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Learning discriminative feature directly on point clouds is still challenging in the under-
standing of 3D shapes. Recent methods usually partition point clouds into local region sets, 
and then extract the local region features with fixed-size CNN or MLP, and finally aggregate 
all individual local features into a global feature using simple max pooling. However, due to 
the irregularity and sparsity in sampled point clouds, it is hard to encode the fine-grained 
geometry of local regions and their spatial relationships when only using the fixed-size fil-
ters and individual local feature integration, which limit the ability to learn discriminative 
features. To address this issue, we present a novel Local-Region-Context Network (LRC-Net), 
to learn discriminative features on point clouds by encoding the fine-grained contexts in-
side and among local regions simultaneously. LRC-Net consists of two main modules. The 
first module, named intra-region context encoding, is designed for capturing the geometric 
correlation inside each local region by novel variable-size convolution filter. The second 
module, named inter-region context encoding, is proposed for integrating the spatial rela-
tionships among local regions based on spatial similarity measures. Experimental results 
show that LRC-Net is competitive with state-of-the-art methods in shape classification and 
shape segmentation applications.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

As an important type of 3D data which can be acquired conveniently by various 3D sensors, point cloud has been in-
creasingly used in diverse real word applications including autonomous driving (Qi et al., 2018; Yi et al., 2019), 3D modeling 
(Golovinskiy et al., 2009; Gao et al., 2017; Han et al., 2017a, 2019b; Zhong et al., 2019; Skrodzki et al., 2018; Zheng et al., 
2018; Gao et al., 2015), indoor navigation (Zhu et al., 2017) and robotics (Rusu et al., 2008). Therefore, there is an emerging 
demand to learn discriminative features with deep neural networks for 3D shape understanding.

Unlike images, point cloud is not suitable for the traditional convolutional neural network (CNN) which often requires 
some fixed spatial distribution in the neighborhood of each pixel. To alleviate this issue, an alternative way is to rasterize the 
point cloud into regular voxel representations and then apply 3D CNNs (Zhou and Tuzel, 2017). However, the performance of 
plain 3D CNNs is largely limited by the serious resolution loss and the fast-growing computational cost, due to the inherent 
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Fig. 1. (a) Intra-region context encoding. It shows the process of capturing the geometric correlation inside the local region around the point p′
1. (b) Inter-

region context encoding. The spatial similarities of local regions are measured with the matrix V , where two central points p′
1 and p′

2 of local regions are 
highlighted.

sparsity of 3D shapes. To overcome the shortcoming of 3D CNNs, PointNet (Qi et al., 2017a) was proposed as a pioneering 
work which directly learns global features for 3D shapes from point sets. However, PointNet learns the feature of each point 
individually, while omitting the important contextual information among points.

To solve above-mentioned problems, recent studies have attempted to encode the local region contexts of point clouds 
with various designed manners. Specifically, there are two kinds of local region contexts, including the intra-region geo-
metric context and the inter-region spatial context. On the one hand, some methods concentrate on capturing the context 
of geometric correlations inside each local region. For example, PointNet++ (Qi et al., 2017b) uses a sampling and group-
ing strategy to hierarchically extract features for local regions. More recently, Point2Sequence (Liu et al., 2019a) learns the 
contextual information inside a local region with an attention-based sequence to sequence network. On the other hand, 
several studies attempt to utilize the context of spatial distribution information among local regions. For example, KD-Net 
(Klokov and Lempitsky, 2017) builds a kd-tree to divide the point cloud into small leaf bins and then hierarchically extracts 
the point cloud feature from the leaves to root according to a fixed spatial partition. KC-Net (Shen et al., 2018) uses a 
graph pooling operation which can partially utilize the spatial distribution information among local regions. However, it is 
still hard for these methods to encode the fine-grained contexts inside and among local regions simultaneously, especially 
for the geometric correlation between different scale areas inside a local region and the spatial relationships among local 
regions. This motivates us to employ variable-size filters inside each local region and spatial similarity measures among 
local regions for capturing intra-region context information and inter-region context information, respectively. Our method 
reliefs the limitation of the traditional CNNs in encoding the geometric context information on point clouds, which usu-
ally implements a convolution layer with fixed-size filters, while the concrete filter size is a hyper-parameter. To address 
above-mentioned problems, we propose LRC-Net to learn discriminative features from point clouds.

Our key contributions are summarized as follows.

• LRC-Net is presented for learning discriminative features directly from point clouds by simultaneously encoding the 
geometric correlation inside each local region and the spatial relationships among local regions.

• Intra-region context encoding module is designed for capturing the geometric correlation inside each local region by 
novel variable-size convolution filters, which learns the intrinsic structure and correction of multi-scale areas from their 
feature maps, rather than simple feature concatenating or max pooling as usually used in previous methods such as Qi 
et al. (2017a).

• Inter-region context encoding module is proposed for integrating the spatial relationships among local regions based on 
spatial similarity measures, which encodes the spatial distribution of local regions in their metric space.

The above two modules are illustrated in Fig. 1.

2. Related work

Feature learning from regularized 3D data. Traditional methods (Liu and Ramani, 2009; Liu et al., 2009, 2011; Gao 
et al., 2015; Fehr et al., 2016; Zou et al., 2018; Srivastava and Lall, 2019; Beksi and Papanikolopoulos, 2019; Zhao et al., 
2020) focus on capturing the geometric information of 3D shapes, which are usually limited by the hand-crafted manner 
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Fig. 2. Our LRC-Net architecture. In (a), LRC-Net first establishes multi-scale areas inside each local region by sampling and searching layers. Then, PointNet 
layer is employed to extract the feature of each scale area in (b). Subsequently, the feature of each local region is extracted for intra-region context encoding 
in (c), which captures the geometric correlation inside the local region. Simultaneously, the spatial similarity measure is calculated for inter-region context 
encoding in (d), which enhances the spatial relationships among local regions. Finally, the global feature of the point cloud is obtained by aggregating the 
features of local regions. The learned global feature can be used in shape classification and shape segmentation applications as shown in (e)(f).

in specific application. Benefit from the success of CNNs on large-scale image repositories such as ImageNet (Krizhevsky et 
al., 2012), deep neural networks are being applied to process the 3D format data. As an irregular format of 3D data, point 
clouds can be transformed into other kinds of regularized format, such as the 3D voxel (Han et al., 2016, 2017b, 2018a) 
or the rendered view (Han et al., 2018b, 2019c,e,d,g,a). The voxelization of point cloud is a feasible choice, which first 
converts the point cloud into voxels, and then applies 3D CNNs. 3D ShapeNets (Wu et al., 2015) and VoxNet (Maturana and 
Scherer, 2015) represent each voxel with a binary value which indicates the occupied of the location in the space. However, 
the performance is largely limited by the resolution loss and the rapid growth of computational complexity. The inherent 
sparsity of 3D shapes makes it hard to make full use of the storage of input data, where the hollow inside 3D shapes is 
often meaningless. Some improvements (Li et al., 2016) have been proposed to alleviate the data sparsity of the volumetric 
representation. However, it is still nontrivial to deal with large point clouds with high resolution.

Feature learning from point clouds. PointNet (Qi et al., 2017a) is a pioneering work which directly adopts point sets as 
input and obtains convincing performances. A concise strategy is adopted in PointNet by computing the feature for each 
point individually and then aggregating these features into a global representation with max-pooling. However, PointNet 
is largely limited in capturing the contextual information of local regions. To address this problem, many recent studies 
attempt to capture local region contexts. Specifically, local region contexts can be divided into two categories, which are 
intra-region context and inter-region context, respectively. On the one hand, some studies capture the intra-region context 
by building graph inside multi-scale local regions. PointNet++ (Qi et al., 2017b) uses sampling and grouping operations for 
extracting features from several clusters hierarchically to capture the context of each cluster. Point2Sequence (Liu et al., 
2019a) extracts the feature of local regions by a sequence to sequence model with an attention mechanism. On the other 
hand, some studies (Li et al., 2018b; Wang et al., 2018; Xu et al., 2018; Wang et al., 2017; Komarichev et al., 2019; Hu 
et al., 2019; Wen et al., 2020) investigate CNN-like operations to aggregate neighbors of a given point by building kNN 
graph inside the single-scale local region. On the other hand, some studies encode the inter-region context with indexing 
structures. KC-Net (Shen et al., 2018) employs a kernel correlation layer and a graph pooling layer for capturing the local 
structure of point clouds. ShapeContextNet (Xie et al., 2018) extends the 2D Shape context (Belongie et al., 2001) to 3D, 
which divides the local region of a given point into bins and updates the point feature with the aggregation of these bin 
features. KD-Net (Klokov and Lempitsky, 2017) and OctNet (Riegler et al., 2017) first divide the input point cloud into leaves, 
and then hierarchically extracts features from leaves to the root. Point2SpatialCapsule (Wen et al., 2019) integrates capsules 
to explore the local structures of point clouds, which employs a multi-scale shuffling to increase the diversity of local 
region features and applies a clustering operation to capture the spatial information of local regions in the feature space. 
This complicated procedure significantly differentiates Point2SpatialCapsule from ours. In general, it is hard for current 
methods to simultaneously capture the contextual information inside and among multi-scale local regions, which limits the 
expressiveness of learned representations of point clouds.

3. The LRC-Net model

Fig. 2 shows the architecture of LRC-Net, which is composed of six parts: multi-scale area establishment, area feature 
extraction, intra-region context encoding, inter-region context encoding, shape classification and shape segmentation, re-
spectively. LRC-Net adopts a point cloud P = {pi ∈R3, i = 1, 2, · · · , N} as input which is composed of 3D point coordinates 
x, y and z. Firstly, a subset with M points, denoted by P′ = {p′ ∈ R3, j = 1, 2, · · · , M}, is selected from the input point 
j



4 X. Liu et al. / Computer Aided Geometric Design 79 (2020) 101859
cloud P to act as the centroids of local regions {R j, j = 1, 2, · · · , M}. Based on the selected centeroids P′ , T different scale 
areas A j = {At

j, t = 1, 2, · · · , T } are established in each local region R j centered at p′
j , where {Kt, t = 1, 2, · · · , T } points are 

contained in each scale area, respectively. Then, a D-dimensional feature st
j is extracted from each scale area At

j . By stack-

ing st
j , a T × D feature matrix s j = {st

j, t = 1, 2, · · · , T } is formed for each local region R j , and further aggregated into a 
D-dimensional feature r j by the intra-region encoding module (see Fig. 2(c)). Meanwhile, another module of calculating the 
spatial similarity in the 3D space is applied to capture the inter-region context among local regions (see Fig. 2(d)). Finally, 
a 1024-dimensional feature g of the whole input point cloud P is aggregated from the feature of M local regions, which 
integrates the extracted intra-region and inter-region context features. The learned global feature g can be applied to shape 
classification and shape segmentation applications.

3.1. Multi-scale area establishment

Three key layers are engaged in our structure to establish the multi-scale areas around each sampled point, includ-
ing sampling layer, searching layer and grouping layer. The sampling layer uniformly selects M points from the input 
point cloud P as the centroids of local regions. Around each sampled centroid, the searching layer continuously finds 
[K1, · · · , Kt , · · · , KT ] nearest points to build the indexing relationship between points. According to the indexes in the 
searching layer, the grouping layer groups multi-scale areas {At

j, t = 1, 2, · · · , T } inside each local region R j .
In the sampling layer, farthest point sampling (FPS) is adopted to select M(M < N) points P′ which defines the centroids 

of local regions. In the sampling process, the new sampled point p′
j is always the farthest one from previously selected 

points {p′
1, p

′
2, · · · , p′

j−1}. Compared with other sampling methods, such as random sampling, FPS can achieve a more uni-
form coverage of the entire point cloud with the same number of sampled points.

To build the multi-scale areas A j , the k-nearest neighbors (kNN) algorithm is applied to search the neighbors of a given 
point based on the Euclidean distance between points. Another alternative method is the ball query (Qi et al., 2017b) which 
selects all points within a given radius around a point. Compared with the ball query, kNN can guarantee the information 
inside local regions and is robust to the input point cloud with different sparsity.

3.2. Area feature extraction

As shown in Fig. 2, a concise and effective PointNet layer is employed in LRC-Net to extract the feature for each scale 
area. The PointNet layer is composed of two key parts: a Multi-Layer-Perceptron (MLP) layer and a max-pooling layer, 
respectively. The MLP layer individually abstracts the coordinates of points in each area At

j into the feature space, and then 
these features are aggregated into a D-dimensional feature st

j by the max pooling layer. So far, a feature map of T different 
scale areas {A j, j = 1, 2, · · · , M} with the size of M × T × D is acquired after the PointNet layer.

Following previous studies (Li et al., 2018a; Qi et al., 2017b), the relative coordinates are adopted in LRC-Net. Before 
feeding points inside each local region R j into the PointNet layer, a relative coordinate system of the centroid p′

j is built by 
a simple operation: pl = pl − p′

j , where l is the index of points in the local region R j . Different from absolute coordinates, 
the relative coordinates are determined by the relative positional relationship between points. Therefore, by using relative 
coordinates, the learned feature of local regions can be invariant to transformations such as rotation and translation.

3.3. Intra-region context encoding

In order to capture the fine-grained contextual information between multi-scale areas inside local regions, variable-
size convolution filters are employed in the architecture. Inspired by capturing the correlation of different words in the 
natural language processing tasks (Kim, 2014), the intra-region correlation of multi-scale areas is also important in the 
feature learning of point clouds. Different from most existing methods that only encode the correlation of fixed scale of 
areas, we consider capturing the correlation among multiple scales from 1 to T . As depicted in Fig. 2, given the features 
{st

j, t = 1, 2, · · · , T } of multi-scale areas in a local region R j from the area feature extraction module, we first represent 
these features in a T × D feature map by

S1:T
j = s1

j ⊕ s2
j ⊕ · · · ⊕ sT

j , (1)

where ⊕ is the concatenation operator. In general, let Sa:a+b
j refer to the concatenation of features sa

j, s
a+1
j , · · · , sa+b−1

j . 
A convolution operation involves a filter w ∈ RhD , which is applied to a window of h scale features to produce a new 
feature. For example, a feature ck is generated from a window of features Sa:a+h−1

j by

ck = f (w · Sa:a+h−1
j + b). (2)

Here b ∈ R is a bias term and f is a non-linear function such as ReLU (Nair and Hinton, 2010). As the intermediate step 
shown in Fig. 2, this filter is applied to each possible window of scales in the features S 1:h

j , S2:h+1
j , · · · , S T −h+1:T

j to produce 
a feature vector
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c = [c1, c2, · · · , cT −h+1], (3)

with length of T − h + 1. Then, we apply max pooling operation over the feature vector, which extracts the maximum value 
from feature vector c by

ĉ = max{c}. (4)

Here ĉ is one element of local region feature r j corresponding to this particular filter. So far, we have shown the process 
of getting one element in r j by a convolution filter with window size h × D . In general, there are T kinds of convolution 
filters in different sizes and D

T filters for each kind of convolution filter. Therefore, the output of each input local region R j
is a D-dimensional feature vector r j .

3.4. Inter-region context encoding

To obtain the global feature of point clouds, most existing methods adopt simple pooling layers to aggregate local region 
features. However, the inter-region context is largely lost in the pooling process, especially for the spatial distribution 
information among local regions. To capture the inter-region spatial context, a greedy strategy is proposed by aggregating 
the spatial distribution information among local regions in an explicit manner. Following the intra-region context encoding 
module, the feature map with the size M × D of M local regions is obtained. As shown in Fig. 2, to encode the spatial 
information of local regions, we explicitly calculate the spatial similarity among local regions based on the coordinates of 
local region centroids. Given the coordinate of centroids {p′

j, j = 1, 2, · · · , M}, the M × M distance matrix U is build by

U =

⎡
⎢⎢⎢⎣

(p′
1 − p′

1)
2 (p′

1 − p′
2)

2 · · · (p′
1 − p′

M)2

(p′
2 − p′

1)
2 (p′

2 − p′
2)

2 · · · (p′
2 − p′

M)2

...
...

. . .
...

(p′
M − p′

1)
2 (p′

M − p′
2)

2 · · · (p′
M − p′

M)2

⎤
⎥⎥⎥⎦ . (5)

To convert the distance matrix to the similarity space, the spatial similarity matrix V is calculated by

V = e−γ U . (6)

Here γ is a parameter which can regulate the effect of the spatial similarity. Thus, we obtain the spatial similarity among 
local regions. To enhance the feature r j of each local region, a greedy weighting strategy is adopted as

r′
j =

M∑
b=1

V j,b · rb, (7)

where r′
j is the enhanced feature vector of r j and b is the index of the column. In addition, a normalization operation is 

applied to the enhanced features by

r′′
j = r′

j∑M
b=1 V j,b

. (8)

Here r′′
j is the final features of local regions after the regularization, which contains the information of spatial distribution 

among local regions. In general, it is a greedy strategy to compute the spatial similarity between any two local regions. The 
greedy strategy aims to enhance the correlation of local regions, which can promote the learning of the global features. In 
the subsequent network, a 1024-dimensional global feature g of the input point cloud is extracted by another PointNet layer. 
The learned global feature g can be applied to various applications, such as shape classification and shape segmentation.

3.5. Expansion for shape segmentation

The target of shape segmentation is to predict a semantic label for each point in the point cloud. With the obtained 
global feature g , the key is how to acquire the feature for each point. There are two options, one is to duplicate the global 
feature with N times as in Wang et al. (2018), the other is to perform upsampling by the interpolation layer (Qi et al., 
2017b). In the shape segmentation module, two interpolation layers are equipped in our network, which propagate the 
features from shape level to point level by upsampling. The feature propagation φ between different levels is guided by 
the inverse distance between k-nearest points. In the interpolation layer, we search k (k = 3) nearest points for each point 
in current level from points in previous level. Therefore, the feature of point φ(p) in current level is interpolated by the 
positional relationship of points between two levels, denoted by
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Table 1
The shape classification results (%) on ModelNet10 and ModelNet40 benchmarks.

Method Scales Points MN10 MN40

PointNet (Qi et al., 2017a) single 1k - 89.2
O-CNN (Wang et al., 2017) single - - 90.6
MAP-VAE (Han et al., 2019f) single 1k 94.82 90.15
Kd-Net (Klokov and Lempitsky, 2017) single 1k 94.0 91.8
KC-Net (Shen et al., 2018) single 1k 94.4 91.0
PointCNN (Li et al., 2018b) single 1k - 91.7
DGCNN (Wang et al., 2018) single 1k - 92.2
SO-Net (Li et al., 2018a) single 2k 94.1 90.9
A-CNN (Komarichev et al., 2019) single 1k 95.5 92.6
InterpCNN (Mao et al., 2019) single 1k - 93.0
RS-CNN (Liu et al., 2019c) single 1k - 93.6

PointNet++ (Qi et al., 2017b) multi 1k - 90.7
L2G-AE (Liu et al., 2019b) multi 1k 95.37 90.64
ShapeContextNet (Xie et al., 2018) multi 1k - 90.0
Point2Sequence (Liu et al., 2019a) multi 1k 95.3 92.6
Point2SpatialCapsule (Wen et al., 2019) multi 1k 95.8 93.4
LRC-Net (ours) multi 10k - 94.2
LRC-Net (ours) multi 1k 95.8 93.1

Table 2
The shape segmentation results (%) on ShapeNet part segmentation dataset.

Method Scale Mean
Intersection over Union (IoU)

air. bag cap car cha. ear. gui. kni. lam. lap. mot. mug pis. roc. ska. tab.
# SHAPES 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet (Qi et al., 2017a) single 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
Kd-Net (Klokov and Lempitsky, 2017) single 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
KCNet (Shen et al., 2018) single 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3
DGCNN (Wang et al., 2018) single 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0
SO-Net (Li et al., 2018a) single 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0
A-CNN (Komarichev et al., 2019) single 86.1 84.2 84.0 88.0 79.6 91.3 75.2 91.6 87.1 85.5 95.4 75.3 94.9 82.5 67.8 77.5 83.3
PointCNN (Li et al., 2018b) single 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
RS-CNN (Liu et al., 2019c) single 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

PointNet++ (Qi et al., 2017b) multi 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
ShapeContextNet (Xie et al., 2018) multi 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8
Point2Sequence (Liu et al., 2019a) multi 85.2 82.6 81.8 87.5 77.3 90.8 77.1 91.1 86.9 83.9 95.7 70.8 94.6 79.3 58.1 75.2 82.8
Point2SpatialCapsule (Wen et al., 2019) multi 85.3 83.5 83.4 88.5 77.6 90.8 79.4 90.9 86.9 84.3 95.4 71.7 95.3 82.6 60.6 75.3 82.5
LRC-Net (ours) multi 85.3 82.6 85.2 87.4 79.0 90.7 80.2 91.3 86.9 84.5 95.5 71.4 93.8 79.4 51.7 75.5 82.6

φ(p) =
∑k

i=1 w(pi)φ(pi)∑k
i=1 w(pi)

, (9)

where w(pi) = 1
(p−pi)

2 is the inverse square Euclidean distance between two points, φ(pi) is the point feature of pi and 
{pi, i = 1, 2, · · · , k} are the k nearest points of p in the previous level. The points in each level are already obtained from 
the multi-scale area establishment module and the interpolation step can be regard as a reverse process of the abstraction 
step.

4. Experiments

In this section, shape classification and shape segmentation applications are adopted to evaluate the performances of 
the LRC-Net. In the ablation study, we first investigate how the two main modules affect the performances of LRC-Net in 
the shape classification task on ModelNet40 (Wu et al., 2015). Then, we compare our model with several state-of-the-art 
methods in shape classification on ModelNet10/40 and shape part segmentation on ShapeNet part dataset (Savva et al., 
2016). Finally, some visualizations of the shape segmentation results are also reported.

4.1. Network configuration

In LRC-Net, some network configurations need to be initialized. According to the input point cloud, we first initialize 
parameters of the number of sampled points M = 384, the number of scales T = 4, the number of points in multi-scale 
areas K1 = 16, K2 = 32, K3 = 64 and K4 = 128, the feature dimension r j of each local region D = 128. The rest settings of 
our model are same as in Fig. 2. In addition, ReLU is used after each fully connected layer with Batch-normalization, and 
Dropout is also applied with drop ratio 0.4 in the fully connected layers. In the experiment, we train our network on a 
NVIDIA GTX 1,080Ti GPU using ADAM optimizer with initial learning rate 0.001, batch size of 16 and batch normalization 
rate 0.5. The learning rate and batch normalization rate are decreased by 0.3 and 0.5 for every 20 epochs, respectively.
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5. Parameters setting

All the experiments in this section are evaluated on ModelNet40, which contains 40 categories and 12,311 CAD shapes 
with 9,843 shapes for training and 2,468 shapes for testing. And the results listed in tables are the instance accuracies. For 
each 3D shape, we adopt the point cloud with 1,024 points which are uniformly sampled from the corresponding mesh 
faces as input.

Table 3
The effect of the convergence factor γ on ModelNet40.

γ 0 1 102 104 105

Accuracy (%) 91.33 91.61 92.02 93.07 92.54

In the module of spatial distribution information encoding, γ is an important parameter which influences the perfor-
mance of the whole model. The results of several settings of γ are shown in the Table 3. The best instance accuracy 93.07%
is reached at γ = 104 which maximizes the effect of the spatial information encoding module. In particular, γ = 0 repre-
sents a simple summation of the local region features, which will result in the discriminative ability loss of local region 
features. From the results, we can see that the spatial information encoding module can promote the global representation 
learning of point cloud.

Table 4
The effect of the sampled points M on ModelNet40.

M 128 256 384 512

Accuracy (%) 92.22 92.34 93.07 92.42

To explore the effect of the sampled points M , we keep the setting γ = 104 and vary M from 128 to 512 as shown 
in Table 4. The number of the sample points influences the local regions which are visible to the network in the training 
process. M = 384 can obtain a better coverage of all training point clouds, where the input information is balanced between 
insufficiency and redundancy.

Table 5
The effect of the number of scale areas S in each local region on 
ModelNet40.

T 1 2 3 4 5

Accuracy (%) 92.26 92.42 92.54 93.07 92.18

Moreover, we also discuss the impact of the number of scale areas T in each local region. In the implementation, we 
keep the number of points 128 in each local region and range T from 1 to 5. The number of points in each scale is a power 
of 2 and varies in [8, 16, 32, 64, 128]. Specifically, T = 3 indicates that there are [32, 64, 128] points in the scale areas. And 
similarly, T = 2 represents there are [64, 128] points in the two scale areas respectively. In terms of results in Table 5, 
LRC-Net reaches the best performance when the scale areas number is 4. In practice, the number of scale areas is largely 
determined by the properties of the input point cloud, especially the sparsity of points. Therefore, when the number of 
scale areas in each local region is 4, it is more suitable for our model.

Table 6
The effect of the kind of filers h on ModelNet40 in the variable-
size convolution module.

h 1 2 3 4

Accuracy (%) 92.38 92.42 92.67 93.07

With the number of scale areas to be 4, we change the kind of filters from 1 to 4 in the variable-size convolution 
module. In Table 6, h = 1 represents only one type of convolutional filter 1 × D , and similarly, h = 2 represents two kinds 
of filters 1 × D, 2 × D . The experiment results show that the module of variable-size convolution is effective in aggregating 
the multi-scale area features.

5.1. Ablation study

In the following, we show the effects of the two main modules: the intra-region context encoding and the inter-region 
context encoding, respectively. In Table 7, we show the performances of LRC-Net with and without the intra-region context 
encoding module. Specifically, when we remove the intra-region context encoding, there are three widely used ways to ag-
gregate the features of multi-scale areas by mean pooling (Mean), max pooling (Max) and concatenating (Con), respectively.
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Table 7
The effect of intra-region context encoding module in LRC-Net 
on ModelNet40.

Metric All Mean Max Con

Accuracy (%) 93.07 92.50 92.38 92.30

Fig. 3. Visualization of some shape segmentation results. The top row the is ground truth point clouds, and the bottom row is our predicted results, where 
parts with the same color belong to the same class. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

These results show that the intra-region context encoding module can promote the discriminative ability of the learned 
point cloud features. Similarly, we also evaluate the role of the inter-region context encoding module. As depicted in Table 8, 
we then list the results with (Y) and without (N) the inter-region context encoding module. In addition, we also show the 
influence of the max pooling operation (max) or the mean pooling operation (mean) in the PointNet layer which extracts 
the global representation g as shown in Fig. 2. Therefore, there are four alternative combinations, Y(max), N(max), Y(mean) 
and N(mean), respectively. The results suggest that the inter-region context encoding module is effective in improving the 
learning of global features by capturing the spatial context among local regions. According to above comparisons, the two 
modules in LRC-Net are effective in encoding local region contexts.

Table 8
The effect of inter-region context encoding module in LRC-Net on ModelNet40.

Metric Y(max) N(max) Y(mean) N(mean) N(sum)

Accuracy (%) 93.07 92.26 91.57 91.37 91.41

5.2. Shape classification

The performances of LRC-Net are evaluated on both ModelNet10 (MN10) and ModelNet40 (MN40) 3D shape classification 
benchmarks. In detail, MN40 contains 40 categories and 12,311 CAD shapes with 9,843 shapes for training and 2,468 shapes 
for testing. And MN10 is a subset of MN40 with 4,899 CAD shapes, including 3,991 shapes for training and 908 shapes 
for testing. Table 1 compares LRC-Net with several state-of-the-art methods in terms of instance accuracy on MN10 and 
MN40, respectively. As shown in the Table 1, all methods can be divided into two categories: single-scale based methods 
(Li et al., 2018b; Komarichev et al., 2019) and multi-scale based methods (Qi et al., 2017b; Liu et al., 2019a). LRC-Net 
has greatly improved the baseline of PointNet++ (Qi et al., 2017b) on both ModelNet10 and ModelNet40. And LRC-Net 
achieves the same results with Point2SpatialCapsule (Wen et al., 2019) on ModelNet10 and reaches comparable results with 
Point2SpatialCapsule on ModelNet40. Point2SpatialCapsule benefits from its network structures such as dynamic routing 
for clustering and point cloud reconstruction, which aims to increase the network capability. However, the two newly 
added modules (i.e. clustering and point cloud reconstruction) increase both the model size and the computational cost of 
Point2SpatialCapsule during network learning. This makes Point2SpatialCapsule more complicated than LRC-Net in term of 
the network architecture. The best accuracy 94.2% is achieved with 10,000 points as input, where the higher resolution point 
cloud can provide more local details than the sparse input with 1,024 points. Experimental results show that LRC-Net can 
effectively enhance the representation learning of point clouds from multi-scale local regions by capturing the contextual 
information inside and among local regions.

In addition, to show the network complexity of LRC-Net intuitively, we make a statistics of model size and space cost of 
some point cloud based methods. We follow PointNet++ to evaluate the time and space cost of several point cloud based 
methods as shown in Table 9. We record forward time under the same conditions with a batch size 8 using TensorFlow 
1.0 with a single GTX 1080 Ti. Table 9 shows LRC-Net can achieve tradeoff between the model complexity (number of 
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Table 9
Complexity, forward time, and accuracy on ModelNet40 of different models.

Method Model size (MB) Time (MS) Accuracy (%)

PointNet (vanilla) (Qi et al., 2017a) 9.4 6.8 87.1
PointNet (Qi et al., 2017a) 40 16.6 89.2
PointNet++ (SSG) (Qi et al., 2017b) 8.7 82.4 -
PointNet++ (MSG) (Qi et al., 2017b) 12 163.2 90.7
PointCNN (Li et al., 2018b) 94 117.0 92.3
LRC-Net (ours) 18 115.8 93.1

parameters) and computational complexity (forward pass time). However, influenced by the setting of multi-scale grouping 
(MSG), LRC-Net and PointNet++ take longer than other single-scale grouping (SSG) based methods.

5.3. Shape segmentation

To further verify the validity of our model, we also evaluate the performance of LRC-Net in the shape segmentation 
task. The shape segmentation branch is implemented as depicted in Fig. 2. In this task, ShapeNet Part dataset is adopted 
as the benchmark which contains 16,881 models from 16 categories and is spit into train set, validation set and test set 
as PointNet++. There are 2,048 points for each point cloud, where each point belongs to a certain one of 50 part classes. 
And the kind of semantic parts in each shape varies from 2 to 5. There is no overlap of the part classes between shapes in 
different shape categories.

We employ the mean Intersection over Union (IoU) proposed in Qi et al. (2017a) as the evaluation metric for shape 
segmentation. For each shape, the IoU is computed between ground-truth and the prediction for each part class in the 
shape category. And the average IoUs are calculated in each shape category and overall shapes. In Table 2, we report the 
performance of LRC-Net in each category and the mean IoU of all testing shapes.

From Table 2, the performance of LRC-Net is not as good as three latest proposed single-scale based methods including 
PointCNN (Li et al., 2018b), A-CNN (Komarichev et al., 2019) and RS-CNN (Liu et al., 2019c) that adopt some special strategies 
in the training process. For example, A-CNN states “We concatenate the one-hot encoding of the object label to the last 
feature layer” and PointCNN states “we perturb point locations with the point shuffling for better generalization”, which are 
different from mainstream approaches like PointNet (Qi et al., 2017a). For fair comparison with most of other methods, we 
do not apply these strategies in our method.

Moreover, compared with other multi-scale based methods (Qi et al., 2017b; Liu et al., 2019a), LRC-Net achieves the best 
mean instance IoU of 85.3% and comparable performances on many shape categories, which shows the effective of enhanc-
ing the contextual information inside and among local regions. In addition, some visualizations of the shape segmentation 
results are shown in Fig. 3, where our predictions are highly consistent with the ground-truths. The shape segmentation 
results qualitatively show the effectiveness of LRC-Net in capturing the contextual information for each point.

Table 10
The performance of LRC-Net in the semantic segmentation on S3DIS.

Method Mean IoU Overall accuracy

PointNet (baseline) (Qi et al., 2017a) 20.1 53.2
PointNet (Qi et al., 2017a) 47.6 78.5
MS + CU (2) (Engelmann et al., 2017) 47.8 49.7
G + RCU (Engelmann et al., 2017) 49.7 81.1
ShapeContextNet (Xie et al., 2018) 52.7 81.6
LRC-Net (ours) 52.0 81.3

5.4. Indoor scene segmentation

We evaluate our model on Standford Large-Scale 3D Indoor Spaces Dataset (S3DIS) (Armeni et al., 2016) for the semantic 
scene segmentation task. There are 6 indoor areas including 272 rooms of the 3D scan point clouds in the S3DIS dataset. 
Each point in one point cloud belongs to one of the 13 categories, e.g. chair, board, ceiling and beam. We follow the same 
setting as in PointNet (Qi et al., 2017a), where each room is split into blocks and 4,096 points are sampled from each block 
in the training process. In the testing process, all the points are used. We also apply the 6-fold cross validation over the 6 
areas and report the average evaluation results.

Similar to shape part segmentation task, the probability distribution over the semantic object classes is generated for 
each input point. The quantified comparison results with some existing methods are reported in Table 10. LRC-Net outper-
forms PointNet (Qi et al., 2017a) and achieves comparable results with ShapeContextNet (Xie et al., 2018).
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6. Conclusion

In this paper, we propose a novel feature learning framework for the understanding of point cloud in the shape classifica-
tion and shape segmentation. With the intra-region context encoding module, the LRC-Net effectively learns the correlation 
between multi-scale areas inside each local region. To enhance the aggregation of local region features, a greedy strategy 
enables to encode the inter-region context of point clouds. We justify that both of these two modules are vital to encode 
local region contexts, which promote learning discriminative feature for point clouds.
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