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Abstract

Monocular depth priors have been widely adopted by neu-001
ral rendering in multi-view based tasks such as 3D recon-002
struction and novel view synthesis. However, due to the003
inconsistent prediction on each view, how to more effectively004
leverage monocular cues in a multi-view context remains005
a challenge. Current methods treat the entire estimated006
depth map indiscriminately, and use it as ground truth su-007
pervision, while ignoring the inherent inaccuracy and cross-008
view inconsistency in monocular priors. To resolve these009
issues, we propose MonoInstance, a general approach that010
explores the uncertainty of monocular depths to provide011
enhanced geometric priors for neural rendering and recon-012
struction. Our key insight lies in aligning each segmented013
instance depths from multiple views within a common 3D014
space, thereby casting the uncertainty estimation of monocu-015
lar depths into a density measure within noisy point clouds.016
For high-uncertainty areas where depth priors are unreli-017
able, we further introduce a constraint term that encourages018
the projected instances to align with corresponding instance019
masks on nearby views. MonoInstance is a versatile strat-020
egy which can be seamlessly integrated into various multi-021
view neural rendering frameworks. Our experimental results022
demonstrate that MonoInstance significantly improves the023
performance in both reconstruction and novel view synthesis024
under various benchmarks.025

1. Introduction026

Learning scene representations from multiple posed RGB027
images is a foundational task in computer vision and graph-028
ics [2, 23, 63, 71], with numerous applications across diverse029
domains such as virtual reality, robotics and autonomous030
driving. Bridging the gap between 2D images and 3D repre-031
sentations has become a central challenge in the field. Tra-032
ditional approaches like Multi-View Stereo (MVS) [59, 69],033
address this issue by matching features between adjacent034
views, followed by dense depth estimation and point cloud035

fusion. Recent methods tackle this problem more effectively 036
through volume rendering. By learning neural representa- 037
tions, either implicit or explicit ones, like NeRF [31] and 038
3D Gaussians [19], we can conduct volume rendering to 039
rendered these neural representations into images. The ren- 040
dering results are then supervised by ground truth ones to 041
optimize the neural representations accordingly. Although 042
these methods are capable of generating plausible 3D meshes 043
or novel views [9, 35, 48], they struggle to recover fine- 044
grained geometric details. This limitation arises since that 045
the photometric consistency from color images can not en- 046
sure perfect geometric clues, which is further complicated 047
by the shape-radiance ambiguity [66]. 048

To overcome these obstacles, recent solutions typically 049
incorporate monocular priors as additional supervision, such 050
as monocular depths [43, 63, 72] and normals [6, 29, 47]. 051
However, the effectiveness of monocular priors becomes 052
a bottleneck hindering the performance of these methods, 053
primarily due to two factors. One is that the predictions from 054
monocular priors are not perfectly accurate due to domain 055
gaps. The other is that the monocular priors are inferred 056
independently from each RGB image, leading to geome- 057
try inconsistency across different viewpoints. MVS-based 058
methods [3, 18, 50] mitigate these issues by deriving the 059
uncertainty through comparing the predicted depths with the 060
projected ones from adjacent views, which is puzzled by 061
view occlusions. While the latest methods [4, 56] incorpo- 062
rate an additional branch within the rendering framework 063
to predict the uncertainty. However, the uncertainty predic- 064
tion module in these methods is coupled with the rendering 065
branch, and thus its performance is disturbed by the quality 066
of rendering. 067

To resolve these issues, we introduce MonoInstance to 068
enhance monocular priors for neural rendering frameworks 069
by exploring the inconsistency among each instance depths 070
in monocular cues. Our insight builds on the fact that within 071
the same scene, the monocular priors in 3D space will pro- 072
duce depth inconsistency on different views. Hence, when 073
we back-project the depths of the same object from different 074
views into world coordinate system, we can estimate the un- 075
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certainty of a 3D point according to the point density in the076
neighborhood. Specifically, we first segment multi-view im-077
ages into consistent instances. For each segmented instance,078
we then back-project and align the multi-view estimated079
depth values together to create a noisy point cloud. We then080
evaluate the density of back-projected depth points from081
each viewpoint within the fused point cloud as the uncer-082
tainty measurement, leading to an uncertainty map on each083
view to highlight the uncertainty area of the instance. For084
high-uncertainty regions where the priors do not work well,085
we introduce an additional constraint term, guide the ray086
sampling, and reduce the weights for inaccurate supervision087
to infer the geometry and improve rendering details.088

We evaluate MonoInstance upon the state-of-the-art neu-089
ral representation learning frameworks in dense-view recon-090
struction, sparse-view reconstruction and novel view synthe-091
sis from sparse views under the widely used benchmarks.092
Experimental results show that our method achieves the state-093
of-the-art performance in various tasks. Our contributions094
are listed below.095

• We introduce MonoInstance, which detects uncertainty in096
3D according to inconsistent clues from monocular priors097
on multi-view. Our method is a general strategy to enhance098
monocular priors for various multi-view neural rendering099
and reconstruction frameworks.100

• Based on the uncertainty maps, we introduce novel strate-101
gies to reduce the negative impact brought by inconsis-102
tent monocular clues and mine more reliable supervision103
through photometric consistency.104

• We show our superiority over the state-of-the-art methods105
using multi-view neural rendering in 3D reconstruction106
and novel view synthesis on the widely used benchmarks.107

2. Related Work108

2.1. Neural 3D Reconstruction with Radiance Fields109

Neural Radiance Fields (NeRF) have been a universal110
technique for multi-view 3D reconstruction. Notable ef-111
forts [20, 34, 48] achieve differentiable rendering of neural112
implicit functions, such as signed distance function [51, 68]113
and occupancy [15, 34], to infer neural implicit surfaces.114
Recent approaches introduce various priors as additional su-115
pervisions to improve the reconstruction in texture-less areas,116
such as monocular depth [22, 56, 63], normals [25, 29, 47],117
semantic segmentations [36, 70]. More recent methods im-118
prove the monocular cues by detecting uncertainties through119
multi-view projection of depths and normals [47, 54], but120
the projections suffer from view occlusions. Latest meth-121
ods [4, 45, 56] integrate uncertainty estimation within the122
neural rendering framework, yet the predicted uncertain-123
ties are compromised by the rendering quality, especially in124
complex structures where RGB rendering fails. Moreover,125
these techniques are specifically designed for indoor scene126

reconstruction and not applicable across different multi-view 127
neural rendering frameworks. Since there are often only 128
few available views in real-world scenes, some methods are 129
developed for sparse view reconstruction. These methods ei- 130
ther are pre-trained on large-scale datasets and finetuned on 131
test scenes [24, 26, 32, 40, 49], or leverage monocular priors 132
and cross-view features to overfit a single scene [16, 55]. 133

2.2. Novel View Synthesis with Gaussian Splatting 134

Recently, 3D Gaussian Splatting [19] has become a new 135
paradigm in neural rendering due to its fast rendering 136
speed and outstanding rendering performance. Despite high- 137
quality rendering [27, 52], 3DGS shows poor performance 138
when the number of input views is reduced, due to the over- 139
fitted distribution of Gaussians. Recent methods [21, 65, 72] 140
tackle this problem by imposing monocular depth priors. 141
However, the depth priors from pre-trained models often con- 142
tain significant errors and cannot optimally position the Gaus- 143
sians. Although monocular depth cues have been widely 144
adopted in multi-view neural rendering and reconstruction 145
frameworks, the uncertainty in depth priors has not been 146
fully explored. To this end, we propose MonoInstance, a 147
universal depth prior enhancement strategy that can seam- 148
lessly integrate with various multi-view neural rendering and 149
reconstruction frameworks to improve their performances. 150

3. Method 151

Given a set of posed images {Ij}Nj=1 and the correspond- 152

ing monocular depth maps {Dj}Nj=1, we aim to estimate N 153

uncertainty maps {Uj}Nj=1 according to the inconsistency 154
of monocular depth cues on multi-view images. These un- 155
certainty maps work with our novel strategies to enhance 156
the monocular cues in various neural rendering frameworks 157
to improve the rendering performance and reconstruction 158
accuracy. To achieve this, we introduce a novel scheme to 159
evaluate the uncertainty of 3D points by measuring the point 160
density in a neighborhood. Our novel strategy will use these 161
estimated uncertainty maps to guide the ray sampling, reduce 162
the negative impact brought by the inconsistency, and mine 163
more reliable photometric consistency as a remedy, which 164
thereby enables our method to consistently improve the per- 165
formance in different neural rendering tasks. An overview 166
of our method is shown in Fig. 1, where we use NeRF-based 167
3D reconstruction pipeline as an example. The implemen- 168
tation differences when applied to 3DGS can be found in 169
Section 4.3 and the supplementary materials. 170

3.1. Preliminary 171

Neural Radiance Fields (NeRF) [31] and 3D Gaussian Splat- 172
ting (3DGS) [19] have become paradigms for learning 3D 173
representations from multi-view images. By learning a map- 174
ping from 3D positions to densities, NeRF is able to render 175
novel views from given viewpoints using volume rendering, 176
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Figure 1. Overview of our method. We take multi-view 3D reconstruction through NeRF based rendering as an example. (a) Starting from
multi-view consistent instance segmentation and estimated monocular depths, we align the same instance from different viewpoints by
back-projecting instance depths into a point cloud. The monocular inconsistent clues across different views become a measurement of
density estimation in neighborhood of each point, leading to uncertainty maps (Sec. 3.2). The estimated uncertainty maps are further utilized
in (b) neural rendering pipeline to guide adaptive depth loss, ray sampling (Sec. 3.4) and (c) instance mask constraints (Sec. 3.3).

Ĉ(r) =

M∑
i=1

αiTici, αi = 1−exp(−σiδi), Ti =

i−1∏
k=1

(1−αk),

(1)177
where σi, δi, αi, ci are the density, sampling interval, opacity178
and accumulated transmittance at i-th sampled point respec-179
tively and Ĉ(r) is the synthesized color of the ray r. We180
can also render depth or normal images in a similar way by181
accumulating the depth or gradient instead of color,182

D̂(r) =

M∑
i=1

αiTiti, N̂(r) =

M∑
i=1

αiTini, (2)183

where ti, ni are the sampling distance and gradient of the i-th184
sampled point, respectively. Recent methods extract plausi-185
ble surfaces from radiance fields by modeling a relationship186
between SDF and volume density,187

σ(si) =

{
1
2β exp(−si

β ) if si ≤ 0
1
β − 1

2β exp( siβ ) if si > 0
, (3)188

where β is a learnable variance parameter and si = SDF(xi)189
is the inferred SDF of the sampled point xi.190

Similarly, 3DGS learns 3D Gaussians via differentiable191
volume rendering for scene modeling,192

Ĉ(u, v) =

M∑
i=1

ci ∗oi ∗pi(u, v)
i−1∏
k=1

(1−ok ∗pk(u, v)), (4)193

where Ĉ(u, v) is the rendered color at the pixel (u, v), 194
pi(u, v), ci, oi denote the Gaussian probability, the color 195
and the opacity of the i-th Gaussian projected onto the pixel 196
(u, v), respectively. The neural primitives such as radiance 197
fields and 3D Gaussians can be optimized by minimizing the 198
rendered color and the GT color, 199

Lcolor =
∑
r∈R

∥Ĉ(r)− C(r)∥1. (5) 200

201

3.2. Uncertainty Estimation from Multi-View In- 202
consistent Monocular Prior 203

Monocular depth priors have been widely adopted in neural 204
rendering and reconstruction frameworks. However, un- 205
der the setting of multi-view, the priors struggle to produce 206
consistent results within the same structures from different 207
viewpoints due to the inherent inaccuracy, which makes the 208
optimization even more complex. This issue inspires us 209
to delve into the monocular uncertainty of scene structures 210
from multi-view to provide a more robust prior for neural 211
rendering. To this end, we introduce a novel manner to eval- 212
uate uncertainty by point density in a neighborhood after 213
aligning multi-view instances in a unified 3D space. 214
Multi-view consistent segmentation. We first aim to seg- 215
ment every object in the scene to evaluate the uncertainty 216
individually. The reason why we evaluate uncertainty at 217
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Figure 2. The illustration of uncertainty estimation. Areas with
inconsistent depths (chair legs) correspond to more dispersed point
cloud areas with low density (few points) in a neighborhood, in-
dicating high uncertainty. In contrast, areas with accurate depths
(chair seats) correspond to the points that are densely distributed
on the true surface, indicating low uncertainty.

instance object level is to avoid the impact of object scale218
on density estimation. Inspired by MaskClustering [57], we219
achieve a consistent segmentation across multi-view through220
a graph-based clustering algorithm. Specifically, we firstly221
obtain instance segmentation on each image using [38], and222
then, we connect pairs of instances from different views with223
an edge to form a graph, if the back-projected depth point224
clouds of the two instances are close enough in terms of225
Chamfer Distance. Graph clustering algorithm [41] is then226
applied to partition the graph nodes into instance clusters.227
For indoor scenes, based on the assumption that monocular228
priors in textureless areas are often reliable [47, 63], we filter229
out the background instances and set the uncertainty of the230
them as zero, using GroundedSAM [39] as an identifica-231
tion tool. More implementation details can be found in the232
supplementary materials.233

Uncertainty Estimation. Based on the observation that234
consistent depth will assemble back-projected points from235
different views tighter, leading to more certain points, we use236
the point density in a 3D neighborhood as the uncertainty.237
This is also a classic idea in point cloud denoising [28, 64].238
To this end, we first back-project the monocular depths of239
each segmented instance from multi-view into world coordi-240
nate 3D space to form a point cloud, where the monocular241
depths are pre-aligned with the rendering depths through242
scale-shift invariant affine [63]. We observe that the accurate243
depth points consistently fall on the surface of the instance.244
In contrast, the noisy points coming from inaccurate predic-245
tions are independently distributed along various viewing246
directions towards the object, thus exhibiting anisotropic247
distributions with large variance, as illustrated in Fig. 2.248

To further evaluate the density, we first downsample the249
fused point cloud to a fixed number (30,000 in our experi-250
ments) to decouple the relationship between the number of251
the points and the viewpoints. For the segmentation of the252
instance in each frame, we then back-project the masked253
monocular depth into 3D points and use ball query [37] to254
calculate the density of each point in small neighborhood, as255

Monocular DepthImage DebSDF Ours

Near Far Low High

Figure 3. Visual comparison of the estimated uncertainty maps
between DebSDF and ours. Our method estimates sharp uncertainty
maps that faithfully capture the fine-grained geometric structures.

shown in Fig. 2. The radius for ball query is defined as 256

r = Vol(Bopt(P )) + 0.01, (6) 257

where P is the downsampled fused point cloud, Bopt(P ) 258
denotes the minimum oriented bounding box of P [1] and 259
Vol denotes the volume of the bounding box. The densities 260
are then normalized across all query points in all frames, 261

d(p(u, v)) =
d(p(u, v))

max(u,v)∈Si
d(p(u, v))

, (7) 262

where p(u, v) is the back-projected 3D point of pixel (u, v), 263
d(p(u, v)) is the measured density of that point and Si is 264
the segmented pixel area in the i-th image. The normalized 265
densities are back-projected onto the image to obtain the 266
per-pixel uncertainty estimation on the instance, 267

Ui(u, v) = 1− d(p(u, v)), (8) 268

where Ui(u, v) denotes the uncertainty at the pixel (u, v) of 269
the i-th image. We sequentially estimate the uncertainty for 270
each instance in multi-view, thereby assembling complete 271
uncertainty maps for all views. 272

3.3. Adaptive Prior Loss and Uncertainty-Based 273
Mask Constraint 274

With the estimated uncertainty, we aim to reduce the negative 275
impact of the inconsistency from the monocular clues and 276
mine more reliable photo consistency as a remedy. First, we 277
employ the estimated uncertainty maps as weights on the 278
difference between monocular depths and the rendering ones, 279
which filter out the impact brought by inaccurate supervision. 280
This leads to an adaptive prior loss, as shown in Fig. 1. 281

However, the regions of high-uncertainty, which often 282
contain complex structures, are not effectively recovered by 283
relying solely on photometric loss. To facilitate the learning 284
of these areas, we further introduce an uncertainty-based 285
instance mask constraint, enforcing the alignment of the 286
learned instances within multi-view segmentation, as illus- 287
trated in Fig. 1. Specifically, inspired by Pixel Warping [7], 288
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for a ray emitted from a high-uncertainty instance region Si
r289

in the reference view Ir, we project points {pj}Kj=1 sampled290
on the ray into a nearby view In, and filter out the projected291
points {πn(pj)}Kj=1 which fall within the instance mask Si

n292
in In. We then use the interpolated colors of these filtered293
projected points on In and the corresponding predicted opac-294
ities αj to render the final color,295

Ĉsil
n =

K∑
j=1

1j · In[πn(pj)]αj

∏
l<j

(1− αl),

1j =

{
1 πn(pj) ∈ Si

n

0 πn(pj) /∈ Si
n

.

(9)296

The rendered color Ĉsil
n is compared with the corresponding297

ground truth color in Ir as additional supervision. Unlike298
Pixel Warping [7], we discriminately accumulate the pro-299
jected points that just fall within the instance mask in the300
nearby view, because we are prompted of which sampling301
points contribute to the rendering of this instance through302
multi-view segmentation. This enables us to implicitly con-303
strain these sampling points to align with the object surfaces.304

3.4. Optimization305

Uncertainty-Guided Ray Sampling. We use the estimated306
uncertainty maps as probabilities to guide the ray sampling,307
paying more attention to regions with high uncertainty. We308
first allocate the number of sampling pixels for each instance309
according to its area in the segmentation. And then we310
calculate the sampling probabilities according to uncertainty.311
The probability in i-th view is defined as probi(u, v) =312
Ui(u, v) + 0.05, where the additional 0.05 ensures that the313
sampling is not omitted in areas with zero uncertainty.314
Training. Our training process is divided into two stages.315
In the first stage, we uniformly apply monocular depth pri-316
ors to learn a coarse representation of the scene. We then317
render low-resolution depth maps from all viewpoints to318
align the multi-view monocular depths to the same scale.319
Subsequently, we evaluate multi-view uncertainty for every320
segmented instance and assemble them to uncertainty maps321
of all frames. In the second stage, we integrate the uncer-322
tainty maps into the training process to utilize guided ray323
sampling, adaptive depth loss and instance mask constraints.324
Loss Function. The overall loss function is defined as325

L = Lcolor + λ1Leik + λ2Lsil + λ3Ld + λ4Ln, (10)326

where Leik is the Eikonal term [60], Lsil is the instance327
mask constraint introduced in Sec. 3.3, Ld is the adaptive328
depth loss and Ln is an optional adaptive normal loss. λ1−4329
are hyper-parameters for weighting each term.330

4. Experiments331

To evaluate the effectiveness of our method, we conduct332
experiments based on various neural representation learning333

frameworks using multi-view images, including dense-view 334
3D reconstruction, sparse-view 3D reconstruction and sparse 335
view synthesis. 336

4.1. Dense-view 3D Reconstruction 337

Datasets. We evaluate our performance under two real- 338
world indoor scene datasets, including ScanNet [5] and 339
Replica [44]. We select 4 scenes from ScanNet and all 340
8 scenes from Replica, following baseline settings [56, 63]. 341
Each scene consists of various numbers of observations from 342
dense viewpoints, ranging from 200 to 400. 343
Baselines and metrics. We compare our method with 344
the latest indoor scene reconstruction methods including 345
MonoSDF [63], SDF-OCC-Hybrid [29] (shorted for “Hy- 346
bridNeRF”), H2O-SDF [36], DebSDF [56], RS-Recon [61]. 347
Note that the source code of H2O-SDF has not been made 348
publicly available, thus we are unable to obtain its results 349
on Replica dataset. Following baselines [61, 63], we report 350
Chamfer Distance (CD), F-score in ScanNet dataset and 351
additional Normal Consistency (N.C.) in Replica dataset. 352
Implementation details. We build our code upon the source 353
code of MonoSDF [63]. The hyper-parameters in Eq. (9) 354
are set as λ1 = 0.1, λ2 = 0.4, λ3 = 0.5, λ4 = 0.05. Since 355
the monocular normals are homologous with depths which 356
come from the same foundation model, they show similar 357
performances in the same regions of the images. Therefore, 358
we can uniformly utilize the estimated uncertainty map to 359
depth and normal priors. The nearby views used in Sec. 3.3 360
are selected according to the difference between observation 361
angles. More implementation details are discussed in the 362
supplementary materials. 363
Comparisons. We report numerical comparisons on Scan- 364
Net and Replica datasets in Tab. 1. Our method outperforms 365
all baseline methods on ScanNet dataset and achieves the 366
highest normal consistency on Replica dataset. Visual com- 367
parisons in Fig. 4 show that our method is capable of re- 368
constructing fine-grained details of the scene, especially in 369
the small thin structures such as the lamp on the piano, the 370
flowers on the tea table and the chair legs. 371

4.2. Sparse-view 3D Reconstruction 372

Datasets. We further evaluate our method in reconstructing 373
3D shapes from sparse observations on DTU dataset [17]. 374
Following previous methods [16, 62], we report our results 375
on the widely used 15 scenes, each of which shows sin- 376
gle object with background from 3 viewpoints with small 377
overlapping. 378
Baselines and metrics. We compare our method with the 379
latest sparse-view reconstruction approaches including the 380
traditional MVS methods such as COLMAP [42], overfitting- 381
based methods such as NeuSurf [16], generalizing- 382
finetuning methods such as SparseNeuS [26], VolRecon [40], 383
ReTR [24] and UFORecon [32]. We use Chamfer Dis- 384
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Table 1. Averaged dense-view 3D reconstruction metrics on ScanNet and Replica datasets.

Methods ScanNet Replica

Acc↓ Comp↓ Prec↑ Recall↑ F-score↑ Acc↓ Comp↓ CD↓ N.C.↑ F-score↑
UNISURF [34] 0.554 0.164 0.212 0.362 0.267 0.045 0.053 0.049 0.909 0.789
MonoSDF [63] 0.035 0.048 0.799 0.681 0.733 0.027 0.031 0.029 0.921 0.861
HybridNeRF [29] 0.039 0.041 0.800 0.760 0.779 0.025 0.027 0.026 0.934 0.921
H2O-SDF [36] 0.032 0.037 0.834 0.769 0.799 - - - - -
DebSDF [56] 0.036 0.040 0.807 0.765 0.785 0.028 0.030 0.029 0.932 0.883
RS-Recon [61] 0.040 0.040 0.809 0.779 0.794 0.027 0.025 0.026 0.934 0.917
Ours 0.035 0.032 0.846 0.824 0.834 0.024 0.029 0.026 0.937 0.918

Ground TruthOursRS-ReconDebSDFMonoSDF HybridNeRF

R
ep

li
ca

S
ca

n
N

et

Figure 4. Visual comparisons of dense-view 3D reconstruction on ScanNet and Replica dataset.

tance (CD) between the reconstructed meshes and the real-385
scanned point clouds as the evaluation metrics, following386
baselines [16].387

Implementation details. We use the official code released388
by NeuSurf [16] to produce our results of sparse-view re-389
construction. The hyper-parameters in Eq. (9) are consistent390
with those employed in dense-view reconstruction. Since the391
multi-view images in each DTU scene capture the unique392
object, there is no need to conduct additional multi-view393
consistent instance segmentation. In our implementation, we394
first segment the scene into the object and the background,395
and then align and compute the uncertainty map only for the396
center object from various viewpoints.397

Comparisons. We report numerical evaluations on DTU398
dataset in Tab. 2. For fair comparison, we also report the399
results of NeuSurf with monocular cues (NeuSurf†), which400
are uniformly applied to all pixels, similar to MonoSDF [63].401

The superiority results in terms of CD show the effective- 402
ness of our method. Further comparison between NeuSurf 403
and NeuSurf† reveals that indiscriminately applying monoc- 404
ular depths to all pixels does not significantly improve the 405
performance of NeuSurf. While our method leverages the 406
estimated uncertainty maps to enhance the learning of the 407
high-uncertainty regions, avoiding the misguidance from the 408
inaccurate monocular priors. We showcase our improve- 409
ments in visual comparison in Fig. 5, where our method 410
consistently produces more complete and smoother surfaces 411
compared to baseline methods. 412

4.3. Sparse Novel View Synthesis 413

Datasets. We further evaluate our method on 3DGS-based 414
sparse-input novel view synthesis (NVS) task on LLFF 415
dataset [30]. It contains 8 forward-facing real-world scenes. 416
We select 3 views and downscale their resolutions as 8 to 417
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Table 2. Averaged Chamfer Distance (CD) over the 15 scenes on DTU dataset in reconstructions from sparse views (small overlaps).
NeuSurf† means NeuSurf with additional monocular cues.

Methods COLMAP [42] SparseNeuSft [26] VolRecon [40] ReTR [24] NeuSurf [16] NeuSurf† [16] UFORecon [32] Ours

CD ↓ 2.61 3.34 3.02 2.65 1.35 1.30 1.43 1.18

Reference ImageOursNeuSurfUFOReconReTRVolRecon

Figure 5. Visual comparisons on DTU dataset under the task of little-overlapping sparse input reconstruction.

Table 3. Quantitative comparison on LLFF dataset in novel view
synthesis from sparse views.

Methods PSNR↑ SSIM↑ LPIPS↓
RegNeRF [33] 19.08 0.587 0.336
FreeNeRF [58] 19.08 0.587 0.336
3DGS [19] 15.52 0.405 0.408
DNGaussian [21] 19.12 0.591 0.294
FSGS [72] 20.31 0.652 0.288
COR-GS [65] 20.45 0.712 0.196
Ours 20.73 0.731 0.184

train, following previous works [33, 72].418

Baselines and metrics. We compare our method with lat-419
est few-shot NVS methods, including NeRF-based meth-420
ods, such as RegNeRF [33], FreeNeRF [58] and 3DGS-421
based methods, such as DNGaussian [21], FSGS [72] and422
COR-GS [65]. We report PSNR, SSIM [53] and LPIPS423
scores [67] to evaluate the rendering quality following previ-424
ous works [46, 72].425

Implementation details. Our code in this experiment is built426
upon FSGS [72], which utilizes monocular depths to enhance427
the rendering. Leik and Ln in Eq. (9) are omitted in our428
experiment because there is no gradient fields in Gaussian429
splatting, and the orientation of 3D Gaussians are ambiguous430
during splatting [11, 12]. Note that 3D Gaussians are directly431
splatted onto the image plane with no sampled points in432
the space, thus we design a variant of our instance mask433
constraint, which encourages the projected instance depth434
points on the nearby view to move towards the mask of the435
same instance in nearby view, similar as [13].436

Comparisons. The numerical and visual comparison are437
shown in Tab. 3 and Fig. 6. The visualizations of rendered438

Table 4. Ablation study of each module on ScanNet dataset. Start-
ing from the base model, we progressively add each of our module
to reveal the impact of the proposed modules.

Acc↓ Comp↓ F-score↑
Base 0.039 0.042 0.749
+Mono Uncertainty 0.036 0.039 0.786
+Adaptive Sampling 0.036 0.035 0.805
+Mask Constraint (Full) 0.035 0.032 0.834

Table 5. Ablation study of different monocular priors. The results
are averaged F-score across the four ScanNet scenes.

Methods Omnidata [8] Metric3D v2 [14] GeoWizard [10]

MonoSDF 0.733 0.749 0.741
Ours 0.825 0.834 0.829

images and depths further demonstrate our advanced results 439
in recovering complex object details. We further visualize 440
our uncertainty maps across different datasets in Fig. 7. Com- 441
parisons among the GT images, monocular depths, and the 442
final results show that our method adaptively captures the in- 443
accuracies in monocular depths, thereby achieving superior 444
results beyond the quality of the priors. 445

4.4. Ablation Study 446

Effectiveness of each module. We conduct ablation studies 447
to justify the effectiveness of the modules in our method on 448
ScanNet dataset. Starting from the base model, which is 449
identical to MonoSDF [63], we progressively add each of 450
our modules to show the improvements of the reconstructed 451
results. These additions include the adaptive monocular 452
prior supervision, the uncertainty-guided ray sampling and 453
the uncertainty-based instance mask constraint, as reported 454
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Ground TruthOursFSGSDNGaussianFreeNeRFRegNeRF

Monocular 

Uncertainty Map

Monocular 

Uncertainty Map

Figure 6. Visual comparisons on LLFF dataset in novel view synthesis from sparse views. In the uncertainty maps, areas that are more white
indicate higher uncertainty.

Monocular DepthImage Uncertainty Map Results

Near Far Low High

Figure 7. Visualization of our uncertainty maps calculated from
monocular depths. Our uncertainties effectively identify the incon-
sistency across monocular clues on multi-view.

in Tab. 4. The visual comparisons in Fig. 8 indicate that our455
method, equipped with each proposed module, successfully456
recovers complete and detailed geometric structures.457

Choice of monocular priors. We further evaluate the per-458
formance of our method with different prior estimation459
models, including Omnidata [8], Metric3D v2 [14] and Ge-460
oWizard [10]. The improvement of our method beyond461
MonoSDF [63] indicates that our method consistently en-462
hances the monocular priors obtained from various estima-463
tion models. To fully reveal the potential of our approach,464
we choose Metric3D v2 as our primary prior model.465

Base + Monocular Uncertainty

+ Adaptive Sampling + Instance Mask Constraint (Full)

Figure 8. Visualization of ablations on each of our module.

5. Conclusion 466

We propose MonoInstance, a novel approach to enhance 467
monocular priors to provide robust monocular cues for multi- 468
view neural rendering frameworks. To this end, we estimate 469
the uncertainty of monocular priors by aligning multi-view 470
instance depths in a unified 3D space and detecting the den- 471
sities in point clouds. The estimated uncertainty maps can be 472
further utilized in adaptive prior loss, uncertainty-guided ray 473
sampling and instance mask constraint. Our approach can 474
be applied upon different multi-view neural rendering and 475
reconstruction methods to enhance the monocular priors for 476
better neural representation learning. The visual and numer- 477
ical comparisons with the state-of-the-art methods justify 478
our effectiveness and show our superiority over the latest 479
methods. 480
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