRLS) [1]. Its main idea is to iteratively compute the
center and the principal axis through re-weighting a shape
dependent weight function. Its main advantage is that the initial
localization and orientation of shapes could be refined gradually
during the iterative process to a satisfactory result. Here the
weight function ωi plays an important role in solving the robust
orientation problem using IRLS. Cortadellas et al. [1] presented
a weight function in their normalization algorithm to obtain the
robust results to deformations, where the weight function mainly
balances the contribution of distance between each silhouette
pixel to its principal axis. In this paper, we propose a new
articulation insensitive weight function by combining the weight
function in [1] and the IS-rep.

Based on the classical procedure of normalization and IRLS
algorithm, themain procedure of our shape normalizationmethod
on a volumetric articulated shape is given as follows:
(1) Calculate the IS-rep of the shape.
(2) Estimate the initial center and first principal axis, and compute

the initial weight functions of all object points of the shape.
(3) Compute the center and three principal axes iteratively until

the termination condition is satisfied.
(4) Adjust the size, position and orientation of the shape in the

canonical coordinate frameby scaling, translation and rotation.

Fig. 3 illustrates the procedure of the robust shape normalization
on an example. The details of these four steps will be described
fromSections 4.1–4.4, and the implementationdetailswill be given
in Section 4.5.

4.1. Calculation of the IS-rep

The first step of our normalization is calculating the IS-rep,
which will be utilized in the next steps for estimating the
weight functions and initial center and axes. According to the
definition of the IS-rep, the implicit intensity value f (pi) of
point pi is the minimum Euclidean distance from pi to the
boundary points set S of the shape. Therefore, the IS-rep can be
obtained by computing the distances between pi and all boundary
points in S, and then choosing the smallest one as the intensity
value f (pi). Alternatively, the fast marching algorithm or other
advanced techniques can be used for speeding up the computation
[24,25]. The reader may consult [9,24,25,36,38,39] for the details
of computing the IS-rep.

4.2. Initial estimation

During the second step of our normalization, some variables
including the center, first principal axis and weights of all points
are initialized and will be used for the following iterative process.
In this section, we focus on the computation of the initial center
and the first principal axis. Note that theweights are closely related
to the iterative process, and the method to obtain them will be
introduced in Section 4.3.

The initial center and the first principal axis play an important
role in the normalization process. An undesirable initial estimation
will make the final center and axes worse. The traditional methods
including PCA usually use the center of gravity (barycenter) to de-
fine the shape position. However, the localization of the barycenter
is easily affected by the shape deformation, which has a negative
influence in the performance of traditional normalization meth-
ods [1,14]. Recently, Rustamov et al. [40] introduced a new geo-
metric property ‘‘barycentroid’’ capturing the notion of semantic
center of surfacemeshes. Although this kind of center is claimed to
be insensitive to articulation deformations, it is defined on surface
meshes with minimizing the average squared interior distances to
the set elements, which cannot be directly used in the volumetric
models. It is also interesting to extend the barycentroid computa-
tion from surfacemeshes to volumetricmodels in the future,which
may be an alternative center in our initial estimation.

Considering the feature of the IS-rep, we define a new form of
center called the implicit center:

o =

N
i=1

(f (pi) · pi)

N
i=1

f (pi)

, (10)

where f (pi) is the implicit intensity value of pi ∈ O described
in Eq. (6). The implicit center represents the weighted average
of all points in the shape. It is more closer to the center of the
‘‘fat’’ main body of the shape than the traditional barycenter that
is easily influenced by ‘‘thin’’ branches away from the initial first
principal axis. The first principal axis e1 through the implicit center
o, obtained by the classical PCA, is used for our initial principal axis.

4.3. Computing the center and principal axes iteratively

After initial estimation, the center and principal axes will be
computed iteratively using the IRLS strategy. The weight function
ωi is critical during the iterative process to obtain the desirable
final center and axes. In this section, wewill first review theweight
function used in [1] and then introduce our new articulation
insensitive weight function. At last, the iterative process of our
algorithm is described based on the new weight function.
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Fig. 4. Illustration of relative parameters. The desirable weight function ωi should
take not only the projection distance ∥ri∥ but also the implicit intensity value f (pi)

into consideration.

4.3.1. Principal axis dependent weight function
Cortadellas et al. [1] presented a weight function in their nor-

malization algorithm, where the weight function mainly balances
the contribution of distance between each silhouette pixel to its
principal axis. In this paper, we call the weight function in Ref. [1]
the principal axis dependent weight function. This weight function
in the case of a 3D shape is described below.

Let pi be an arbitrary object point of a 3D volumetric model
O. Assume that o and e1 are the center and first principal axis,
respectively. Let p∗

i be the point by projecting pi onto the line
through o in the direction of e1. Then, the length of the projection
line is written by

ci = ∥
−→
op∗

i ∥ =
e1T · (pi − o)

∥e1∥
. (11)

Based on Eq. (11), the residual vector between pi and its projection
point p∗

i can be denoted by ri = pi − p∗

i = pi − o − cie1. Fig. 4
illustrates the residual vector ri in a simple case.

The principal axis dependentweight function [1] can be defined
as

ωi =
σ 2

(rTi · ri + σ 2)2
, (12)

where σ is a non-zero scale parameter related to ri. In Ref. [1],
σ is typically selected as σ = 1.4826 · medi{|(∥ri∥ − medj
(∥rj∥))|}, where ‘med’ is the median operator. Eq. (12) means
that the principal axis dependent weight function ωi is inversely
proportional to the distance between pi and e1.

4.3.2. New articulation insensitive weight function
The weight function in Eq. (12) only considers the distance

between pi and its corresponding projection point p∗

i onto the
principal axis e1. This is simple and desirable in the general
normalization; however, for the articulated shape, it cannot
penalize the objects’ points on the periphery region which are also
near to the estimated first principal axis. Considering the feature
of the IS-rep, the implicit intensity value of a periphery point is
very possibly smaller than that of a central region point. Hence, the
IS-rep could improve the definition of the weight function.

By combining the IS-rep and the principal axis dependent
weight function in Eq. (12), we present a new articulation insen-
sitive weight function defined as

ω′

i = (f (pi))
λ
· (ωi)

γ , (13)

where f (pi) is the implicit intensity value in Eq. (6), ωi is the prin-
cipal axis dependent weight function in Eq. (12), and the param-
eters λ (λ = 1, 2, . . .) and γ (γ = 1, 2, . . .) both are positive
integer constants to balance the effects of f (pi) and ωi. The larger
λ is, the more sensitive the shape normalization is with respect
to the IS-rep. The larger γ is, the more sensitive the shape nor-
malization is with respect to the projection distances from ob-
ject points to the axis. Intuitively, the new weight function in
Eq. (13) takes not only the projection distance of an arbitrary point
(i.e. the distance from pi to the first principal axis) but also the im-
plicit intensity value f (pi) (i.e. the distance from pi to the boundary
of the model) into consideration.

Comparison of two weight functions. The following will compare
our weight function in Eq. (13) with the principal axis dependent
weight function in Eq. (12) in term of analyzing the effectiveness of
two weight functions to the final center and principal axis. During
normalizing an articulated shape, the center and first principal axis,
computed based on a desirable weight function, should be able to
present the localization and orientation of the shape’s main body
rather than its branches. To reach this goal, the desirable weight
function should be able to assign the larger weights to the object
points on the main body than ones on the branches. Here, we will
give a proposition to show that ourweight function Eq. (13) ismore
desirable than Eq. (12) in weight assignment.

Proposition 3. Let O be an articulated shape andO′ be the shape after
articulation transformation from O. Suppose that a point p is on the
main body of O and another point q is on a branch of O, and then
their corresponding points p′ and q′ after articulation transformation
are both on the main body and branches of O′, respectively. If the
minimum distance from p to the boundary is larger than that from
q to the boundary, then

ω′
p

ω′
q

>
ωp

ωq
,

ω′
p′

ω′
q′

>
ωp′

ωq′

, (14)

where ω and ω′ are the principal axis dependent weight function
and our new articulation insensitive weight function, as defined in
Eqs. (12) and (13), respectively.

Proof. According to Eq. (13), the new articulation insensitive
weights of p and q are

ω′

p = (f (p))λ · (ωp)
γ , ω′

q = (f (q))λ · (ωq)
γ .

Note that the minimum distance from p to the boundary is larger
than the one from q to the boundary. Then, due to the definition of
the IS-rep in Eq. (6), we have f (p) > f (q). Hence,

ω′
p

ω′
q

=


f (p)

f (q)

λ

·


ωp

ωq

γ

>
ωp

ωq
.

After articulation transformation of O, the newweights of p′ and q′

are

ω′

p′ = (f (p′))λ · (ωp′)γ , ω′

q′ = (f (q′))λ · (ωq′)γ .

According to Proposition 2 demonstrated in Section 3, the IS-rep is
insensitive to articulation transformation and the implicit intensity
value of an object point can be regarded as nearly constant after
articulation transformation. Then we have f (p′) = f (p) > f (q) =

f (q′). Therefore,

ω′

p′

ω′

q′

=


f (p′)

f (q′)

λ

·


ωp′

ωq′

γ

>
ωp′

ωq′

.

For an articulated shape and its deformation, Eq. (14) implies that
our weight function can assign a greater proportion of weights
to the points on the main body than on the branches, in contrast
with the principal axis dependent weight function in Eq. (12).
This will distinguish the weights of points on the main body with
ones on branches more clearly without requiring any prior shape
decomposition. �
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Fig. 5 compares the final weight distributions produced by
Eq. (12) and our weight function with respect to two different
poses of a 3D articulated shape. This comparison shows that our
weight function keeps almost consistent weight distributions for
the two poses, in which the weight values on the main body are
significantly larger than the ones on four limbs.

4.3.3. Computing the center and principal axes based on new weight
function

By combining our new weight function and the IRLS strategy,
the final center and the first principal axis could be iteratively
computed. At the k-th iteration, the equations to obtain the center
o(k + 1) and the first principal axis e1(k + 1) are as follows [1]:

o(k + 1) =

N
i=1

ω′

i(k) · (pi − ci(k) · e1(k))

N
i=1

ω′

i(k)
, (15)

e1(k + 1) =

N
i=1

ω′

i(k) · ci(k) · (pi − o(k))

N
i=1

ω′

i(k) · c2i (k)
, (16)

where ci(k) and ω′

i(k) are computed using Eqs. (11) and (13), re-
spectively. The iterative process ends if the difference in orienta-
tion between e1(k + 1) and e1(k) is less than an angle error and
∥o(k + 1) − o(k)∥ is less than a distance error.

Direction ambiguity. The step after the iterative process is to
determine the direction of the first principal axis. The vector e1
obtained after the iterative process is still a two-direction linewith
a 180° ambiguity, whichmeans that if we rotate themodel by 180°
about the line, e1 still stands for the first principal axis of themodel.
An intuitive criterion of judging the direction of the principal axis
is that the vector e1 should turn towards the half area holding the
larger weights. For ∀pi ∈ O, let sgn(ci) be the sign function of
ci, where ci is the length of the projection line in Eq. (11). It can
be easily found that

N
i=1

1
2 (sgn(ci) + 1) indicates the number of

voxels that lie in the half space pointed by e1. Then the value z can
be computed as follows [1]:

z =

N
i=1

(sgn(ci) + 1) · ω′

i

N
i=1

(−sgn(ci) + 1) · ω′

i

, (17)

where ω′

i is the final articulation insensitive weight function of pi
in Eq. (13) after the iterative process. If z > 1, e1 actually holds the
same direction of the principal axis; otherwise, the vector must be
reversed in order to adapt the reasonable orientation.

After the center and first principal axis are obtained and the
direction is determined, the other two axes of the shape can be
computed as follows. We first project O onto the plane through
o and perpendicular to e1, and then perform a 2D weighted PCA
for getting the second and third principal axes e2 and e3 in a way
similar to Ref. [12].

4.4. Size, position and orientation adjustment

The last step in our normalization process is to adjust the size,
position and orientation of the shape, of which the size adjustment
should be done first by scaling. In the 2D image domain framework,
the scale factor is generally achieved by resizing the silhouette of a
shape into a fixed size defined by its bounding box. However, the
Fig. 5. The final weight distributions for two different poses of a 3D articulated
shape. (a) and (b) are the finalweight distributions of the twoposes using theweight
function in Eq. (12). (c) and (d) are the final weight distributions of the two poses
using our weight function. The final centers are depicted as the black points. In
contrast to the results in (a) and (b), (c) and (d) show that ourweight function keeps
the almost consistent weight distributions for the two poses, in which the weight
values on the main body are significantly larger than the ones on four limbs.

bounding box is very sensitive to shape deformations. During our
normalization method, we use the scale factor defined by [9]:

s =
3

 N
i=1

f (pi), (18)

where f (pi) is the implicit intensity value of pi in Eq. (6). The
scale factor s is based on the whole volume of the model, and it
is effective in normalizing the size of 3D shapes, especially with
articulated deformations on the periphery.

Finally, the articulated shape is normalized into a canonical
coordinate frame by achieving translation, rotation and scaling
with respect to the final center, principal axes and scale factor.

4.5. The algorithm implementation

The outline of the robust shapenormalization algorithm, named
RobustNormalization, is described in Algorithm 1. Algorithm 1 calls
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Algorithm 2 GetCenterAxes to compute the center and three
principal axes. Algorithm 1 takes the original shape O as input,
which results in the output including: the final center o, the three
principal axes e1, e2 and e3, as well as theweight setW of all points
and the final shape point set O′. Firstly, the IS-rep of O is calculated,
and then the initial values of some parameters are estimated. After
that, Algorithm 2 is called to iteratively compute the center o and
the first principal axis e1, on which the computation of the other
two principal axes e2 and e3 are based. Finally, the size of the shape
is adjusted through scaling, while the position and orientation of
the shape in the coordinate frame are modified to ensure o as the
origin and e1 as the vertical axis of the frame through translation
and rotation.

Algorithm 1 : RobustNormalization (O, o, e1, e2, e3, W, O′)
Input:
O ∈ R3×N : the input point set of the shape with N points
Output:
o: the final center
e1, e2, e3: the final first, second and third principal axis
W: the final weight set
O′: the final point set of the shape
Local variables:
f (O): the IS-rep of O, f (O) = {f (pi)|i = 1, 2, . . . ,N}

o0: the initial center
e0: the initial first principal axis
W0: the initial weight set,W0 = {ω′

i(0)|i = 1, 2, . . . ,N}

Begin
1: Compute the IS-rep f (O);
2: Compute o0, e0 and W0 using Eq. (10), PCA and Eq. (13),

respectively;
3: GetCenterAxes(O, f (O), o0, e0, W0, o, e1, e2, e3, W);
4: Adjust the size of the shape based on the scale factor in Eq.

(18) and modify the position and orientation of the shape in
the coordinate frame by putting o at the origin of the frame
through translation and e1 as the vertical axis of the frame
through rotation.

End

The iterative process of IRLS is included in Algorithm 2, where
the core equations are Eqs. (15) and (16) to compute the center and
first principal axis. The algorithm uses the initial values obtained
after the first two steps of Algorithm 1 as input and outputs the
final center, three principal axes and weight set. The iterative
process in Algorithm2 endswhen the errors between two adjacent
iterations are less than the pre-defined thresholds. After that, the
other two principal axes are computed based on the center and the
first principal axis computed. The iterative computation process in
Algorithm 2 is derived from the standard IRLS algorithm and its
convergence has been shown in [41–43].

Computational complexity.We assume that the input volumetric
model O consists of N object points, where its boundary surface
S contains M boundary points (M ≤ N). An upper bound of the
running time to compute the IS-rep of O is O(MN). In Algorithm
1, the computational complexity of the second step (i.e. initial
estimation) is O(N), since PCA is a linear transformation for 3D
point sets. The exact cost of the third step, i.e. Algorithm 2, is hard
to determine because the terminal iteration number is variantwith
respect to different shapes. Assuming that the terminal iteration
number is k (k < MAX_ITERS), it takes O(kN) for computing the
final center and axes in Algorithm2. The complexity of the last step
in Algorithm 1 for adjusting the size, position and orientation of
the shape is linear. In summary, the total cost of our normalization
algorithm is approximately O(MN + kN). For our normalization
algorithm, a great deal of the running time is spent on computing
the IS-rep.
Algorithm 2 : GetCenterAxes(O, f (O), o0, e0, W0, o, e1, e2, e3,W)
Input:
O ∈ R3×N : the input point set of the shape with N points
f (O): the IS-rep of O, f (O) = {f (pi)|i = 1, 2, . . . ,N}

o0: the initial center
e0: the initial first principal axis
W0: the initial weight set, W0 = {ω′

i(0)|i = 1, 2, . . . ,N}

Output:
o: the final center
e1, e2, e3: the final first, second and third principal axis
W: the final weight set
Local variables:
o(k), e1(k): the center and first principal axis in the iteration (k)
ωi(k): the weight of pi in the iteration (k)
εo, εθ : the pre-defined distance threshold and angle threshold
MAX_ITERS: the maximum number of iterative process
begin
1: k ⇐ 0, o(0) ⇐ o0, e1(0) ⇐ e0;
2: while (k < MAX_ITERS) do
3: Compute o(k + 1) and e1(k + 1) via Eq. (15) and Eq. (16);
4: for (i = 1 to N) do
5: Compute ω′

i(k + 1) via Eq. (13);
6: end for
7: if (∥o(k + 1) − o(k)∥ < εo and the angle between e1(k + 1)

and e1(k) is smaller than εθ ) then
8: return
9: end if

10: k ⇐ k + 1;
11: end while
12: Determine the direction of e1(k + 1) via Eq. (17);
13: W ⇐ {ω′

i(k+1)|i = 1, . . . ,N}, o ⇐ o(k+1), e1 ⇐ e1(k+1);

14: Project O onto the plane through o and perpendicular to e1 and
then perform a 2D case of this algorithm on these projection
points to achieve the second and third principal axis e2 and e3.

end

5. Experimental results and applications

In this section we give some experimental results obtained by
our normalization algorithm described in the previous section.
Our algorithm is implemented in C++ on a Pentium Dual-Core
2.60 GHz processor with 3.0 GB RAM while the execution time
is given in seconds excluding the time of loading the volumetric
objects.

For the experimentation in this section, the parameters of the
weight function presented in Eq. (13) are typically selected as
λ = γ = 1. We also give an algorithm for determining adaptively
the values of λ and γ with respect to the given shape variation
in Section 6.1. The distance threshold and angle threshold in the
termination condition in Algorithm 2 are defined as small values
(e.g. εe = 0.05 and εo = 0.01), while the maximum iterative time
MAX_ITERS = 1000 is used here to guarantee enough iterative
time. Fig. 6 gives the normalization results of several 3D articulated
shapes. It shows that our method performs better than the PCA
based method.

5.1. Shape alignment

Shape alignment is usually a prerequisite step for some shape
retrieval applications [12–14]. The intention is to put different
shapes into a canonical coordinate frame. The shape alignment
method based on PCA could easily cause similar local features to
be misaligned due to its sensitivity to non-rigid transformations.
We first normalize the 3D shapes to their corresponding frames
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Fig. 6. The iso-surface display of normalization using PCA (first row) and our method (second row) for several 3D volumetric models. The red, green and blue axes are the
first, second and third principal axes of the models, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
utilizing the robust normalization method and then compute the
transformation between the two reference frames of shapes to
align them together.

Fig. 7 shows the shape alignment results of six pairs of 3D
models by PCA and our normalization method, where the models
in the first column are the original ones and the models in the
second column are similar to their respective original ones in the
left but with articulation or some different partial details. The
models in the third and forth columns give the shape alignment
results by PCA and our normalizationmethod, respectively.We can
see that PCA cannot align the original pairs of models effectively.
For example, the shape alignment result of two seahorses by PCA
is not satisfactory in two aspects. One aspect is that the final
localization and orientation of the red seahorse is quite different
from that of the yellow seahorse. Another aspect is that the
adjusted size of the red seahorse shape is obviously larger than
the yellow seahorse, where the size adjustment of PCA is based
on a shape’s bounding box. Similar results also happen in the two
examples of men and women models. The results in Fig. 7 suggest
that our method is more effective than PCA in shape alignment
applications.

5.2. Testing the robustness of shape normalization

Referring to the criteria of testing robustness of shape
normalization carried out in [1,9], two kinds of parameters are
computed in our experiments for the six pairs of models shown
in Fig. 7. In Table 1, Cdif 1 and Cdif 2 represent the differences
of distances between the two centers of shapes using PCA and
our method, respectively. θdif 1 and θdif 2 denote the differences
between the orientation estimations of two shapes, i.e. the angle
between the two principal axes obtained by PCA and our method,
respectively. From the experimental data comparisons in Table 1,
we can see that our normalization method is effective and robust
to deformations and performs much better than PCA.

The robustness of our method can also be recognized by its
insensitivity to the noisewhichmay exist inmany scannedmodels.
Table 1
Results of PCAbasedmethod (Cdif 1, θdif 1) and our normalizationmethod (Cdif 2, θdif 2)
on the six pairs of 3D models in the first two columns in Fig. 7.

Models Parameters
Cdif 1 Cdif 2 θdif 1 θdif 2

Candles 8.2789 2.7919 4.3701 1.0283
Cats 5.7227 1.6537 5.0653 1.2430
Guns 3.6882 0.1714 2.2324 0.5178
Men 12.6406 3.8904 5.5884 1.1314
Seahorses 10.8892 2.4551 6.4264 0.1695
Women 11.0924 2.9913 5.3174 1.1165

To test the ability of our method to handle the noise, we add
the uniformly distributed random noise (along the normals with
increasing variances of the diagonal of the bounding box of the
seahorsemodel). Fig. 8 shows the normalization of themodelswith
the different level noise. Fig. 9 illustrates the angle differences of
the first principal axes between the original model and the noisy
models. The results show that the first principal axis of the original
model stands almost consistent with respect to the different level
noise when using our method.

5.3. Computational time

The computational time of Algorithm1 on the six 3D articulated
volumetric models in the first column in Fig. 7 is given in Table 2,
where ‘‘N ’’ is the number of object points of the volumetricmodels,
‘‘T1’’ is the time of computing the IS-rep at the start of Algorithm
1, ‘‘T2’’ is the time of computing the center and principal axes in
Algorithm 2, and ‘‘#iter’’ is the iterative number in Algorithm 2. All
of the times are counted in seconds.

Although the employed threshold values εe = 0.05 and εo =

0.01 are small, the convergence of the algorithm is fast; in most
cases, three to five iterations are required. The results in Table 2
show that the computational time increases when the number of
object points of the volumetric models grows. Moreover, when
the proportion of the number of inside points to the total number
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Fig. 7. The iso-surface models of shape alignment results by PCA and our normalization method by aligning six pairs of 3D models with articulated deformation or missing
information.
Fig. 8. Comparing the normalization of the models added with the noise along the normals with different variances. (a) shows normalization of the original seahorse model
without adding the noise. (b), (c) and (d) show the normalization of the models added with the noise along the normals with 10%, 30% and 60% variances, respectively.
of points grows, the computational time of normalization also
increases due to the time of the IS-rep calculation increasing
quickly. The results in Table 2 suggest that the computational time
is dependent on the number of object points of the models.
6. Discussions

This section first discusses the strategy of determining two
representative parameters used in our method, and then gives an
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Fig. 9. The angle difference between the principal axes of the original model and
the model with noise with respect to noise with increasing variances.

Table 2
The computational time of our normalization method on the six 3D volumetric
models in the second column in Fig. 7.

Models Na T1b(s) T2c(s) #iterd

Candle 28818 234.9509 0.6649 3
Cat 52577 689.3381 1.6376 4
Gun 2410 0.8691 0.0764 4
Man 18231 102.0179 0.5704 4
Seahorse 12977 50.2021 0.2971 3
Woman 13533 56.0939 0.5339 5
a N: the number of object points of volumetric models.
b T1: time to compute the IS-rep.
c T2: time of the iterative process to compute the center and axes.
d #iter: the iterative number in Algorithm 2.

application for finding major regions of articulated shapes. Finally,
we compare our method with some previous methods and discuss
some limitations of our method.

6.1. Parameters

Five parameters (i.e. λ, γ , εo, εθ andMAX_ITERS) are defined in
Algorithm 1 and Algorithm 2, and they play an important role in
the normalization process. In the above five parameters, εo, εθ and
MAX_ITERS in Algorithm 2 are to control the terminal condition of
the iterative process, and their values are usually pre-defined, as
described in Section 5. In contrast, the remaining two parameters
λ and γ in Eq. (13) are relative to the shape variation, and their
goal is to balance the contribution of the articulation insensitive
weight function on all object points, which will affect computation
of the center and principal axes during the iterative process. In this
section, wemainly focus on the strategy of adaptively determining
λ and γ as well as their effect to the final normalization results.

In Eq. (13), λ dominates the contribution of the implicit in-
tensity value, while γ decides the contribution of the principal
axis dependent weight function in Eq. (12). The former contribu-
tion could be approximately measured by counting the number of
object points with large implicit intensity values, while the lat-
ter contribution could be approximatelymeasured by counting the
number of object points with the large weights computed initially
in Eq. (12). Consequently, the central role of λ and γ is induced to
balance the above two numbers counted, which are actually rela-
tive to the shape variation. Based on comparing the two numbers
counted, we present a simple algorithm for adaptively determin-
ing the candidate values of two parameters (λ and γ ) in Eq. (13).
Algorithm 3, named ‘‘ParaDetermination’’, lists the pseudo-code of
the algorithm.
Algorithm 3 : ParaDetermination(f (O),W, λ, γ )
Input:
f (O): the IS-rep of O, f (O) = {f (pi)|i = 1, 2, . . . ,N}

W1: the set of weights computed in Eq. (12), i.e. W1 = {ωi|i = 1,
2, . . . ,N}

Output:
λ, γ : the values of two parameters in Eq. (13)
Local variables:
fmax, the maximum value of f (O), i.e. fmax = max

i
{f (pi)}

ωmax: the maximum value ofWaxis, i.e. ωmax = max
i

{ωi}

N1: the number of points with weights within [
ωmax
2 , ωmax]

N2: the number of points with implicit intensity values within
[
fmax
2 , fmax]

Begin
1: Compute fmax and ωmax;
2: Compute N1 based on W1 and ωmax, and compute N2 based on

f (O) and fmax;
3: if N2 > N1 then
4: λ ⇐ 1, γ ⇐ ⌊

N2
N1

⌋;
5: else
6: γ ⇐ 1, λ ⇐ ⌊

N1
N2

⌋;
7: end if
End

Algorithm 3 takes the IS-rep and the initial weight set W1
using Eq. (12) as input. The algorithm first computes themaximum
value fmax of all the implicit intensity values and the maximum
weight ωmax of W1. Then, Algorithm 3 computes N1 and N2, which
respectively denote the number of points with theweights that are
larger than half of ωmax, and the number of points with implicit
values that are larger than half of fmax. By comparing the values of
N1 and N2, Algorithm 3 finally gives a choice of λ and γ .

Fig. 10 illustrates the effectiveness of different combinations
of λ and γ to the final weights. We can find that λ and γ are
determined using Algorithm 3 giving a more desirable weight
distribution (see Fig. 10(b)).

6.2. Application on finding major regions

One direct application of our normalization method is to find
the major regions of articulated models using the final weights
produced. The similar application also appeared in Ref. [12]. The
major region of an articulated model is assumed to contain the
points mainly nearby the first principal axis and holds the main
body of themodel (e.g. the trunk of a humanmodel). Consequently,
the minor regions contain the remaining points outside the major
region, and they are relatively far from the first principal axis and
usually prone to deformation (e.g. the arms or legs of a human
model).

Algorithm 4, called FindMajorRegion, shows the outline imple-
mentation of this method. The algorithm takes the final weights
of object points, obtained by our normalization method, as inputs,
and outputs the major region point set. By sorting the weights of
all object points, the procedure divides the points into nbins equally
spaced bins, where nbins is a predefined positive integer. Then the
points with the weight values in the smallest k bins are regarded
as the minor region, while the other points with the larger weight
values are regarded as the major region. The time complexity is
O(N logN) because this algorithm only consists of a sort step and
a loop to classify data.

Fig. 11 shows the results of finding the major regions (blue)
and minor regions (yellow) on four different poses of a seahorse
model using Algorithm 4. We typically use nbins = 10, k = 2,
λ = 1 and γ = 3 in this experiment. The corresponding ratios of
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Fig. 10. Illustrating the effectiveness of different combinations of λ and γ to the final weights. (a) The original iso-surface models (a shower-like one and a sprayer-like
one). (b) Cross-sections with λ = 1 and γ = 1. (c) λ = 5 and γ = 1. (d) λ = 1 and γ = 5. Note that the two parameters in (b) are adaptively determined using Algorithm
3, while the parameters in (c) and (d) are manually set to be compared with (b). All of the weights in this figure are computed using our weight function in Eq. (13).
Algorithm 4 : FindMajorRegion(O,W, nbins, Omajor ,Ominor )
Input:
O: the input 3D volumetric model
W: the weight set of all the final weight functions
nbins: the number of all bins
k: the number of bins selected for minor regions
Output:
Omajor : the point set of major region of O
Ominor : the point set of minor region of O
Local variables:
ωmax: the maximum value ofW
ωmin: the minimum value ofW
Begin
1: Omajor ⇐ ∅,Ominor ⇐ ∅;
2: Sort the weight values ofW and get ωmax and ωmin;
3: for (i = 1 to N) do
4: if ωi > ωmin + kωmax−ωmin

nbins
then

5: Omajor ⇐ Omajor + pi;
6: else
7: Ominor ⇐ Ominor + pi;
8: end if
9: end for
End

the number of major region points to the number of whole model
points from Fig. 11(a)–(e) are 80.2%, 80.9%, 80.5%, 78.3% and 75.0%,
respectively. Note that in Fig. 11(e), parts of the tail of the seahorse
are divided into separate parts from the major region. Unlike the
tails from Fig. 11(a)–(d), the tail in Fig. 11(e) is rotated away from
the principal axis of the shape and is therefore considered as a
separate part. Despite the situation in Fig. 11(e), the major regions
in the five figures are almost consistent.

6.3. Comparisons with some previous works

This section compares our work with some previous works.
Considering that shape alignment is one of the most important
applications of normalizationmethods and is usually used to check
the effectiveness of these methods, we will compare our method
with some previous methods through shape alignment. Several
different types of robust statistical methods, such as Iterative
Closest Point (ICP) [15], Least Trimmed Squares (LTS) [43] and
the normalization method by Jiang et al. [9], have improved the
classical PCA, in which all methods could be utilized on shape
alignment.

ICP is a widely used geometric alignment technique to match
two similar models. It starts with two input shapes represented
by point clouds. An initial guess is made for the relative rigid
transformation, and ICP iteratively refines the transformation by
repeatedly generating pairs of corresponding points on the shapes
through minimizing an error metric. One limitation is that ICP is
only effective on rigid shape alignment, it is not suitable for non-
rigid shapes. Another limitation of ICP and its variants is that,
as a local optimization method, it is not guaranteed to find the
globally optimal alignment. Therefore, ICP is only effective when
the initial position of the input rigid shapes is close to the correct
shape alignment [15,44]. Our robust normalization method can
be expected to obtain a better initial position and improve the
robustness of the ICP step for articulated shape alignment.

Another choice for improving the PCA method is LTS [43] for
the principal axis computation. LTS first fits the whole data using
an ordinary least squares. Then LTS re-fits the remaining data
and identifies those points with the largest residuals and discards
them for the final principal axis computation. LTS has a similar
disadvantage like LMS in that no consideration is taken for the
effect of the periphery on the articulated shape.

Jiang et al. [9] introduced a shape normalization method based
on the IS-rep without the iterative process. It uses the IS-rep to
design an intensity function to obtain a center and principal axis
of a 2D shape. Although the method is designed for deformable
shapes, its robust-to-deformation feature is only reflected in the
experimental results and has not been demonstrated rigorously.
Moreover, the final principal axis obtained by this method counts
on a good initial estimation, which may be deflected from the real
position significantly with deformation exists. For the purpose of
comparison, we implemented Jiang’s method by extending their
method from 2D images to 3D volumetric models.

Fig. 12 shows comparisons of the shape alignment results of two
pairs of 3Dmodels using fourmethods: ICP, LTS, Jiang’smethod and
ourmethod.Note that ICP is affected by the initial relative positions
of the two deformable shapes and LTS is easily influenced by some
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Fig. 11. The application of finding the major regions (blue) for several deformations of a seahorse model by Algorithm 4. The corresponding ratios of the number of major
region points to the number of whole model points are as follows: (a) 80.2%. (b) 80.9%. (c) 80.5%. (d) 78.3%. (e) 75.0%. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
Fig. 12. The iso-surface models of comparisons between four shape normalization methods by aligning two pairs of deformable volumetric models.
deformable regions connecting the major rigid part, while Jiang’s
method is better than the former two methods. Meanwhile, our
method is the best of the four and better than Jiang’s method due
to the step of iterative refinement.

6.4. Limitations

The normalization method introduced in this paper could be
used in shape alignment, finding themajor regions and some other
applications, such as shape retrieval, shape orientation and prior
viewpoints [4,8,10,12]. However, some limitations also exist in our
current implementation. Firstly, when the orientation of a shape
is not obvious, or when a shape undergoes a very large extent of
deformation, our method may produce undesirable results. Fig. 13
illustrates some undesirable normalization examples. The models
without obvious orientations are very hard to be normalized
because their principal axes do not exist or are very hard to
determine [2–4]. In fact, due to the variety of shapes as well as
the diversity of applications, there is probably no single method
for computing shape orientation that could be efficiently and
successfully applicable to all shapes [4]. Secondly, the values of
two parameters λ and γ in Eq. (13) will not be suitable for some
special shapes, which will in turn influence the final normalization
results. For instance, when it comes to normalize a shape with
some ‘‘fat’’ branches and ‘‘thin’’ main body, our method may bring
in undesirable results because the values of λ and γ obtained by
Algorithm 3 are likely to be inappropriate. This is one of our future
works, improving the choice of parameters with respect to variant
shapes.
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Fig. 13. The iso-surface display of normalization results of some women volumetric models by our method. Note that (c) and (d) are not normalized well because their
orientations are not quite obvious.
7. Conclusions

We have developed a new robust shape normalization method
for 3D articulated objects. Our framework is similar to Cortadellas
et al.’s normalization [1], whereas we extend it to 3D articulated
volumetric models. Our main contributions are to combine the
implicit shape representation (IS-rep) with the framework and
give a theoretical proof for guaranteeing that the IS-rep is robust
to articulated deformations. The main advantage of the IS-rep
is to produce a natural articulation insensitive weight function
to reduce the influence of articulated deformation during the
normalization computation. Our normalization method is robust
with respect to articulated deformation without requiring any
prior shape decomposition. The experimental results demonstrate
that our method can normalize 3D volumetric shapes better than
some previous works used to align two articulated shapes.

Some works can be considered for extending our current
work as a future direction of research. Firstly, the current
implementation of ourmethod is only developed for 3D volumetric
models, and we plan to extend our method on models with
other formats such as 3D meshes in the future. Secondly, some
other applications based on our method will be investigated,
such as automatically selecting a good viewpoint or some relative
applications in shape retrieval. The articulation-insensitivity
feature of the IS-rep demonstrated in our work could be extended
to construct a 3D shape descriptor used as an index in a database
of shapes, which further enables fast query and retrieval.
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