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Abstract

Deep Implicit Function (DIF) has gained popularity as
an efficient 3D shape representation. To capture geome-
try details, current methods usually learn DIF using lo-
cal latent codes, which discretize the space into a reg-
ular 3D grid (or octree) and store local codes in grid
points (or octree nodes). Given a query point, the local
feature is computed by interpolating its neighboring lo-
cal codes with their positions. However, the local codes
are constrained at discrete and regular positions like grid
points, which makes the code positions difficult to be op-
timized and limits their representation ability. To solve
this problem, we propose to learn DIF with Dynamic Code
Cloud, named DCC-DIF. Our method explicitly associates
local codes with learnable position vectors, and the posi-
tion vectors are continuous and can be dynamically opti-
mized, which improves the representation ability. In ad-
dition, we propose a novel code position loss to optimize
the code positions, which heuristically guides more local
codes to be distributed around complex geometric details.
In contrast to previous methods, our DCC-DIF represents
3D shapes more efficiently with a small amount of local
codes, and improves the reconstruction quality. Experi-
ments demonstrate that DCC-DIF achieves better perfor-
mance over previous methods. Code and data are available
at https://github.com/lity20/DCCDIF.

1. Introduction

Learning 3D shape representation is important for many
downstream applications in 3D computer vision [3, 14—19].

*The corresponding author is Yu-Shen Liu. This work was sup-
ported by National Key R&D Program of China (2018YFB0505400,
2020YFF0304100), the National Natural Science Foundation of China
(62072268), and in part by Tsinghua-Kuaishou Institute of Future Media
Data.
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Figure 1. Illustration comparison between our method and other
methods. In (a), we select the grid-based DIF (ConvONet [34]).
In (b), we show the octree-based DIF (NGLOD [38]). (c¢) is our
DCC-DIF. (d) is Reference. The first row shows the code positions
of different methods, where the warmer color indicates the local
codes are closer to the surface. Compared with other methods,
in which code positions are discrete and regular, our code posi-
tions are continuous and more flexible. The second row shows the
reconstruction results, where our method can reconstruct highly
detailed geometry of complex shapes, like teeth.

Explicit 3D representations such as meshes, voxels and
point clouds have been widely used in various tasks [22,

,35,306,42-47]. Recently, deep implicit function (DIF)
[4,26-28,31,33,48] has received more popularity as an ef-
ficient 3D shape representation, which learns latent codes of
3D shapes by predicting a signed distance or inside/outside
for each query point. Different from explicit 3D represen-
tations, DIF can be stored compactly and learn shape priors
by the network. Besides, it is simple and natural to use DIF
in learning-based tasks because of its differentiable ability.

Previous DIF approaches [4, 31, 33] encode the entire
3D shape into a single global latent code through the auto-
encoder or auto-decoder [39] framework, which leads to
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Figure 2. Illustration of moving code positions during opti-
mization. Our code positions are dynamically updated during op-
timization, which makes 3D shape representation more efficiently.
We typically show four states during optimization, where the first
and second rows display code positions and reconstructions, re-
spectively. Initial and final states are shown in (a) and (d), respec-
tively, while (b) and (c) show two intermediate states.

information loss of local regions. As a result, those ap-
proaches can not capture local geometry details well and
struggle to represent complex shapes. To address this prob-
lem, some methods [1,21] divide the 3D space into small
local volumes and assign each volume with a latent code.
Then each local volume is reconstructed separately and all
volumes are combined together to get the final reconstruc-
tion. Since small local volumes contain simple shapes and
common patterns are shared among volumes, these methods
can represent 3D shapes with high accuracy and generalize
to different shapes. Similarly, some approaches [11, 12] de-
compose 3D shapes into local parts, each of which is asso-
ciated with a latent code for learning local details. On the
other hand, more recent methods discretize the space into
a regular 3D grid [5, 6, 34] (or octree) [29, 38] and store
the local codes in the grid points (or octree nodes). Given a
query point in 3D space, the local feature is computed by in-
terpolating its neighboring local codes with their positional
weights. Next, the local feature is fed into a decoder to pre-
dict a signed distance or inside/outside. As the resolution
of grids or depth of octree increases, these methods achieve
the state-of-the-art results in several shape reconstruction
tasks. However, the increase of resolution or depth will re-
sult in a significant growth of the number of local codes.
Moreover, the local codes in these methods are constrained
at discrete and regular positions like grid points or octree
nodes, which makes the code positions difficult to be opti-
mized [5,0,29,34,38] and limits the representation ability.

To address the above-mentioned problems, we propose
a novel method to learn DIF for 3D shape with Dynamic
Code Cloud, named DCC-DIF. Specifically, we represent a
3D shape with a set of local latent codes, each of which is
explicitly associated with a learnable position vector. Using
these position vectors, the local feature for a query point is

computed by interpolating local codes with their positional
weights, which are computed using the distances relative
to this query point. In contrast with previous local DIF
methods [5, 6, 34, 38], which store the local codes in dis-
crete and regular grids, the positions of local codes used in
our method are continuous and flexible. Specially, our code
positions can be dynamically optimized, where the position
vectors is learnable and can be updated by back-propagation
and gradient descent. Therefore, we name our method Dy-
namic Code Cloud (DCC), as shown in Fig. 1 and Fig. 2. In
addition, we design a novel Code Position (CP) loss to op-
timize the positions of local codes, where more local codes
are heuristically guided to distribute around complex geo-
metric details. With the help of CP loss, our method can
represent 3D shapes more efficiently with a small amount
of local codes. As a result, when using the same number of
local codes as previous methods, our method achieves bet-
ter results and reconstructs highly detailed geometry of 3D
shapes. Our main contributions are summarized as follows.

* We propose a novel DCC-DIF to learn deep implicit
function of 3D shapes. Compared with previous meth-
ods which limit the local codes at discrete and regular
grid points, the code positions in DCC-DIF are con-
tinuous and can be dynamically optimized, which im-
proves the representation ability.

* We further propose a novel code position (CP) loss
to optimize the positions of local codes, so that more
local codes are distributed around complex geometric
details. With the help of CP loss, our DCC-DIF can
represent 3D shapes with higher quality and efficiency.

e Compared to previous methods, our method can
achieve better accuracy with fewer number of local
codes when reconstructing highly detailed geometry
of 3D shapes. Experiments demonstrate our DCC-DIF
can achieve the state-of-the-art results.

2. Related Work

The recent emerged implicit representation research has
drawn a growing attention in 3D computer vision. Com-
pared with the previous explicit representation based meth-
ods (e.g. voxel [30], mesh [22] and point cloud [35, 36]),
the implicit methods can represent 3D shapes at arbitrary
resolution. In this paper, we take the advantage of implicit
3D representation and focus on the task of reconstructing
high-quality 3D signed distance functions (SDF). Relevant
work of this area can be roughly divided into two categories,
which are global DIF methods and the local DIF methods.

Global DIF methods. For the previous global DIF meth-
ods, a common practice is to take the benefit from the tradi-
tional implicit representation methods, and integrate them
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into the deep learning based framework. Typical method
like DeepSDF [33] implicitly represents a 3D shape by its
zero-level set. It optimizes a global latent code for each
3D shape, and predicts signed distances to the shape sur-
face for sampled points using a decoder. On the other hand,
OccNet [31] represents the surface of a shape by decision
boundary of a deep neural network. It leverages an auto-
encoder framework to predict inside/outside values for sam-
pled points in 3D space. Following pioneers, some recent
emerged methods have further improved the frontier of DIF
research. For example, Duan et al. [10] learn DIF by a cur-
riculum strategy, and Zheng et al. [49] develop the defor-
mation based method to predict DIF from shape templates.
However, the problem is that these methods are still hard
to preserve the details of local surfaces, due to the fixed di-
mensionality of single global code.

Local DIF methods. To overcome the limitation of global
DIF methods, the local DIF methods have been developed
to learn 3D shapes at more detailed geometric level. For
example, LIG and DeepLS [I, 21] divide shapes/scenes
into volumes, where each volume is independently recon-
structed with an assigned latent code. After that, all vol-
umes are combined together to get the final reconstruc-
tion. SIF, LDIF and PatchNets [ 1, 12, 41] decompose
shapes into local patches and represent each patch using
a latent code. More recently, IMLSNets [24] adapts im-
plicit moving least squares surface formulation for learn-
ing based method. ConvONet [34] builds 3D grids or 2D
grids on each axes plane and stores a latent code in each
grid point. Then given a query point in 3D space, the posi-
tions of this point and its neighboring grid points are lever-
aged to interpolate the stored latent codes into a vector. IF-
Nets [60] constructs hierarchical latent grids with different
resolutions to capture local geometric information of differ-
ent scales. Similarly, MDIF [5] also constructs hierarchical
latent grids. Moreover, it sets top level latent grids to be a
global latent code and connects latent codes between differ-
ent levels by transposed convolutions [23] and concatena-
tions, which enables it to do global operations like comple-
tion. However, a high grid resolution is required for latent
grids based methods to achieve good results, which leads to
cubic growth of number of latent codes. NGLOD [38] lever-
ages the sparse octree instead of uniform grids to reduce the
number of latent codes, and achieves state-of-the-art recon-
struction accuracy. ACORN [29] also adopts the octree, and
the structure of octree can be adjusted during optimization.
However, this step is non-differentiable and needs to solve
an integer linear program problem. These grids or octree-
based methods constrain that latent codes are located at dis-
crete and regular positions like grid points or octree nodes.
And code positions are static [5,6,34,38] or non-trivial to be
optimized [29]. In contrast, positions of latent codes in our
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Figure 3. Illustration comparison between architecture of our
method and other methods. We show the overall architecture of
global DIF methods in (a), local DIF methods in (b), and our
method in (c).

method are flexible and continuous. And we dynamically
optimize code positions by back-propagation and gradient
descent, which is more efficient than solving an integer lin-
ear program problem.

3. Method

Our goal is to design a flexible 3D shape representation
which can efficiently fit a single shape or reconstruct 3D
datasets with high quality. Fig. 3 illustrates the overall ar-
chitecture of our method and differences among global, lo-
cal and our method. To represent a 3D shape, as shown
in Fig. 3(a), global methods leverage a single global latent
code, and optimize the latent code by minimizing errors be-
tween outputs and the ground truth. Local methods replace
the global latent code with a set of local latent codes, as
shown in Fig. 3(b). In our method, as shown in Fig. 3(c),
we explicitly assign a position vector to each local code,
which indicates the (x,y, z) coordinates of corresponding
local code in 3D space, and a novel CP loss is further pro-
posed to optimize position vectors. In this section, we firstly
introduce background knowledge about neural signed dis-
tance functions (SDF) in Sec. 3.1. Then the design of our
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method is explained in detail in Sec. 3.2. Next, we present
our novel CP loss in Sec. 3.3. And lastly we describe the
training process in Sec. 3.4.

3.1. Deep Implicit Function

There are different approaches for deep implicit func-
tions to represent surfaces. Mainstream approaches in-
clude occupancy functions [31] and signed distance func-
tions (SDF) [33]. In this paper, we follow the paradigm of
SDF. SDF can be formulated as f : R® — R, and d = f(x)
is the shortest signed distance from a query point x to the
surface of underlying 3D shape. And the sign determines
whether it is inside or outside the 3D shape. Thus, the sur-
face of a 3D shape is the zero level-set of SDF, denoted as

S={xeR’| f(x)=0}. (1)
Learning-based SDF usually encodes a 3D shape into a
single global latant code or local latent codes. And a multi-
layer perceptron is leveraged as the decoder, which takes la-
tent codes and query points as input and predicts signed dis-
tances. Using sampled query points as training data and the
corresponding ground truth signed distances as supervision,
the latent codes and network parameters are optimized by
minimizing the errors between predicted and ground truth
signed distances. After SDF is learned, the Marching Cubes
algorithm [25] is usually applied to extract an isosurface and
outputs a mesh for rendering or visualization.

3.2. Dynamic Code Cloud

In our method, we leverage an auto-decoder framework
[39]. And we learn DIF using a novel Dynamic Code Cloud
(DCC-DIF). In Fig. 3, we show the overall architecture of
our method and the differences between our method and
the compared methods. We represent a 3D shape using a
set of latent codes and the corresponding code positions,
which are denoted by a matrix C € R"™*™ and a matrix
P € R"*3, respectively. Here, n indicates the number of
local codes we used, and m indicates the dimension of local
codes. Each row of C is a latent code ¢; € R™, and each
row of P is a position vector p; € R3, where 1 < i < n.
Each c¢; and p; form a pair and p; indicates the (x,y, z)
coordinate of corresponding latent code in 3D space.

Given a batch of query points Q € RZ*3 in 3D space
with the batch size B, in which each row is a query point
q; € R? (1 < j < B), we firstly obtain a distance matrix
D € REX™ between query points Q and code positions P,
where each element of Dj; is computed as

Dj; = |laj — pil|2- 2)
Then a weight matrix WV is obtained based on D, each ele-
ment of which is computed as

it Wik

Wi = 3)

| E—

(a) Interpolation of latent grids  (b) Interpolation of ours

Figure 4. Illustration of interpolation. (a) Given a query point qj,
previous grid-based methods [5, 6, 34, 38] leverage the position of
q; and its neighboring grid points to interpolate stored latent codes
into a vector z;, where a trilinear interpolation is usually applied in
these methods. (b) In our method, each latent code c; is explicitly
associated with a position vector p; to indicate its position in 3D
space, where the positions of both q; and p; are used to compute
the weight W;; which is used for interpolation.

where ]
Wi, = —. 4

As we expect that the local codes far from the query
point have small weights, we take the reciprocal of the cu-
bic distance as the weight in Eq. (4). Then we normalize the
weights in Eq. (3). After that, the matrix multiplication is
applied to the weight matrix »V and latent codes C, which
produces a matrix Z € RBX™_ Intuitively, each row of Z
is a vector z; € R™ for query point q;, which is interpo-
lated from latent codes C based on distances. Fig. 4 shows
the interpolation process of our method, and the difference
with traditional grid-based methods (e.g [34]). At last, like
most methods do, we leverage a multi-layer perceptron as
the decoder. We concatenate Q and Z together as the input
of decoder and get an output vector d € R?, in which each
element d; is a predicted signed distance for q;.

As p; can be any (z,y, z) coordinates in the bounding
box, our method is a more flexible representation whose
code positions are continuous, while latent codes in other
methods are usually constrained at regular and discrete po-
sitions. Moreover, we can dynamically update code posi-
tions during optimization directly by back-propagation and
gradient descent, as there is no essential difference between
p: and other trainable parameters in the network.

3.3. Code Position Loss

To fully utilize the latent codes, we further propose a
novel Code Position (CP) loss. Our motivation is to guide
more latent codes to be distributed near the regions with
complex geometric details.

As shown in Fig. 5, we first define the prediction error of
each query point q; as e;, i.e.

ej =|d;—dj|, )
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where d; is the predicted signed distance for query point
q; by our method and ch is the ground truth. Intuitively,
larger e; means it is more difficult to reconstruct the local
region near the corresponding query point, which further
indicates that complex geometries details may exist on this
region. As we expect the latent codes to get closer to the
query points with higher prediction errors, we assume that
there is a certain attraction force between query points and
latent codes. Moreover, such attraction force should be di-
rectly proportional to e; and decay with the growth of dis-
tances between latent codes and query points. As elements
of the weight matrix W in Sec. 3.2 have the property of de-
creasing with increasing distances, we use WV as a decay of
attraction force. Therefore, we define the attraction matrix
A € RBX" between query points Q and latent codes C as

Aﬁ = Gj * W]z (6)

Then, we apply element-wise multiplication between the at-
traction matrix A and the distance matrix D, and take the
average of all elements as the final Code Position Loss Lo p,
denoted by

n

B
1
LCP:B*n;;Aji*IDﬁ. (7)

Note that we cut off gradient back propagation to 4. Thus,
the distances between latent codes and query points are op-
timized based on the attraction, leading to further update of
code positions P.

With the guidance of CP loss, more latent codes will be
distributed near the regions with complex geometric details,
which enables our method to capture fine local geometric
details. On the other hand, since there are fewer latent codes
around simple geometric regions, this allows our method to
represent a 3D shape with a small amount of latent codes,
compared with previous grid-based methods [5, 6, 34, 38].
Although other methods can also assign more latent codes
to complex regions, such as by refining the depth of oc-
tree [29], our method is more flexible and effective since
our code positions are continuous. Furthermore, we opti-
mize the code positions directly by back-propagation and
gradient descent, which is more efficient.

3.4. Training

We train our network in an auto-decoder [39] framework.
To optimize latent codes and code positions, sampled query
points and their ground truth signed distances should be pro-
vided as training data. For fair comparisons, we adopt dif-
ferent sampling schemes in different experiments to keep
the same setting with compared methods.

To optimize latent codes, we minimize the mean squared
error (MSE) between predicted signed distances d; and

D
Distances
CP loss
w o —r A
Weights Attractions

Figure 5. Code Position Loss. We assume query points are attrac-
tive to latent codes. And we define attractions based on prediction
errors of query points. As elements of the weight matrix W in
Sec. 3.2 have the property of decreasing with increasing distances,
we use W as a decay of attractions. Lastly, we apply the element-
wise multiplication to the distance matrix and the attraction matrix,
and take the average of all values as the final CP loss.

ground truth Jj, denoted as
1 &
LMSE:EleldrdeIQ. ®)
j=

We also minimize the CP loss to optimize code positions.
As aresult, our final loss L is defined as

L= Lyse+ ALcp, )]

where ) is a parameter to balance Ly;sg and Lop.

4. Experiments

In this section, we conduct experiments to evaluate the
performance of DCC-DIF. Specifically, in Sec. 4.1, we
demonstrate the ability of DCC-DIF for describing geomet-
ric details through the single shape fitting task. In Sec. 4.2,
the ability of DCC-DIF for learning shape priors and gen-
eralizing to new objects is further evaluated, by applying
DCC-DIF to reconstruct unseen shapes. In Sec. 4.3, we val-
idate the effects of each part of DCC-DIF. Limited by space,
more discussions can be found in appendix.

4.1. Single Shape Fitting

We apply DCC-DIF to single shape fitting task to evalu-
ate the ability of describing geometric details. In this exper-
iment, the latest NGLOD [38] is typically selected for our
comparison, which is an octree based method and achieves
state-of-the-art results in single shape fitting.

Network settings. For fair comparisons, we use the same
settings with NGLOD [38]. Specifically, we set the decoder
to be a multi-layer perceptron with only one hidden layer,
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Methods

Metrics H DeepSDF [33] FFN[40] SIREN[37] NI[9] NGLOD3[38] NGLOD4[38] NGLODS[38] Ours
IoU 1 96.8 97.7 95.1 96.0 99.0 99.3 99.4 99.5
CD | - ~ - 3.69 3.59 3.57 3.55
#Codes - - - STKO9K — 4L7KABIK  316K/ISK  5.6K
#Param. 1.8M 527K 264K 7.6K 47K 47K 47K 47K

Table 1. Results on Thingi32 [50]. We compare the reconstruction quality and efficiency between our method and others (NGLOD [3§]
with LODs equals to 3, 4 and 5 is denoted as NGLOD3, NGLOD4 and NGLODS, respectively). For quality, we use the IoU and CD as
metrics. For efficiency, we use #Codes and #Param. as metrics. The #Codes indicates the number of latent codes used in each method. And
the #Param. means the number of network parameters used for a single distance query. In the #Codes row, for each LODs of NGLOD [38],
we present the average number of latent codes before/after removing the empty nodes of octree. Our method simultaneously achieves the
best quality and a high efficiency.

which is 128-dimensional and leverages a ReLU [13] acti-
vation function. And we set m to 32, which is the same with
NGLOD [38]. NGLOD [38] has different numbers of latent
codes for different shapes after removing the empty nodes
of octree that contain no surface. We simply use n = 5600
latent codes for each shape, which is approximately equal
to the number of latent codes used in NGLOD [38] with
3 LODs (before removing the empty nodes of octree). As
prediction errors e; and distances Dj; tend to be small, we
choose A as a relatively large number to balance L ;s and
Lc p, where ) is typically set to 7000 in this experiment.

Data and metrics. Following NGLOD [38], we also se-
lect the same 32 shapes from Thingil0K [50] and follow
the same preprocessing practice as NGLOD. Specifically,
following DualSDF [20], we normalize the meshes and re-
move internal triangles. And we sign the distances with ray
stabbing [32]. We adopt the same schemes with NGLOD
[38] to obtain a point set for training. Specifically, we sam-
ple 500K points at each epoch, in which 100K points are
sampled uniformly in the bounding box, 200K points from
the object surface and the other points are sampled near
the object surface. For metrics, we evaluate results using
Chamfer Distance (CD) and Intersection over Union (IoU).
Following NGLOD [38], we also pay attention to the effi-
ciency of storage and computation. Here, the number of la- ) ,
tent codes used in each method is denoted as #Codes, which (a) NGLOD3  (b) NGLODS (c) Ours (d) Reference
roughly shows the storage cost. The number of network

parameters used for a single distance query is denoted as Figure 6. Visualization results on Thingi32 [50]. We visually com-
#Param., which roughly indicates the computation cost. pare with NGLOD [3%] with LODs that equals to 3 and 5, as de-
noted by NGLOD3 and NGLODS, respectively. We achieve better
results than NGLOD3, especially for local geometric details. Al-
though NGLODS can achieve the similar results with our method,
our method has a small number of latent codes than NGLODS.

Results and analyses. Tab. 1 shows the result comparison
of our method and other methods, including DeepSDF [33],
FFN [40], SIREN [37], NI [9] and NGLOD [38]. Specially,
the LODs of NGLOD are selected as 3, 4 and 5, denoted
as NGLOD3, NGLOD4 and NGLODS, respectively. As

we have the exactly same experiment settings with NGLOD ber of surface points, we recompute the CD by ourselves.
[38], some results in the table directly come from it. Since The results in Tab. 1 show that our method achieves the
the CD can be influenced by some factors such as the num- highest IoU and lowest CD, which are beyond other meth-
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Category Chamfer(]) F-Score(1,%)

Occ.[31] SIF[12] LDIF[1I1] IF.[6] MDIF[5] Ours | Occ.[31] SIF[I2] LDIF[II] IF.[6] MDIF[5] Ours
airplane 0.16 044 0.10 052 0028 0011 878 714 96.9 94.4 986 997
bench 0.24 0.82 0.17 031 0052 0017 || 875 58.4 94.8 92.6 960  99.5
cabinet 041 110 0.33 011 0051  0.31 86.0 59.3 92.0 93.0 96.6 964
car 0.61 1.08 0.28 030  0.08 0218 | 775 56.6 87.2 87.4 93.0 927
chair 044 1.54 0.34 010 0035 0037 | 772 424 90.9 945 976  99.1
display 034 0.97 0.28 007 0019 0028 | 821 56.3 94.8 96.1 987 994
lamp 1.67 3.42 1.80 L17 0795 0327 | 627 35.0 84.0 89.1 935 973
rifle 0.19 0.42 0.09 107 0057  0.007 | 862 70.0 97.3 93.5 9.9  99.9
sofa 0.30 0.80 0.35 013 0037  0.036 | 859 55.2 92.8 92.5 984  99.1
speaker 1.01 1.99 0.68 014 0044 0146 || 747 474 84.3 90.2 973 96.1
table 0.44 1.57 0.56 017 0046  0.029 | 849 55.7 924 934 976  99.3
telephone 0.13 0.39 0.08 008 0010 0027 | 948 81.8 98.1 98.8 99.6 993
watercraft | 0.41 0.78 0.20 090 0067  0.042 | 773 54.2 93.2 927 972 983
mean | 049 1.18 0.40 039 0102  0.081 | 819 59.0 92.2 92.9 970 982

Table 2. Results on ShapeNet [2]. We use the Chamfer distance (CD) and F-Score to evaluate the reconstruction results of our and
compared methods. Our method achieves the lowest mean CD and the highest mean F-Score, outperforming all other methods.

ods. We show the average number of latent codes used
by NGLOD [38] before/after removing the empty nodes of
octree. It is worth noting that, compared with NGLODS,
our method leverages a small number of latent codes, but
still achieves slightly better results. This demonstrates that
our method can represent 3D shapes more efficiently. Our
method also has advantages in storage and computation
efficiency. As visualized in Fig. 6, our method achieves
the similar reconstruction quality compared with NGLODS,
while using a small number of latent codes. Compared with
NGLOD3, our method achieves better reconstruction qual-
ity, especially for local geometric details.

4.2. Reconstructing 3D Datasets

We conduct an experiment to reconstruct 3D datasets us-
ing our method. Specifically, we optimize the latent codes,
code positions and decoder parameters in the training phase.
During inference, we fix decoder parameters and only opti-
mize the latent codes and code positions on unseen shapes.
This experiment shows the ability of our method to learn
shape priors and generalize to new objects.

Network settings. We leverage a decoder with the same
structure as IM-Net [4], which is a fully-connected network
with connections between layers. We set m = 32 and n =
1376, thus we have the same number of parameters in latent
codes with MDIF [5]. To balance Lj;sg and Lop, we set
A = 3000 in this experiment.

Data and metrics. We use a subset of 13 categories in
ShapeNet [2] and divide the dataset with train/test splits
from 3D-RZN? [7]. And we generate watertight meshes
with tools from OccNet [31]. In this experiment, we sam-
ple a point set from each shape, and use the same point set
for all epochs during training. Each point set contains 200K

samples where half of the points comes from uniform sam-
pling and the others are sampled near the object surface. We
use Chamfer L2 distance and F-Score as the metrics, which
have the identical settings with LDIF and MDIF [5, | 1].

Results and analyses. The results are shown in Tab. 2. As
we keep exactly the same experiment settings with MDIF
[5], some results in the table directly come from it. Our
method surpasses all other methods both on the mean CD
and the mean F-Score, which demonstrates the ability of
our method to learn shape priors and generalize to new ob-
jects. Among different categories of ShapeNet [2], there are
great differences in difficulty of reconstruction. Shapes in
some categories tend to be complex and various, such as
lamp and rifle. In contrast, shapes in some other categories
are relatively simple and similar to each other, such as
speaker and display. From Tab. 2, we find that our method
has great advantages in reconstructing complex and vari-
ous shapes. Fig. 7 visually shows the quality of our recon-
struction on ShapeNet [2], compared with IF-Net [6]. Our
method achieves better reconstruction results, especially in
local regions with thin strips and holes. This demonstrates
that our method has a ability to represent complex shapes
and capture fine local geometry details.

4.3. Ablation Study

Among existing DIF methods, grid and octree based
methods achieve good performance in both single shape fit-
ting and 3D datasets reconstruction. Compared with these
methods, there are three differences in DCC-DIF, includ-
ing interpolation process, the novel position vectors and CP
loss. To evaluate the effects of each difference, we conduct
ablation studies on display and watercraft categories from
ShapeNet [2], where display category contains relatively
simple shapes and watercraft category tend to be complex.

12846



IF.
Ours
GT ( o
| I SE——
L) - - ] 1
Ours l— o JRR Y XX
® - ) |
— ‘ i e —
OT i [ il dlaalil
& o7 T3 i
&l
™ o ' =)
: ’
IF. ~ o
<> |
-l - 4
. ¢ 00
m Cz, J g = - 0
Ours | °
R
] - 4
A o8
-3- é’ JV\ R b’
GT | A o :
i -
- - 8

Figure 7. Visualization on ShapeNet [2]. Compared to IF-Net [6],
our method achieves better reconstruction quality in local regions
with complex geometric details, such as thin strips and holes.

We keep other experiment settings the same as Sec. 4.2.

To evaluate the influence of interpolation process, we de-
sign two variations of DCC-DIF. The first variation fixes all
latent codes to be located at grid points and applies trilinear
interpolation. The second variation also fixes latent codes
at grid points but leverages distance-based interpolation, as
described in Sec. 3.2. As positions of latent codes are fixed,
we remove the CP loss from both variations. As shown in
Tab. 3, the variation using trilinear interpolation achieves
better results. It demonstrates that the performance of our
DCC-DIF does not benefit from the new interpolation algo-
rithm, but from our proposed position vectors and CP loss.

Next, we validate the effects of our proposed position
vectors and CP loss. As a baseline, we remove the CP loss
from our full version pipeline and fix all latent codes at grid
points. Then we evaluate the benefit of position vectors and

Chamfer(]) F-Score(1,%)
Trilinear  Ours H Trilinear Ours

0.038  0.045 99.2 98.8
0.090  0.108 97.2 96.3

Category H

display
watercraft

Table 3. Comparison of interpolation process.

Chamfer(]) F-Score(1,%)
Category H baseline  p.v. p.v.+CP | baseline p.v. p.v.+CP
display 0.045 0.033 0.028 98.8 99.3 99.4
watercraft 0.108 0.081 0.042 96.3 97.8 98.3

Table 4. Ablation of position vectors and CP loss. The 'p.v.” de-
notes position vectors.

CP loss respectively by two variations of our DCC-DIF. The
first variation only adds the position vectors to the base-
line and the second variation adds both position vectors and
CP loss to baseline. Results are shown in Tab. 4. We can
find that both position vectors and the CP loss play a pos-
itive role in 3D shape representation, which supports our
proposal. Additionally, the CP loss shows more significant
effects with complex shapes, which is consistent with our
design to guide more latent codes to be distributed around
complex geometric details.

5. Conclusion and Limitation

In this paper, we introduce a novel DCC-DIF to learn
deep implicit functions for 3D shapes. Among existing DIF
methods, the best results are achieved by grids or octree
based methods. However, the latent codes in these methods
are constrained to be located at discrete and regular posi-
tions, and the code positions are difficult to be optimized.
In contrast, the code positions in our DCC-DIF are continu-
ous and flexible by explicitly assigning a position vector to
each latent code. We further propose a novel CP loss to opti-
mize the positions of latent codes, so that more latent codes
are distributed around complex geometric details. In experi-
ments, our method outperforms other methods and achieves
state-of-the-art results, which demonstrates its performance
and efficiency. The ablation studies show effects of each
part of our design, which supports our proposal.

Some limitations exist in our DCC-DIF, which are also
the directions of improvement in our future work. First, the
current DCC-DIF is unable to represent different levels of
details like NGLOD [38]. To address this problem, we plan
to design a hierarchical network, in which each level lever-
ages a DCC-DIF and the number of latent codes growth
along with the increase of level. Another limitation is that
current DCC-DIF is unsuited to global operations such as
completion [8]. Inspired by MDIF [5], we can further set
the first level of above-mentioned hierarchical DCC-DIF to
be a single global latent code and design a novel module for
information exchange between global and local codes.
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