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Abstract

Inferring signed distance functions (SDFs) from sparse001
point clouds remains a challenge in surface reconstruction.002
The key lies in the lack of detailed geometric information in003
sparse point clouds, which is essential for learning a con-004
tinuous field. To resolve this issue, we present a novel ap-005
proach that learns a dynamic deformation network to pre-006
dict SDFs in an end-to-end manner. To parameterize a con-007
tinuous surface from sparse points, we propose a bijective008
surface parameterization (BSP) that learns the global shape009
from local patches. Specifically, we construct a bijective010
mapping for sparse points from the parametric domain to011
3D local patches, integrating patches into the global sur-012
face. Meanwhile, we introduce grid deformation optimiza-013
tion (GDO) into the surface approximation to optimize the014
deformation of grid points and further refine the paramet-015
ric surfaces. Experimental results on synthetic and real016
scanned datasets demonstrate that our method significantly017
outperforms the current state-of-the-art methods.018

1. Introduction019

Surface reconstruction from 3D point clouds is an important020
task in 3D computer vision. Continuous surfaces are widely021
used in downstream applications, such as autonomous driv-022
ing, VR, and robotics. With the development of deep learn-023
ing [2, 16, 17, 38, 43], significant breakthroughs have been024
made in learning signed distance functions (SDFs) to repre-025
sent continuous surfaces [12, 21]. The SDFs learned from026
dense point clouds are continuous and complete, which al-027
low us to obtain robust isosurfaces of discrete scalar fields028
using the Marching-cubes algorithm [27]. However, when029
confronted with sparse point clouds, current approaches fail030
to accurately predict a signed distance field around the sur-031
face, impacting their performance on the real-world sce-032
nario where only sparse point clouds are available.033

Previous works [13, 19, 34, 39] which infer the SDFs034
from raw point clouds typically require ground truth signed035

distances or dense point clouds as supervision. With sparse 036
point clouds, current state-of-the-art methods [3] obtain 037
shape priors from large scale supervision to handle the 038
sparsity. Although prior-based methods can leverage data- 039
driven information to infer SDFs with simple topological 040
structures, they still struggle to deal with real-world diverse 041
sparse inputs containing complex geometries. Some meth- 042
ods learn self-supervised up-sampling priors from sparse 043
point clouds to maintain the shape integrity [8, 36]. How- 044
ever, these approaches still do not work well with sparse 045
points, making it remain challenging to recover complete 046
geometry. 047

To address this issue, we propose Bijective Surface Pa- 048
rameterization (BSP) for learning a continuous global sur- 049
face. Unlike previous approaches, we construct a continu- 050
ous bijective mapping between the canonical spherical para- 051
metric domain and the 3D space. For each 3D point, we 052
transform it into a code on the sphere manifold in the param- 053
eter space, and then regard the code as a center to densify 054
the patch it locates by sampling more codes on the sphere. 055
With the learned BSP, we transform each densified patch in 056
the parameter space back into 3D space, leading to a 3D 057
shape with denser points. Compared to methods which di- 058
rectly upsample a global shape, we train local patches with 059
a shared network to recover more details on patches. 060

Based on the densified points, we propose a Grid Defor- 061
mation Optimization (GDO) strategy to estimate the SDFs. 062
Our key insight is to utilize deformable tetrahedral grids to 063
generate watertight shapes under the supervision of densi- 064
fied points. To this end, we sample uniformly distributed 065
vertices from the generated shape to match the densified 066
points. It allows us to progressively learn SDFs from coarse 067
to fine. 068

Extensive experiments on widely-used benchmark 069
datasets demonstrate that our method significantly outper- 070
forms the current state-of-the-art methods. Our contribu- 071
tions are summarized as follows: 072

• We propose a novel framework that learns the neural de- 073
formation network to infer signed distance fields from 074
sparse points without additional surface priors. 075
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• We demonstrate that learning bijective surface parameter-076
ization can parameterize the surface represented by sparse077
points, which introduces a novel way of sampling dense078
patches in the parameter space.079

• We achieve state-of-the-art results in surface reconstruc-080
tion on synthetic data and real scenes in widely used081
benchmarks, demonstrating the great potential in sparse082
reconstruction tasks.083

2. Related Work084

Surface reconstruction from 3D point clouds has made sig-085
nificant progress over the years[6, 25, 26, 32, 43]. Ear-086
lier optimization based methods infer continuous surfaces087
from the point cloud geometry. With the development of088
datasets[1, 15], deep learning methods achieved promising089
results. In particular, learning the neural implicit field (NIF)090
has been widely applied in various reconstruction tasks,091
including multiview reconstruction[22, 35], point cloud092
reconstruction[18, 29, 51], and occupancy estimation[33,093
34, 37]. In the following section, we focus on implicit rep-094
resentation learning methods based on sparse point clouds.095
Neural Implicit Surface Reconstruction. In recent years,096
a lot of advances have been made in 3D surface reconstruc-097
tion tasks with NIF methods. NIF represents shapes in im-098
plicit functions using occupancy [10, 37, 43] or signed dis-099
tance functions [30, 31, 53] and reconstructs surfaces with100
the Marching-cubes algorithm. Previous studies employ the101
global optimization based strategy [28, 42], embedding ob-102
jects as latent codes to predict the NIF. Furthermore, to103
reconstruct finer local details, some methods use different104
training strategies to capture the local priors [11, 44]. In105
addition, some recent methods introduce new perspectives106
for learning NIF through differentiable Poisson solvers [38],107
iso-points [51], and grid interpolation[7]. However, these108
methods rely on dense point cloud inputs or real signed dis-109
tance values and normals, which limits their ability to accu-110
rately predict NIF from sparse point clouds.111
Learning Self-Priors from Sparse Points Clouds. Learn-112
ing NIF from sparse point clouds without real supervision113
is a more intricate task. Onsurf [3] manages to under-114
stand sparse points by using pretrained priors. However,115
it is limited by the weak generalization ability for diverse116
inputs. Some studies focus on learning NIF from sparse117
point clouds. Ndrop[5] introduces a statistical strategy to118
learn the decision function for implicit occupancy fields119
with sample points. However, this method struggles to120
constrain all sample points accurately. Building on this,121
SparseOcc[36] utilizes a classifier to simplify the process122
of learning occupancy functions, which significantly im-123
proves the efficiency to learn occupancy field from sparse124
inputs. Despite these advancements, these methods only125
depend on sparse inputs as supervision, the learned deci-126
sion functions tend to produce coarse approximations and127

fail to handle extremely sparse or complex inputs. Mean- 128
while, inferring smooth surfaces from occupancy fields still 129
challenging. VIPSS[20] and SparseOcc attempt to address 130
this issue through Hermite interpolation and entropy-based 131
regularization. However, these approaches are sensitive to 132
hyperparameters and lack general applicability. 133
Learning Parametric Surfaces from Sparse Point 134
Clouds. Previous studies[45, 52] proved that learning sur- 135
face parameterization can map across dimensions and nat- 136
urally infer the geometry of shapes. Although TPS[8] ex- 137
plores its application to sparse point clouds, it is limited by 138
sparse inputs and only learn parametric surface in global 139
manner. TPS++[9] additionally introduces structure-aware 140
distance constraints to enhance accuracy. However, it still 141
struggles to learn the global geometry from local parametric 142
surfaces. To address this issue, we propose bijective surface 143
parameterization, which enables networks to learn multiple 144
local parametric surfaces from the sparse point cloud and 145
infer a finer global surface. 146
Dynamic Deformation Network. Neural deformation net- 147
work [40, 41, 55] dynamically learns 3D shapes with arbi- 148
trary topological structures using differentiable mesh vertex 149
grids. GET3D [14] explicitly learns 3D models through a 150
differentiable decoder to obtain detailed 3D models. By 151
contrast, DynoSurf [50] learns keyframe point clouds as 152
templates and uses neural networks to predict movement 153
steps to obtain time-series 3D models with arbitrary topo- 154
logical structures. However, these methods rely on dense 155
point clouds or pre trained embeddings. Here, we explore 156
the feasibility of learning a deformation network for sparse 157
tasks from a new perspective. During training, we learn 158
parametric surfaces from sparse point clouds as supervision 159
and learn implicit fields through the deformation of tetrahe- 160
dral vertices in a differential manner. 161

3. Method 162

3.1. Overview 163

Given a sparse point cloud Q = {qn}Nn=1, we aim to learn 164
the signed distance field that represents a continuous surface 165
from Q. An overview of the proposed method is shown in 166
Fig. 1. We present the bijective surface parameterization 167
(BSP) in Fig. 1 (a) to learn a continuous parametric surface 168
representation. We first learn a canonical mapping Ψ to en- 169
code Q into the unit sphere parametric domain U , where 170
we can sample local patches P = {pm}Mm=1 around each 171
point. Subsequently, we learn an inverse mapping Ψ to de- 172
code P back to 3D space and integrate patches into a global 173
surface S = {si}Ii=1. With S as supervision, we employ 174
the grid deformation optimization (GDO) strategy to move 175
the deformable grid points V = {vj}Jj=1 towards S to infer 176
the SDFs shown in Fig. 1 (b). The target is to minimize 177
the differences between S and Q. Moreover, We regulate 178
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Figure 1. Overview of Our method. Given a sparse point cloud Q, we first learn a mapping function Φ to encode Q to a unit sphere
parametric domain. We consider each point as center point and sample local patches on the parametric surface. Next, we learn the inverse
mapping Ψ to predict the positions of these local patches in 3D space and integrate them to obtain S. We leverage S as the supervision
for the grid deformation network g and predict the signed distance field through the GDO optimization strategy. We further extract dense
point cloud V̄ from the implicit field and optimize the parameterized surface S.

the deformation of V by constraining the distance between179
V and S to infer a continuous surface. To predict accurate180
SDFs, we also encourage V to be on the zero level set of181
the field. In this section, we will begin with introducing182
the bijective surface parameterisation (BSP). Subsequently,183
we will describe the grid deformation optimisation (GDO)184
strategy in the following.185

3.2. Bijective Surface Parameterization186

Previous methods [8] are constrained in representing con-187
tinuous surfaces with multiple patches due to sparsity,188
which limits the completeness of the parametric surface. In189
contrast, we learn two mapping functions to achieve this: Φ190
maps each q ∈ Q to the canonical parametric domain while191
Ψ conducts inverse mapping. We learn two mapping func-192
tions with an auto-encoder structure as follows.193
Canonical Mapping Φ. For each point qn ∈ Q, we first en-194
code the point-wise feature Φ(qn) based on the PointTrans-195
former [46] layer Φ, which can be formulated as196

Φ(qn) =

k∑
qk=1

ρ
(
γ(β(qn)−η(qk)+ξ)

)
⊙(α(qk)+ξ), (1)197

where k is the set of k-nearest neighbors (KNN) of qn, we198
set k = 8 by default. {α, β, η} are linear layers, {γ,δ} are199
MLP layers, ρ is the softmax function, position embeding200
ξ = δ(qn − qk), ⊙ is point-wise product operation.201

With the learned Φ, we extract features into the coordi- 202
nates and project them in the canonical unit sphere U , where 203
U(qn) ∈ U(Q). Each U(qn) is a center point where KNN 204
is utilized to sample a local patch U(pm) around it. Specifi- 205
cally, we construct a uniform sphere coplanar with U(Q) to 206
provide samples for U(qn). 207
Inverse Mapping Ψ. Similarly, we efficiently estimate 208
Ψ ≈ Φ−1 with an neural network. We utilize the standard 209
transformer decoder block as Ψ, which receives point-wise 210
features with several linear layers φ as the global condition, 211
and local patch U(pm) as queries to integrate a global shape 212
S in 3D space, which can be formulated as 213

S =

M∑
m=1

Ψ(φ(Φ(Q),U(pm))). (2) 214

We measure the distance between the parameterized surface 215
S and the sparse point cloud Q using Chamfer Distance 216
(CD), denoted as Lpara. 217

Lpara =
1

I

∑
s∈S

min
q∈Q

∥s− q∥2 + 1

N

∑
q∈Q

min
s∈S

∥q − s∥2.

(3) 218
We visualize the BSP process in Fig. 2. For qn ∈ Q, Φ 219
maps its position in U and samples local patches U(pm). 220
With the inverse mapping Ψ, we generate a local surface on 221
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S. We integrate all local patches to obtain the global shape222
as the coarse surface S.

Figure 2. Illustration of BSP. The white points indicate the sparse
input Q. For each point q ∈ Q, we learn mapping function Φ
to map q to a local patch U(p) on the parametric surface. Sub-
sequently, we employ an inverse mapping Ψ to assembles these
patches into a global surface (red points).223

3.3. Grid Deformation Optimization224

With the learned BSP, we parameterize the coarse surface225
S. Naive implementations rely on S to infer SDFs and re-226
construct surfaces, often producing holes due to the non-227
uniformity distribution. Unlike these methods, we design228
the grid deformation optimization strategy to learn continu-229
ous signed distance functions and further optimize paramet-230
ric surface. Given tetrahedral grid points V , a straightfor-231
ward strategy to update the deformed points V ′ is to learn an232
offset ε from neural network g, formulated as V ′ = V + ε.233
However, directly learning offsets from g fails to maintain234
consistency of deformation direction, resulting in difficul-235
ties in convergence. We maintain the consistency of the236
deformation by constraining on normals nV with gradients237
∇g(V ). During training, we predict the SDFs g(V ; θ) and238
the gradient ∇g(V ) to guide the deformation process of V .239
We consider g(V ) and nV to be the stride and direction, re-240
spectively. Therefore, the deformation process of V can be241
described as242

V → V ′ = ∥g(V ; θ) · nV − V ∥2, (4)243

where θ is learnable parameter in deformation network g,244
nV = g(V ; θ)/∥∇g(V )∥2.245

We further compare the movement directions and opti-246
mization results of GDO in Fig. 3(a) and the classical strat-247
egy [40] in Fig. 3(b). The red lines indicate the next de-248
formation direction of the grid points. Compared to direct249
offset prediction, GDO achieves more consistent deforma-250
tion directions, resulting in a more accurate shape learning.251
Meanwhile, we extract the surface using Deep Marching252
Tetrahedra (DMT), the operation denoted as DMT(·). The253

Figure 3. Visual comparison of GDO (a) and direct offset opti-
mization (b), the red lines indicate the offset direction.

deformation grid points V̄ on the surface can be expressed 254
as V̄ = DMT(V ′), where V̄ = {v̄t}Tt=1. We use Chamfer 255
Distance to regulate the deformation process of V̄ and min- 256
imize the difference to S, denoted as Ldeform, we have: 257

Ldeform =
1

T

∑
v̄∈V̄

min
s∈S

∥v̄ − s∥2 + 1

I

∑
s∈S

min
v̄∈V̄

∥s− v̄∥2.

(5) 258
To make the implicit field more accurate, we add the Lsurf 259
term to encourage the network to learn zero level set from 260
g(V ). Formulated as: 261

Lsurf =| g(V ) | . (6) 262

Therefore, the total loss L is given as: 263

L = λ1Lpara + λ2Lsurf + Ldeform, (7) 264

where λ1 and λ2 are weight parameters, which we set to 10 265
and 0.01 by default. 266

3.4. End-to-end Training 267

Existing self-supervised strategies [5, 36] struggle to accu- 268
rately predict implicit fields from sparse point clouds. Here, 269
we propose an effective framework to train our methods in 270
an end-to-end manner. We first use BSP to map the sparse 271
point cloud Q into a continuous parametric point cloud 272
S, providing more precise supervision for GDO. Next, we 273
leverage the neural network g to learn grid deformations to 274
predict the implicit field. To further enhance the smooth- 275
ness of the implicit field, GDO learns more consistent de- 276
formation directions from the gradients to improve overall 277
details. Experimental results validate the effectiveness of 278
our method. 279

4. Experiments 280

4.1. Experiment Setup 281

Datasets and Metrics. We adopt five synthetic and real 282
scanned datasets to evaluate our method. We first compare 283
the performance of our method on D-FAUST [4], SRB [48], 284
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Figure 4. Visual comparison on ShapeNet. The input contains 300 points.

Class Nspline NP NDrop Onsurf SparseOcc NTPS NTPS++ Ours
Plane 0.119 0.141 0.499 0.153 0.219 0.095 0.088 0.072
Chair 0.306 0.196 0.395 0.316 0.183 0.197 0.195 0.142

Cabinet 0.181 0.163 0.229 0.244 0.220 0.138 0.137 0.105
Display 0.193 0.145 0.287 0.204 0.091 0.127 0.122 0.099
Vessel 0.134 0.116 0.488 0.128 0.158 0.104 0.101 0.080
Table 0.318 0.400 0.426 0.288 0.261 0.225 0.215 0.108
Lamp 0.213 0.162 0.554 0.229 0.192 0.120 0.112 0.077
Sofa 0.168 0.139 0.259 0.147 0.178 0.125 0.129 0.116
Mean 0.206 0.183 0.392 0.214 0.187 0.141 0.137 0.099

Table 1. Reconstruction accuracy under ShapeNet in terms of
CDL1 × 10.

Class Nspline NP NDrop Onsurf SparseOcc NTPS NTPS++ Ours
Plane 0.127 0.036 0.755 0.112 0.165 0.030 0.026 0.022
Chair 0.247 0.174 0.532 0.448 0.162 0.149 0.140 0.115

Cabinet 0.064 0.086 0.245 0.171 0.178 0.050 0.050 0.046
Display 0.095 0.099 0.401 0.153 0.081 0.083 0.078 0.078
Vessel 0.066 0.074 0.844 0.066 0.073 0.051 0.046 0.042
Table 0.312 0.892 0.701 0.419 0.415 0.272 0.264 0.188
Lamp 0.183 0.144 1.071 0.351 0.466 0.051 0.047 0.043
Sofa 0.053 0.072 0.463 0.066 0.010 0.056 0.062 0.052
Mean 0.143 0.197 0.627 0.223 0.193 0.093 0.089 0.073

Table 2. Reconstruction accuracy under ShapeNet in terms of
CDL2 × 100.

Class Nspline NP NDrop Onsurf SparseOcc NTPS NTPS++ Ours
Plane 0.895 0.897 0.819 0.864 0.853 0.899 0.912 0.913
Chair 0.759 0.861 0.777 0.813 0.844 0.863 0.873 0.896

Cabinet 0.840 0.888 0.843 0.787 0.813 0.898 0.897 0.904
Display 0.830 0.909 0.873 0.855 0.872 0.924 0.936 0.927
Vessel 0.842 0.880 0.838 0.879 0.841 0.908 0.913 0.911
Table 0.771 0.835 0.795 0.827 0.856 0.877 0.888 0.890
Lamp 0.814 0.887 0.828 0.858 0.883 0.902 0.910 0.914
Sofa 0.828 0.905 0.808 0.881 0.870 0.919 0.915 0.923
Mean 0.822 0.883 0.823 0.845 0.854 0.899 0.905 0.909

Table 3. Reconstruction accuracy under ShapeNet in terms of NC.

and ShapeNet [1], following the Ndrop and NTPS. To ver- 285
ify the applicability of the method under extremely sparse 286
conditions, we follow NTPS to randomly sample 300 points 287
for each shape as the input for ShapeNet and D-FAUST. For 288
fair comparison, we trained SparseOcc according to the de- 289
fault settings with open source code. For SRB dataset, we 290
follow SparseOcc [36] to sample 1024 points for compari- 291
son. To further validate the effectiveness of in real large- 292
scale scenarios, we validate our method on the 3DScene 293
[54] and KITTI [15]. For the 3DScene dataset, we follow 294
previous methods to randomly sample 100 points /m2. For 295
the KITTI dataset, we use point clouds in single frames to 296
conduct a comparison. 297

We leverage L1 and L2 Chamfer Distance (CDL1, 298
CDL2), Normal Consistency (NC) and Hausdorff Distance 299
(HD) as evaluation metrics. For the shape and scene surface 300
reconstruction, we sample 100k and 1000k points from the 301
reconstructed and ground truth surfaces to calculate the er- 302
rors. 303

4.2. Surface Reconstruction On Shapes 304

ShapeNet. We compare our method with Nspline[49], 305
NP[28], NDrop, Onsurf, SparseOcc, NTPS++ and NTPS. 306
The comparison results for different metrics are reported in 307
Tab. 1, Tab. 2 and Tab. 3, where our method achieves the 308
best results across all classes. We further present the visual 309
comparison in Fig. 4. Ndrop and Nspline fail to generate 310
accurate shape surfaces from sparse input, while NTPS++ 311
and Onsurf generate correct shapes but with larger errors. 312
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Figure 5. Visual comparison on D-FAUST. The input contains 300
points.

Figure 6. Visual comparison on SRB. The input contains 1024
points.

SparseOcc cannot rely on decision boundaries to accurately313
predict occupancy fields under extremely sparse input con-314
ditions, making it challenging to reconstruct complex ge-315
ometries. In contrast, our method produces more complete316
and smoother surfaces.317

DFAUST. As shown in Tab. 4, we follow Ndrop to report318
the 5%, 50% and 95% of CDL1, CDL2, and NC results on319
the DFAUST dataset, achieving the best performance across320
all metrics. Additionally, we present a visual comparison321
with Onsurf, SparseOcc and NTPS in Fig. 5. Our method322
generates more complete human body with different poses.323

SRB. We report the results on the real scanned dataset SRB324
in Tab. 5 and present a viusal comparison in Fig. 6. All325
baseline methods reconstruct coarse surfaces with input of326
1024 points. In contrast, our method not only reconstructs327
the complete shape but also recovers more local details.328

Methods CDL2 × 100 NC5% 50% 95%
VIPSS 0.518 4.327 9.383 0.890
NDrop 0.126 1.000 7.404 0.792

NP 0.018 0.032 0.283 0.877
Nspline 0.037 0.080 0.368 0.808

SAP 0.014 0.024 0.071 0.852
SparseOcc 0.012 0.019 0.034 0.870

OnSurf 0.015 0.037 0.123 0.908
NTPS 0.012 0.160 0.022 0.909
Ours 0.007 0.133 0.019 0.914

Table 4. Reconstruction accuracy under DFAUST in terms of
CDL2 × 100 and NC.

Methods CDL1 × 100 HD
PSR 2.27 21.1

NTPS 0.73 7.78
NP 0.58 8.90

NTPS++ 0.66 7.30
SparseOcc 0.49 6.04

Ours 0.41 5.66
Table 5. Reconstruction accuracy under SRB in terms of CDL1 ×
100 and HD.

PSR NP Ndrop NTPS SparseOcc Ours
Burghers CDL1 0.178 0.064 0.200 0.055 0.022 0.015

CDL2 0.205 0.008 0.114 0.005 0.001 0.001
NC 0.874 0.898 0.825 0.909 0.871 0.890

Copyroom CDL1 0.225 0.049 0.168 0.045 0.041 0.037
CDL2 0.286 0.005 0.063 0.003 0.012 0.003
NC 0.861 0.828 0.696 0.892 0.812 0.897

Lounge CDL1 0.280 0.133 0.156 0.129 0.021 0.012
CDL2 0.365 0.038 0.050 0.022 0.001 0.001
NC 0.869 0.847 0.663 0.872 0.870 0.903

Stonewall CDL1 0.300 0.060 0.150 0.054 0.028 0.021
CDL2 0.480 0.005 0.081 0.004 0.003 0.002
NC 0.866 0.910 0.815 0.939 0.931 0.937

Totempole CDL1 0.588 0.178 0.203 0.103 0.026 0.022
CDL2 1.673 0.024 0.139 0.017 0.001 0.001
NC 0.879 0.908 0.844 0.935 0.936 0.931

Table 6. CDL1, CDL2 and NC comparison under 3DScene.

4.3. Surface Reconstruction On Scenes 329

3DScene. We compare our method with the current 330
state-of-the-art methods, including PSR[23], NP, Ndrop, 331
SparseOcc, NTPS on the 3DScene dataset. The extensive 332
results presented in Tab. 6 demonstrate that our method per- 333
forms well in real-world scenarios. As shown in Fig. 7, our 334
method reconstructs smoother surfaces and captures more 335
internal details than NP and SparseOcc. 336
KITTI. We make a visual comparision the performance 337
of our method with IMLS[47], Ndrop, PSR, SAP, NTPS 338
and SparseOcc on real scanned large-scale street and lo- 339
cal pedestrians on the KITTI dataset. Due to the lack of 340
ground truth models, we provide the visual comparison in 341
Fig. 9 and Fig. 8. Decision boundary based methods like 342
SparseOcc only capture the shape’s edges. In contrast, pa- 343
rameterized methods excel at reconstructing continuous sur- 344
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Figure 7. Visual comparison on 3DScene. The input contains 100 points /m2.

Figure 8. Visual comparison on KITTI-street.

Figure 9. Visual comparison under KITTI-pedestrians.

faces. Our method can reconstruct more complete and de-345
tailed surfaces, such as diverse human poses and complex346
street scenes.347

5. Ablation Studies348

To validate the effectiveness of each module, we conduct349
ablation experiments on the lamp class of ShapeNet dataset.350
We present the quantitative results and visualization under351

different experimental settings. 352
Effect of BSP. To evaluate the effectiveness of the BSP, we 353
firstly remove the BSP and only rely on sparse input to infer 354
signed distance functions (denoted as Sparse), which lead a 355
significant increase in CD error. It indicates that the pa- 356
rameterized supervision generated by BSP has a substan- 357
tial impact on reconstruction accuracy. Next, we replace 358
the BSP with the parameterization strategies proposed by 359
TPS [8] and Atlas [52], which denoted as Single and Mul- 360
tiple, respectively. As shown in Tab. 7, both Single and 361
Multiple lead to an increase in CD error. We additionally 362
compared the CD error maps of point clouds predicted by 363
different parameterization methods in Fig. 10 . Notably, 364
single based parameterization (such as TPS) only generate 365
a coarse global surface. Meanwhile, the multi-part param- 366
eterization strategy based on AtlasNet exhibites truncation 367
and overfitting in local regions. In contrast, BSP efficiently 368
integrates local parameterized surfaces to construct a con- 369
tinuous global surface, achieving the best performance. To 370
further illustrate the applicability of BSP to sparse input, we 371
replace BSP with the state-of-art upsampling method LID 372
[24] noted as Upsample. As shown in Tab. 7, LID also 373
struggles to predict accurate result due to the highly sparse 374
distribution. We provide detailed visualization comparison 375
in supplementary. 376

377
Level of Input Size. We evaluate the robustness of our 378
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CDL1 × 10 CDL2 × 100 NC
Sparse 0.873 4.315 0.814

Upsample 0.427 0.986 0.830
Single 0.083 0.049 0.906

Multiple 0.087 0.051 0.901
Ours 0.077 0.043 0.914

Table 7. Effect of BSP.

Figure 10. Effect of BSP. The color indicate the point distance
error to ground truth surface.

method with different point size levels. Our visualization379
results are reported in Fig. 11. As the number of point380
clouds increases, we are able to generate more uniform pa-381
rameterized surfaces and accurate geometries.382
Effect of GDO. We demonstrate that GDO can learn a con-383
sistent deformation direction from gradients in Fig. 3. Here,384
we further justify the effectiveness of GDO in inferring the385
implicit function f . We first remove the gradient consis-386
tency constrain, and only learn the implicit functions from387
predicting the grid point offsets, denoted as foffset. Then,388
we remove GDO and apply TPS optimization strategy as389
baseline denoted as fTPS . Both of them cause increases390
the CD error at different levels. As shown in Tab. 8, grid391
deformation-based strategies (foffset and Ours) achieve392
higher accuracy, and fGDO provides the most precise ge-393
ometric surface prediction. We provide visualizations of re-394
construction results under different optimization strategies395
in supplementary.

Figure 11. Visual comparison under levels of input size.
396 Effect of Loss Functions. To validate the effectiveness of397

each optimization term, we present the results of remov-398

CDL1 × 10 CDL2 × 100 NC
fTPS 0.094 0.058 0.861
foffset 0.089 0.055 0.883
Ours 0.077 0.043 0.914

Table 8. Effect of GDO.

ing different loss terms in Tab. 9 to assess their importance 399
in our method. We first remove Lpara and rely solely on 400
the sparse point cloud for reconstruction, which leads to a 401
significant increase in CD error. To remove Ldeform, we 402
pretrain BSP to obtain a parameterized surface as super- 403
vision without further optimization, which also results in 404
decreased accuracy. Finally, we remove Lsurf results in 405
slightly worse results. Overall, Lpara and Ldeform have 406
a greater impact on the metrics, indicating that dense and 407
further optimizable parameterized surface are important for 408
learning accurate implicit functions. 409
Number of Samples. We explore the effectiveness of dif- 410
ferent sample numbers of single local patch in Tab. 10. 411
With the increasing of samples, the network can predict 412
the parametric surface more precisely. However, when the 413
hyper-parameter set to 15, the improvements in accuracy 414
become marginal. To consider the balance between perfor- 415
mance and efficiency, we set this hyper-parameter to 10 by 416
default.

CDL1 × 10 CDL2 × 100 NC
w/o Lpara 0.873 4.315 0.814

w/o Ldeform 0.085 0.053 0.898
w/o Lsurf 0.081 0.044 0.908

Ours 0.077 0.043 0.914

Table 9. Effect of loss functions.

Sample Size 3 5 10 15
CDL1 × 10 0.086 0.081 0.077 0.075
CDL2 × 100 0.049 0.047 0.043 0.041

NC 0.896 0.905 0.914 0.914

Table 10. Number of Samples. 417

6. Conclusion 418

We propose an innovative training framework that learns 419
smooth implicit fields from sparse point cloud inputs and 420
reconstructs complete and continuous surfaces. Unlike pre- 421
vious methods, we parametrize local surfaces by learn- 422
ing bijective functions and integrate them into a global 423
surface to ensure shape continuity. Experimental results 424
demonstrate that the BSP strategy can generate more ac- 425
curate parametrized surfaces. Additionally, we intro- 426
duce a novel approach to apply deformation networks to 427
sparse reconstruction tasks and propose GDO to further 428
improve the accuracy of implicit field predictions. We 429
validate the effectiveness of our method across exten- 430
sive datasets and ablation studies. The results demon- 431
strate its robustness for under varied conditions and set- 432
tings. 433
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