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Abstract. A new predictor of bilateral filter for smoothing meshes is
presented. It prevents shrinkage of corners. A major feature of mesh
smoothing is to move every vertex along the direction determined by
the mean curvature normal with speed defined by the predictor. It pre-
vents unnatural deformation for irregular meshes. In order to remove the
normal noise, we use adaptive Gaussian filter to smooth triangle
normals.

1 Introduction

Nowadays, mesh smoothing or mesh denoising, whose goal is to adjust vertex
positions so that the overall mesh becomes smooth while mesh connectivity
is kept, is an important process for many digital geometry applications. Re-
moving noise while preserving important features currently is an active area of
research.

Many mesh smoothing algorithms have been developed in the last few years.
Taubin [9] pioneered λ|µ algorithm to solve the shrinkage problem caused by
Laplacian smoothing. Desbrun et al. [2] extended this approach to irregular
meshes using mean curvature flow. However, these techniques are isotropic, and
therefore diffuse shape features. Feature-preserving mesh smoothing was recently
proposed. Methods presented in [6, 7, 10] achieve this goal by first smoothing the
normal field, and then updating vertex positions to match the new normals. The
extension from image smoothing to mesh smoothing was explored in [1, 3, 4, 8].
The bilateral filter, which is an alternative edge-preserving image filter [11], has
been extended to mesh smoothing in different ways [1, 3, 4]. Since the bilateral
filter is simple, fast and well feature-preserving, it is a good choice for smoothing
and denoising. However, the bilateral filter is sensitive to the initial normals,
and tends to round off corners, which may result in unnatural deformation for
irregular meshes.

In this paper, we present a new predictor of bilateral filter which avoids corner
shrinkage. This predictor depends on normals of both a vertex and its nearby
triangles. We first smooth mesh normals. Then, we move every vertex along the
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direction determined by the mean curvature normal with speed defined by the
new predictor. The major contributions of our work are as follows.

- The new predictor preserves both sharp edges and corners.
- Combination of the new predictor and the method of normal improvement

prevents unnatural deformation for highly irregular meshes.

2 Bilateral Filter for Meshes

A bilateral filter is an edge-preserving filter introduced in image processing for
smoothing images [11]. It has been extended to mesh smoothing in different ways
[1, 3, 4]. Let M be a input mesh with some additive noise, and let s and p be
two points on M. Jones [5] introduces the concept of predictor(Πp(s)), which
defines the denoised position of s due to p. The bilateral filter for meshes is
defined as

E(s) =

∑

p∈N(s)

f(||p − s||)g(||Πp(s) − s||)Πp(s)

∑

p∈N(s)

f(||p − s||)g(||Πp(s) − s||)
, (1)

where N(s) is a neighborhood of s, and the weight of p depends on both the
spatial distance ||p − s|| and the signal difference ||Πp(s) − s||. A spatial weight
Gaussian f of width σf and an influence weight Gaussian g of width σg are
often chosen in practice. Let ns be the normal at s, and let np be the normal
at p. Here we formally define a displacement signed-distance ds from a current
position s to the predictor Πp(s).

Fleishman et al. [3] have proposed an extension of bilateral filter to meshes.
Their predictor can be written by

Πp(s) = s + ((p − s) · ns)ns, (2)

where p is a vertex in the neighborhood of s. It is illustrated in Fig. 1(a). The
predictor does not introduce tangential vertex drift. However, it tends to move
vertices along the normal direction to round off corners as shown in Fig. 3(b).
Considering the case in which the point s is a corner, Fleishman et al.’s predictor
moves great distance from s to Πp(s) as shown in Fig. 2(a).
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Fig. 1. (a) Fleishman et al.’s predictor. (b) Jones et al.’s predictor. (c) Our predictor
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Fig. 2. s is a corner. (a) Fleishman et al.’s predictor. (b) Jones et al.’s predictor. (c)
Our predictor

Independently, Jones et al. [4] present a similar algorithm. Their approach
projects the central vertex s onto the planes of nearby triangles, while that of
Fleishman et al. project nearby vertices onto the tangent plane of the central
vertex s. The predictor of Jones et al. can be written by

Πp(s) = s + ((p − s) · np)np, (3)

where p is the centroid of a triangle in the neighborhood of s. It is illustrated
in Fig. 1(b). In Fig. 2(b), Jones et al.’s predictor moves a little distance from s
to Πp(s) when s is a corner. However, since s does not move along the direction
of normal ns, it may introduce tangential vertex drift. This produces unnatural
deformation for irregular meshes as shown in Fig. 4(e).

2.1 New Predictor of Bilateral Filter

To avoid unnatural deformation arising from the predictors of Fleishman et al.
and Jones et al., we present a new predictor that considers both the vertex
normal and its nearby triangle normals. Our approach moves the central vertex
s to the tangent planes of nearby triangles along the direction of the normal ns.
The new predictor prevents corner shrinkage and tangential vertex drift. Our
predictor satisfies

Πp(s) = s + dsns and (Πp(s) − p)np = 0,

where p is the centroid of a triangle in the neighborhood of s. By solving the
above equations, we obtain

Πp(s) = s + (
(p − s) · np

ns · np
)ns. (4)

It is illustrated in Fig. 1(c). Since our predictor moves vertices along the normal
direction, no vertex drift occurs. Due to the combination with nearby trian-
gle normals, corners can be preserved. We consider the case where the point s
is a corner. Compared with Fleishman et al.’s predictor which tends to round
off corners as shown in Fig. 2(a), our predictor is able to preserve corners as
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(a) (b) (c)

Fig. 3. Smoothing of CAD-like model with large noise. (a) Input noisy model. (b)
Fleishman et al.’s result (5 iterations). (c) Our result (5 iterations)

(a) (b) (c)

(d) (e) (f) (g)

Fig. 4. (a) A torus with different sampling rates. (b) A magnified view of a part of
the torus. (c) The torus with additive Gaussian noise in both vertex positions and
normals. (d) Fleishman et al.’s method deforms the initial shape. (e) Jones et al.’s
method smoothes well but slightly deforms the initial shape. (f) Mean curvature flow
smoothes well. (g) Our method smoothes well as (f)

shown in Fig. 2(c). In Fig. 3 we show the smoothing results of a CAD object. In
Fig. 3(b), the corners are rounded off by Fleishman et al.’s predictor, while they
are preserved by our new predictor as shown in Fig. 3(c). Compared with Jones
et al’s predictor which introduces tangential vertex drift as shown in Fig. 2(b),
our predictor moves vertices along the normal direction as shown in Fig. 2(c).
Fig. 4(e) shows the result of vertex drift. Our result achieves better smoothing
with respect to the shape as shown in Fig. 4(g).

3 Improving and Smoothing Normals

Fleishman et al. compute the normal at a vertex as the weighted average (by
the area of the triangles) of the normals to the triangles in the 1-ring
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neighborhood of the vertex, where the normal direction depends on the param-
eterization defined by the areas of the neighborhood triangles. Moving vertex
along this direction may result in unnatural deformation for highly irregular
meshes (see Fig. 4(d)). To overcome this problem, we use the mean curvature
normal. According to [2], a good estimation of the mean curvature normal at
vertex p is given by

Hn(p) =
1

4A

∑

i∈V (p)

(cot αi + cot βi)(qi − p), (5)

where A is the sum of the areas of the triangles around p, V (p) is the set
of adjacent vertex indexes to p, qi corresponds to the ith adjacent vertex to
p, and αi and βi are the two angles opposite to the edge pqi. In this paper,
we use the unit vector n(p) = Hn

||Hn|| as the normal at vertex p instead of the
normal used by Fleishman et al.. Roughly speaking, our smoothing schemes
consist of moving every vertex along the direction determined by the mean
curvature normal of Equation (5), with speed defined by the new predictor
of Equation (4). This prevents unnatural deformation for irregular meshes
(see Fig. 4(g)).

Our predictors are also based on the normals of the nearby triangles. Since
the normals are sensitive to noise [4], we smooth normals by adaptive Gaussian
filter applied to triangle normals [7].

4 Results and Discussion

We demonstrate our results in Figs. 4-5. The execution time is reported on
a Pentium IV 1.70GHz processor with 256M RAM excluding that of loading
meshes. All meshes are rendered with flat shading. In Table 1, we indicate model
sizes, the number of iterations, running time, and the parameters. The σf and

(a) (b) (c) (d) (e)

Fig. 5. Results of smoothing the dinosaur model. (a) Input noisy model. (b) A mag-
nified view of (a). (c) Fleishman et al.’s result. (d) Jones et al.’s result. (e) Our result.
Notice that details such as the skeletons are better preserved by our method, while flat
regions are equivalently smoothed
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Table 1. Comparison of smoothing results

Model Fig. Verts. Iterations Time σf σg

Dinosaur 5(c) 56K 3 1.2s Interactive Interactive
5(d) non-iterative 22.5s 4.0 0.2
5(e) 3 7.8s 4.0 0.2

σg are expressed as ratios of the mean edge length used by Jones et al.’s [4]. Fig.
4 shows a comparison for smoothing a irregular mesh with other algorithms. In
Fig. 5, we compare our result to the results of other bilateral filter algorithm for
the dinosaur model.

We have presented a novel predictor of bilateral filter which prevents shrink-
age of corners. Based on this predictor and the mean curvature normal, we
introduced a new mesh smoothing method which prevents unnatural deforma-
tion for irregular meshes. In the future, we wish to find a way to automati-
cally select parameters used in bilateral filter such that smoothing is adaptively
achieved.
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