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Abstract

Reconstructing open surfaces from multi-view images is001
vital in digitalizing complex objects in daily life. A002
widely used strategy is to learn unsigned distance functions003
(UDFs) by checking if their appearance conforms to the im-004
age observations through neural rendering. However, it is005
still hard to learn the continuous and implicit UDF rep-006
resentations through 3D Gaussians splatting (3DGS) due007
to the discrete and explicit scene representations, i.e., 3D008
Gaussians. To resolve this issue, we propose a novel ap-009
proach to bridge the gap between 3D Gaussians and UDFs.010
Our key idea is to overfit thin and flat 2D Gaussian planes011
on surfaces, and then, leverage the self-supervision and012
gradient-based inference to supervise unsigned distances in013
both near and far area to surfaces. To this end, we introduce014
novel constraints and strategies to constrain the learning of015
2D Gaussians to pursue more stable optimization and more016
reliable self-supervision, addressing the challenges brought017
by complicated gradient field on or near the zero level set018
of UDFs. We report numerical and visual comparisons019
with the state-of-the-art on widely used benchmarks and020
real data to show our advantages in terms of accuracy, effi-021
ciency, completeness, and sharpness of reconstructed open022
surfaces with boundaries.023

1. Introduction024

It is vital but still challenging to reconstruct shapes with thin025
and open surfaces and sharp boundaries from multi-view026
images. A widely used strategy is to learn implicit repre-027
sentations, such as unsigned distance functions (UDFs), by028
minimizing rendering errors of UDFs with respect to multi-029
view observations, such as RGB images [9, 22, 23, 28, 49].030
This strategy shows promising results because of the advan-031
tages of both implicit representations and the neural volume032
rendering, i.e., the ability of reconstructing arbitrary topol-033
ogy and the differentiability for back-propagating the gradi-034
ents of rendering errors. Eventually, the open surfaces can035
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Figure 1. The comparisons with 2DGS [14], 2S-UDF [9], and VR-
Prior [49]. Our method recovers the most accurate open surfaces
without artifacts.

be extracted from the zero level set of the learned UDF. 036

Recent methods [9, 22, 23, 28, 49] usually learn a UDF 037
within a radiance field through the volume rendering intro- 038
duced by NeRF [30]. They infer unsigned distances at sam- 039
pled points along rays emitted from views through an ad- 040
ditional transformation which bridges the gap between the 041
UDF and the radiance field. However, NeRF-based render- 042
ing is not efficient due to the need of finding intersections 043
with ray tracing. This makes 3D Gaussian Splatting (3DGS) 044
a promising solution since rasterizing 3D Gaussians is not 045
only differentiable but also faster than ray tracing in NeRF- 046
based rendering. However, one obstacle coming from the 047
discrete and explicit scene representations, i.e., 3D Gaus- 048
sians, is that they are much different from the continuous 049
and implicit radiance field. Therefore, how to overcome 050
this obstacle is the most challenging problem to reveal com- 051
plete, smooth, and continuous UDFs through 3DGS. 052

To resolve this problem, we introduce a novel approach 053
to inferring UDFs from multi-view images through 3DGS, 054
which can efficiently reconstruct high-quality surfaces with 055
open structures as shown in Figure 1. Our key idea is to con- 056
strain 3D Gaussians to represent surfaces directly, based on 057
which we estimate the unsigned distance field. Our nov- 058
elty lies in two aspects: (1) the novel constraints that we 059
imposed on the Gaussians, which overfits these Gaussians 060
on the surfaces, (2) and the ways of inferring unsigned dis- 061
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tances with self-supervision and gradient-based inference.062
To this end, we use 2D Gaussians in the 3D space which063
are thin enough to approximate the surface. We also align064
these 2D Gaussians on the surface using the gradient field065
of the implicit function, which involves a UDF in the differ-066
entiable rasterization procedure. Meanwhile, we introduce067
self-supervision along the normal of 2D Gaussians to in-068
fer unsigned distances near the 2D Gaussians, and infer un-069
signed distances far away from the surface with the gradient070
field of the UDF. Our evaluations show that our method suc-071
cessfully bridges the gap between discrete Gaussians and072
continuous UDFs in a fully differentiable manner, leading073
to more accurate, complete, and continuous open surface074
reconstructions than the state-of-the-art methods. Our con-075
tributions are summarized below.076

• We present a novel approach to reconstruct thin and077
open surfaces from multi-view images with 3DGS, which078
bridges the gap between continuous UDFs and discrete079
3D Gaussians in a differentiable manner.080

• We introduce stable constraints to overfit 3D Gaussians081
on surfaces, and novel strategies to infer unsigned dis-082
tances accurately in both near and far areas to the surface.083

• Our method produces the state-of-the-art results in recon-084
structing shapes with open surfaces and sharp boundaries085
on the widely used benchmarks.086

2. Related Work087

2.1. Neural Implicit Representation088

Neural implicit representations have shown great advan-089
tages in representing shapes using continuous functions due090
to their ability to represent surfaces with flexible topology091
in high resolutions. Typically, neural implicit functions092
map spatial query coordinates to occupancy probabilities093
[29] or signed/unsigned distances [6, 34]. Neural implicit094
functions can be learned from various 2D or 3D surface095
signals, such as RGB images [23, 36, 49], point clouds096
[3, 27, 32, 51], binary classification labels [29], and dis-097
tance labels [6, 20, 34]. Among them, Neural-Pull [27]098
aims to pull the query points on the zero level set of the099
neural implicit function and achieves the learning of Signed100
Distance Functions (SDFs) from point clouds. The SDFs101
partition surfaces into exterior and interior regions, which102
limits such methods to modeling only watertight objects. To103
extend the capability of implicit functions to open surfaces,104
recent methods [6, 23, 41, 51] have been proposed to predict105
the unsigned distances from any query point to the surface106
to reconstruct high quality single layer surfaces. And some107
methods [5, 12, 47, 50] extend Marching Cubes [19, 24] or108
Dual Contouring [17] to efficiently and accurately extract109
meshes from unsigned distance field.110

2.2. Novel View Synthesis 111

Neural Radiance Fields (NeRF) [30] have achieved promis- 112
ing results in novel view synthesis. The method adapts 113
implicit field functions to encode view-dependent appear- 114
ance. Specifically, NeRF maps the spatial points sam- 115
pled on the ray to densities and colors with several Multi- 116
Layer Perceptrons (MLPs), and then integrates the samples 117
into pixel colors through volumetric rendering. Advance- 118
ments [1, 2, 15, 31, 42, 43] following the development of 119
NeRF have further extended its capabilities. 120

Recently, 3D Gaussian Splatting (3DGS) [18] has be- 121
come an important breakthrough in the field. 3DGS rep- 122
resents the scene with 3D Gaussians including means, co- 123
variances, opacities and spherical harmonics parameters. 124
The explicit representation avoids unnecessary computa- 125
tion cost in the empty space and achieves high quality and 126
real-time novel view synthesis. Later, numerous methods 127
[13, 25, 35, 38, 39, 45] extend this technique to a wide va- 128
riety of fields. 129

2.3. Learning Neural SDFs with Multi-view Images 130

Combining implicit representations with neural rendering, 131
NeRF-based methods [10, 33, 36, 37] can reconstruct wa- 132
tertight meshes well from multi-view images. These meth- 133
ods transform occupancy values [33] or signed distances [8, 134
10, 21, 36, 40] to density in volumetric rendering. 135

Recently, attempts [7, 11, 14, 46] have been made to 136
reconstruct meshes from mutiple views with 3DGS. Sev- 137
eral methods [7, 11, 14] have been developed to make 3D 138
Gaussians approximate surfels and align with surfaces. And 139
some methods [4, 26, 44, 48] optimize SDFs together with 140
the 3D Gaussians. GOF [46] establishes a Gaussian opacity 141
field from 3D Gaussians and extracts the surface from the 142
levelset. However, these methods learn SDFs to model sur- 143
faces and are limited to reconstructing watertight meshes. 144
In contrast, we aim to handle thin and open surfaces with 145
3D Gaussian Splatting, which can efficiently reconstruct 146
non-watertight meshes. The recent method GSPull [48] also 147
pulls the queries to the zero level set to learn SDF. However, 148
the projection can not provide enough supervision to learn 149
correct UDF due to the complexity of gradients on the iso- 150
surface. Therefore, we introduce self-supervision and other 151
losses to overcome this challenge and reconstruct accurate 152
and complete open surfaces. 153

2.4. Learning Neural UDFs with Volume Rendering 154

Unlike SDF modeling the surfaces as exterior and interior, 155
UDF [6, 51] can handle arbitrary topologies. Recent meth- 156
ods [9, 22, 23, 28, 49] usually learn a UDF from multi-view 157
images with volume rendering. NeuralUDF [23] flips the 158
normal orientation behind the surface points. NeUDF [22] 159
introduces a new probability density function. NeAT [28] 160
learns additional validity to reconstruct open surfaces from 161
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Figure 2. Overview of our method. (a) The UDF is optimized with
the rendering process. To ensure Gaussians provide more accurate
clues of the surfaces, (b) the Gaussians are projected to the zero
level set of the UDF. (c) Projecting random queries to the Gaussian
centers helps the UDF learn coarse shapes in far area. Moreover,
(d) unsigned distances recovered near the Gaussian plane compen-
sates for the sparsity of Gaussian centers. We adopt depth (e) and
normal (f) regularization terms to make Gaussians align with sur-
faces well.

SDF. 2S-UDF [9] proposes a two-stage method to decou-162
ple density and weight. However, these methods need find-163
ing intersections and ray tracing in volume rendering, which164
leads to inefficiency. Our method is built on the point-based165
rendering of 3D Gaussian Splatting [18] without requiring166
any ray tracing process, resulting in improved efficiency.167

3. Method168

Overview. Figure 2 illustrates the framework of our ap-169
proach. To overfit 3D Gaussians on surfaces, we fol-170
low 2DGS [14] to represent scenes using 2D Gaussians171
which are thin enough to represent open surfaces with sharp172
boundaries. We jointly infer a UDF f and learn 2D Gaus-173
sians {gi}Ii=1 by minimizing rendering errors with respect174
to the observations through splatting a set of I 2D Gaus-175
sians. Besides the thin feature of 2D Gaussians, we also176
leverage the gradient field of the UDF to align 2D Gaus-177
sians to the zero level set of the UDF, which ensures these178
2D Gaussians represent the surface faithfully. Based on this179
representation, we set up self-supervision along the normal180
of 2D Gaussians to supervise the learning of UDF around181
the surface, and also use the gradient field to infer unsigned182
distances, especially for the space far away from the sur-183
face. To this end, we also constrain the normal of 2D184
Gaussians and rendered depth images so that the 2D Gaus-185
sians can provide reliable self-supervisions and the gradient186
based inference for more accurate distance fields.187
2D Gaussian Splatting. We leverage the differentiable188

splatting introduced by 2DGS [14] to render 2D Gaus- 189
sians into images. Each 2D Gaussian gi has several learn- 190
able parameters including the center µi ∈ R1×3, the color 191
ci ∈ R1×3, the opacity αi, the rotation matrix ri ∈ R3×3, 192
and scaling factors si ∈ R1×2, where µi and ri determine 193
the location and pose of the Gaussian gi, si determines the 194
variances along two axis of the Gaussian gi, the color ci and 195
the opacity αi describe the appearance, and the last column 196
of ri represents the normal ni of the flat gi. 197

We render {gi} into a RGB color at each pixel (u, v) us- 198
ing α blending through a differentiable splatting procedure, 199

C ′(u, v) =

I∑
i=1

ciαipi(u, v)

i−1∏
k=1

(1− αkpk(u, v)), (1) 200

where C ′(u, v) is the color at the pixel location (u, v) on the 201
rendered image C ′, and pi(u, v) is the probability of con- 202
tributing to pixel (u, v) from the projection of gi. Similarly, 203
we can also render depth or normal maps by replacing the 204
color with projection distances or the normal of 2D Gaus- 205
sians in the above equation. We learn the Gaussians {gi} 206
by minimizing rendering errors with respect to the observa- 207
tions C, 208

Lrgb = ||C ′(u, v)−C(u, v)||1. (2) 209

Unsigned Distance Functions. An unsigned distance func- 210
tion f describes a distance field, indicating the distance d 211
to the nearest surface in a scene at an arbitrary location 212
q = (x, y, z), i.e., d = f(q). A gradient field can be derived 213
from f , where the gradient ∇f(q) at each query q points to 214
a direction that is far away from the nearest surface. 215

The gradient field of f provides good clues to reveal sur- 216
faces which are indicated by the zero level set of f . Neural- 217
Pull [27] has shown that one can infer signed distances by 218
pulling randomly sampled points against the direction of 219
gradient to the surface. However, UDF has pretty complex 220
gradient field near both sides of the surface, due to the ab- 221
sence of gradient on the surface. This fact becomes a seri- 222
ous problem in learning UDF from multi-view images. 223

To resolve this issue, we employ two kinds of supervi- 224
sions to infer unsigned distances with 2D Gaussians. One 225
is to use the gradient field to pull queries onto the zero level 226
set of f , which pays more attention to the space far away 227
from surfaces. The other is to leverage the normal of the 228
Gaussians to produce self-supervision covering the whole 229
flat plane, which focuses on the area closed to surfaces. 230
Self-supervision and Inference. For the first supervision, 231
we randomly sample J queries {qj}Jj=1 around the cen- 232
ters µi of Gaussians {gi} using the sampling strategy in- 233
troduced in Neural-Pull [27]. We project {qj} onto the zero 234
level set of f below, 235

q′
j = qj − dj ·

∇f(qj)

|∇f(qj)|
, (3) 236
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Figure 3. Self-supervision loss. For a Gaussian in (a), (b) we first
sample root point µh

i on the plane. (c) Then we randomly move the
root point to position ebi,h along the positive direction or negative
direction of the normal with offset tb. (d) We use {ebi,h, tb} as
a training sample pair to train the UDF network. (e) The below
reconstructed meshes show that the 2D Gaussian planes provide
more surface information for the UDF, which helps to fill the holes
and capture more details.

where q′
j is the projection of qj and dj = f(qj) is the un-237

signed distance. We leverage the centers of Gaussians to238
supervise the projections,239

Lfar =
1

J

∑
q′∈{q′

j}

min
µ∈{µi}

||q′ − µ||22

+
1

I

∑
µ∈{µi}

min
q′∈{q′

j}
||µ− q′||22,

(4)240

where Lfar evaluates the Chamfer distance between the set241
of projections {q′

j} and {µi}, encouraging the UDF f to242
conform to the surface represented by the Gaussian cen-243
ters. To relief the computational burden during optimiza-244
tion, we only use a batch of gi and query points sampled245
around them to evaluate this loss in each iteration.246

Gaussians are sparse in some regions, which limits their247
ability to represent surfaces, so relying solely on their cen-248
ters with Lfar is inadequate. Hence, the first supervision249
merely provide a coarse supervision which is helpful for250
inferring unsigned distances in areas far away from the sur-251
face. As a complement, our self-supervision will provide252
the second kind of supervision over the whole Gaussian253
plane near the surface.254

Our self-supervision is illustrated in Figure 3. We set up255
the self-supervision using the normal ni of each Gaussian256
gi and the samples on its flat plane, which makes sure the257
Gaussian plane can cover enough space to overfit surfaces258
regardless of the sparsity of Gaussian centers. As shown in259
Figure 3 (b), we sample root points {µh

i }Hh=1 on the flat260
plane, and randomly sample samples {ebi,h, tb}Bb=1 along261

(a) No Gaussian Projections (b) Full Model

Figure 4. We project the Gaussian centers to the zero level set with
a constraint, which makes the point cloud have less noises and the
UDF have more accurate surface.

the direction of normal ni by ebi,h = µh
i + tb ·ni/||ni||2, as 262

shown in Fig. 3 (c), where tb is randomly sampled from 263
[−T, T ], which makes sure we have training samples on 264
both sides of the Gaussian. We record ebi,h and tb as a train- 265

ing sample {ebi,h, tb} in Fig. 3 (d), where tb is regarded as 266

the ground truth unsigned distances at ebi,h. We will intro- 267
duce another constraint Lnorm to keep the normal of Gaus- 268
sians orthogonal to surfaces, which also makes the self- 269
supervision more reliable to use. 270

Eventually, we use {ebi , tb} as self-supervision to train 271
the UDF f through a L1 loss, 272

Lnear = ||f(ebi )− tb||1, (5) 273

Overfitting Gaussians to Surfaces. Besides the thin fea- 274
ture of 2D Gaussian, we also move 2D Gaussians to the zero 275
level set of f , which ensures to overfit 2D Gaussians to sur- 276
faces. Since the gradient field nearby the zero level set of 277
UDFs is very complicated, we do not directly pull the cen- 278
ter µi of 2D Gaussians gi using Eq. (3), which avoids the 279
incorrect gradients that destablizes the optimization when 280
most of 2D Gaussians are near the surface, as shown in Fig- 281
ure 4 (a). We notice concurrent work [48] that also involves 282
gradients of SDF to constrain locations of Gaussians. But 283
gradients of SDF near the zero level set is much more stable 284
than UDF. Therefore, we propose to use an explicit con- 285
straint to project Gaussians on the zero level set of f . We 286
run Eq. (3) and stop back-propagating the gradient through 287
f , obtaining the projection of Gaussian µ′

i. Then, we regard 288
µ′

i as target and minimize the distance to directly update the 289
location µi of Gaussians below, which stabilizes the opti- 290
mization near the zero level set, as shown in Figure 4 (b), 291

Lproj = ||µ′
i − µi||2. (6) 292

Constraints on Depth and Normals. To make all 2D 293
Gaussians get closer to the surface, we adopt a depth distor- 294
tion loss [14] to constrain Gaussian positions. Along each 295
ray, we monitor the depth of intersections to Gaussians, and 296
constraints their interval between two intersections, 297
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Figure 5. Qualitative comparison with 2DGS [14], GOF [46], NeuralUDF [23], 2S-UDF [9], and VRPrior [49] in DF3D [52] dataset. Note
that VRPrior needs additional depth images to learn priors. The dark color on meshes represents the back faces of open surfaces, and the
error map is shown next to the mesh. Our method obtains more accurate surfaces and captures more details such as the folds in the clothing.

Method 30 92 117 133 164 204 300 320 448 522 591 598 Mean Time

SDF
NeuS[36] 3.18 4.82 4.78 4.99 3.73 5.71 5.89 2.21 5.89 3.60 2.44 5.13 4.36 5.7h
2DGS[14] 3.79 3.66 4.24 3.75 3.91 4.01 4.02 3.74 3.51 3.89 3.21 4.01 3.81 6min
GOF[46] 3.15 2.47 2.49 2.23 2.38 2.65 2.40 2.41 2.14 3.00 2.18 2.37 2.49 47min

UDF

NeralUDF[23] 1.92 2.05 2.36 1.58 1.33 4.11 2.47 1.50 1.63 2.47 2.16 2.15 2.15 8.6h
2S-UDF [9] 1.92 1.97 1.77 1.58 1.32 2.46 3.43 1.47 2.00 2.14 1.84 1.91 1.98 7.8h
VRPrior[49] 1.59 1.73 2.06 1.63 1.44 2.07 1.66 1.60 1.39 2.14 1.50 1.67 1.71 9.2h
Ours 1.85 1.69 1.18 1.32 1.59 1.59 1.51 1.27 2.62 1.65 1.74 1.22 1.60 1.6h

Table 1. Quantitative results of Chamfer Distance (×10−3) of each object in DF3D [52] dataset.

Ldepth =
∑
k1,k2

gk1gk2|zk1 − zk2|, (7)298

where gk1 = αk1pk1(u, v)
∏k1−1

k=1 (1− αkpk(u, v)).299
Furthermore, to make the self-supervision more reliable,300

we add supervision on the normals of Gaussians ni. We301
estimate normal maps from the depth gradients on the ren-302
dered depth images. Along each ray, we align the normal303
ni of Gaussians hit by the ray with the estimated normal304
Ni on the rendered depth maps,305

Lnorm =
∑
k

gk(1− nT
kNk). (8)306

Loss Function. We optimize 2D Gaussians in a scene by307
minimizing the following loss function,308

L =(1− λ1)Lrgb + λ1Lssim + λ2Lfar + λ3Lnear

+ λ4Lproj + λ5Ldepth + λ6Lnorm,
(9)309

where Lssim is a rendering quality loss inherited from310
3DGS [18], and all these loss terms are balanced by weights311
λ1−6.312

4. Experiments 313

4.1. Experiment Settings 314

Details. The weights are set as λ1 = 0.2, λ2 = 1.0, λ3 = 315
1.0, λ4 = 0.15 on DTU [16] and DF3D [52], λ4 = 0.0001 316
on real scans, λ5 = 1000 on DTU, λ5 = 0 on other scenes, 317
and λ6 = 0.05. We optimize the model for 30k iterations 318
for all datasets. For the self-supervision, we sample 500 319
Gaussian planes per batch and sample 10 root points per 320
plane. The offset tb is sampled from a uniform distribution 321
that is bounded by zero and T , and we set T = 0.01 in 322
DF3D dataset and T = 0.02 in DTU dataset. Similar to 323
NeuralUDF [23] and VRPrior [49], we tune the reconstruc- 324
tion using an additional warp loss [8, 10] on DTU dataset. 325
The UDF f is parameterized by a 8-layer MLP with 256 326
hidden units and ReLU activation functions, and the acti- 327
vation of the last layer is an absolute value function. We 328
apply positional encoding [30] to the input query point co- 329
ordinates. We use an initial learning 1 × 10−3 with cosine 330
learning rate decay strategy for training the UDF network. 331
We conduct all experiments on a single NVIDIA 3090 GPU. 332

333
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Figure 6. Visual comparisons of reconstruction and error maps on DTU [16] dataset. Larger errors are shown in warmer colors. Our
method obtains visual-appealing results with small errors.

Method 2DGS GOF NeuralUDF VRPrior Ours

Average 0.80 0.74 0.75 0.71 0.68

Table 2. Numerical comparisons with 2DGS [14], GOF [46],
NeuralUDF [23] and VRPrior [49] in terms of CD on DTU [16]
dataset. Detailed comparisons can be found in the appendix.

Datasets and Evaluation Metrics. We evaluate the pro-334
posed method on DeepFasion3D (DF3D) [52] dataset, DTU335
[16] dataset, NeUDF [22] dataset, and our real-captured336
dataset. For DF3D dataset, we use the same 12 garments337
as previous methods [23, 49], each garment is scanned with338
72 images in a resolution of 1024 × 1024 and is provided339
with the ground truth point cloud for evaluation. For DTU340
[16] dataset, we use the widely used 15 scenes that are all341
watertight and each scene contains 49 or 64 images in a res-342
olution of 1600 × 1200. We use two real scans in NeUDF343
[22] dataset, and captures four real scenes. In our exper-344
iments, we train our models without mask supervision in345
all datasets. For a fair comparison, we use the MeshUDF346
[12] algorithm to extract open surfaces from unsigned dis-347
tance fields like previous methods [9, 22, 23, 49], and use348
the Chamfer Distance (CD) as the metric for DF3D dataset349
and DTU dataset that provide ground truth.350

Baselines. We compare the proposed method with the351
following state-of-the-art methods: 1) SDF-based surface352
reconstruction methods including NeuS [36], 2DGS [14],353
and GOF [46], and 2)UDF-based surface reconstruction354
methods for open surfaces including NeuralUDF [23], 2S-355
UDF [9], and VRPrior [49]. For the open surface dataset356
DF3D [52], we trained GOF [46] and 2S-UDF [9] with the357
default parameters. Since we share Gaussian optimization358
parameters with 2DGS [14], we keep these parameters the359
same. The other quantitative metrics are borrowed from the360
original papers.361

4.2. Evaluations362

Comparisons in Reconstructing Open Surfaces. We363
evaluate our method on the DF3D[52] dataset which in-364

cludes shapes with open surfaces. The CD (×10−3) in Ta- 365
ble 1 indicates that we achieve the best performance com- 366
pared to baseline methods. The reconstruction errors with 367
SDF-based baselines including NeuS [36], 2DGS [14], and 368
GOF [46] are large because they try to either wrap the sur- 369
face with closed mesh or excessively smooth out the details 370
on the clothing. The visual comparisons in Figure 5 show 371
that our method can reconstruct open surfaces with more 372
details. The methods 2DGS and GOF inherit the shortcom- 373
ing of SDF-based methods which learn to reconstruct closed 374
surfaces. This results the double-layered faces and increases 375
the reconstruction errors. The UDF-based baselines recon- 376
struct the open surface correctly, but they fail to capture 377
details, resulting in over-smoothed results. Thanks to the 378
quick convergence of 3D Gaussian splatting, the speed of 379
training our method can be much faster than the NeRF- 380
based methods for open surface reconstruction. 381

Comparisons in Reconstructing Closed Surfaces. We 382
further conduct evaluations on DTU dataset, and report the 383
quantitative and visual comparisons in Table 2 and Figure 384
6, respectively. Our method achieves the best performance 385
in terms of average CD compared among baseline methods, 386
demonstrating its overall robustness. The complex gradi- 387
ents near the surface make the learning of UDF more chal- 388
lenging than SDF. Without assuming closed surfaces, our 389
method still achieves comparable results or even better re- 390
sults in some scenes to SDF-based methods that are specifi- 391
cally designed for closed surfaces. Moreover, our approach 392
achieves better quantification on some relatively complex 393
shapes than baseline methods. As shown in the error map 394
in Figure 6, our method accurately reconstruct surface even 395
with complex light conditions. The underlying reason is 396
that the geometric information of the UDF is derived from 397
the positions of Gaussians, making it less sensitive to ap- 398
pearance attributes like opacity. 399

Results on Real Scans. We first conduct evaluation on the 400
public real-captured NeUDF [22] dataset. As shown in Fig- 401
ure 7, our method can reconstruct extremely flat and thin 402
surfaces. Due to the detail-capturing capability of Gaussian 403
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Input
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VRPrior

Rendering Reconstruction Rendering Reconstruction

Figure 7. The reconstruction results on NeUDF [22] dataset. Our
method accurately reconstructs the open surfaces in real scans.

Ref. Image OursVRPriorGOF

Figure 8. The reconstruction results on real scans. Our method
reconstructs accurate and complete surfaces.

Splatting, our method achieves more complete geometry re-404
construction compared to the NeRF-based state-of-the-art405
VRPrior [49], such as the plant leaves, even if it uses ad-406
ditional data-driven learned priors. We further report our407

Settings Far Near Proj Warp CD ↓
Only Far ✓ 0.99
Far & Near ✓ ✓ 0.78
Far & Proj ✓ ✓ 0.88
w/o Warp ✓ ✓ ✓ 0.74
w/o Near ✓ ✓ ✓ 0.77
w/o Proj ✓ ✓ ✓ 0.76
Full Model ✓ ✓ ✓ ✓ 0.68

Table 3. Ablation studies on DTU dataset. The results show that
all designs in our method are effective.

NeuralUDF 2S-UDF VRPrior Ours GT

Figure 9. The learned UDFs for different methods. Our method
learned more complete and smoother level sets in the field.

results on our self-captured four scenes with thin and open 408
surfaces. As shown in Figure 8, VRPrior [49] struggles 409
to reconstruct correct structures for objects with relatively 410
simple textures, and GOF [46] reconstructs double-layer 411
surfaces without smoothness. Instead, our method can re- 412
construct more complete, accurate, and smoother meshes. 413

4.3. Visual Analysis in Unsigned Distance Fields 414

Visualization of Unsigned Distance Fields. We visualize 415
the learned unsigned distance fields in Figure 9. We use the 416
unsigned distances from UDFs learned by different methods 417
and map these distances in colors. Points near the surface 418
are close to blue, while points far from the surface are close 419
to red. NeuralUDF [23] learns zero UDF values far from 420
the surface, which increases the difficulty of convergence. 421
2S-UDF [9] learns a complex function close to the surface 422
due to overfitting on textures. With the help of depth prior, 423
VRPrior [49] learns better fields. However, it fails to cap- 424
ture the correct boundaries and almost closes the adjacent 425
open surfaces. Our method learns the most accurate implicit 426
functions without any extra prior. 427

Point Cloud Deformation. With the learned unsigned dis- 428
tance function, we can obtain the distance and the direction 429
pointing to the surface for any point. Therefore, the UDF 430
can deform source point clouds into the shape represented 431
by the UDF. As shown in Figure 10, we gradually pull the 432
input point clouds into the garments with Eq. (3), which val- 433
idates that the implicit function has learned correct surface 434
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Input Target

Figure 10. Point cloud deformation in the learned unsigned distance field. Accurate field can deform point clouds with any shapes (such
as apple and donut) into the target shapes represented by the UDFs.

+𝐿𝑝𝑟𝑜𝑗 +𝐿𝑛𝑒𝑎𝑟 +𝐿𝑤𝑎𝑟𝑝𝐿𝑓𝑎𝑟

CD: 1.09 CD: 0.76 CD: 0.72

CD: 0.96 CD: 0.57 CD: 0.51 CD: 0.43

CD: 0.99

Figure 11. Visual changes for adding different constraints. The
results show all components in our method are critical for our ac-
curate surface reconstruction.

information at any point in space.435

4.4. Ablation Studies436

We conduct ablation studies on the DTU dataset [16] to437
show the impact of each module on the performance, and438
the full quantitative results are reported in Table 3.439

Firstly, We try to learn the unsigned distance fields di-440
rectly from the Gaussian point clouds, which is similar to441
the target of point cloud reconstruction [27, 51]. As shown442
by the row “Only Far” in Table 3, the performances drop443
significantly and the reason is that the point clouds of Gaus-444
sians are noisy, sparse and uneven, which cannot provide445
accurate geometry information. Overfitting a low-quality446
point cloud results in a poor surface, as shown in the first447
picture in Figure 11. We also combine the Lfar with Lproj448
and Lnear respectively. The results in “Far & Near” and449
“Far & Proj” show that both losses are critical for the accu-450
rate reconstruction and Lnear plays a more important role.451

To show how each loss affects our method, we remove452
the terms one by one and report the metrics as “w/o Near”,453
“w/o Proj” and “w/o Warp”. The results show that each loss454
plays a positive role in the final result, verifying the effec-455
tiveness of different parts of our method. Besides, removing456

the Lnear loss leads to the largest drop in average metrics, 457
which also proves that the self-supervision loss provides the 458
most important information for learning UDF. 459

We gradually add different losses in the order of Lfar, 460
Lproj , Lnear, and Lwarp, and show the changes in results in 461
Figure 11. Projecting Gaussians to the surface helps to learn 462
a smooth surface, and self-supervision can fill the holes in 463
the meshes. The warp loss captures more details. All loss 464
terms contribute to more accurate surface reconstruction. 465

Limitations. Compared to SDF-based reconstruction 466
methods, our approach demonstrates reduced performance 467
in reconstructing textureless structures. This limitation 468
arises from the high flexibility of UDF, which introduces 469
complexities into the optimization process. Moreover, ex- 470
tracting surfaces from UDF fields is still an ongoing chal- 471
lenge [47, 51], which constrains the quality of the recon- 472
structed open mesh. These factors result in a lack of de- 473
tail in the surfaces reconstructed by our method, particularly 474
for complex structures. In future work, incorporating addi- 475
tional priors, such as normals, masks, and depth, could help 476
capture higher-frequency signals. Furthermore, integrating 477
our approach with the latest UDF extraction methods [5, 47] 478
may also enhance the quality of the reconstructed mesh. 479

5. Conclusion 480

We introduce an approach to reconstruct shapes with open 481
surfaces and sharp boundaries from multi-view images with 482
3DGS. Our method can not only benefit from the high train- 483
ing efficiency of 3DGS, but also recover more accurate, 484
complete, and continuous UDFs from discrete 3D Gaus- 485
sians. The proposed constraints effectively overfit 3D Gaus- 486
sians on surfaces, based on which our strategies for un- 487
signed distance inference can recover more accurate un- 488
signed distances. Our evaluations justify the effectiveness 489
of each module, and show advantages over the latest meth- 490
ods in terms of accuracy, completeness, and sharpness on 491
reconstructed open surfaces. 492
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