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Abstract

Recently, it has shown that priors are vital for neural im-001
plicit functions to reconstruct high-quality surfaces from002
multi-view RGB images. However, current priors require003
large-scale pre-training, and merely provide geometric clues004
without considering the importance of color. In this paper,005
we present NeRFPrior, which adopts a neural radiance field006
as a prior to learn signed distance fields using volume render-007
ing for surface reconstruction. Our NeRF prior can provide008
both geometric and color clues, and also get trained fast009
under the same scene without additional data. Based on the010
NeRF prior, we are enabled to learn a signed distance func-011
tion (SDF) by explicitly imposing a multi-view consistency012
constraint on each ray intersection for surface inference.013
Specifically, at each ray intersection, we use the density in014
the prior as a coarse geometry estimation, while using the015
color near the surface as a clue to check its visibility from016
another view angle. For the textureless areas where the multi-017
view consistency constraint does not work well, we further018
introduce a depth consistency loss with confidence weights019
to infer the SDF. Our experimental results outperform the020
state-of-the-art methods under the widely used benchmarks.021
The source code will be publicly available.022

1. Introduction023

3D surface reconstruction from multi-view images is a long-024
standing challenge in computer vision and graphics. Tradi-025
tional methods, like multi-view-stereo (MVS) [15, 31, 42],026
estimate 3D geometry by first extracting a sparse point027
cloud and then applying dense reconstruction on it. The028
latest reconstruction methods [28, 37, 43] learn implicit029
functions from multiple images via volume rendering us-030
ing neural networks. These methods require learning pri-031
ors [18, 38, 46, 47] from an additional large-scale dataset to032
reveal accurate geometry and structure. However, these data-033
driven priors do not generalize well to other kinds of scenes034
which are different from the pretrained datasets, which dras-035

tically degenerates the performance. 036

Instead, some methods [4, 9, 12] introduce overfitting 037
based priors to improve the generalization, since these priors 038
can be learned by directly overfitting a single scene. Methods 039
like MVS are widely adopted to extract overfitting priors, 040
which use the photometric consistency to overfit a scene. 041
However, these priors can merely provide geometric infor- 042
mation and do not provide photometric information which 043
is important for the network to predict colors in volume 044
rendering. 045

To address this issue, we propose NeRFPrior, which in- 046
troduces a neural radiance field as a prior to learn signed 047
distance functions (SDF) to reconstruct smooth and high- 048
quality surfaces from multi-view images. Thanks for current 049
advanced training techniques for radiance fields [5, 11, 21, 050
27, 33], we are able to train a radiance field by overfitting 051
multi-view images of a scene in minutes. Although more 052
recent 3DGS methods [21] present a very promising solution 053
for learning radiance fields with explicit 3D Gaussians, it is 054
still a challenge to recover continuous SDFs from discrete, 055
scattered, or even sparse 3D Gaussians. Per this, we adopt 056
NeRF and leverage the trained NeRF as a prior to provide the 057
geometry and color information of the scene itself. This en- 058
ables us to learn a more precise SDF by explicitly imposing 059
a multi-view consistency constraint on each ray intersection 060
for its SDF inference. 061

Specifically, to get the prior geometry, we query the den- 062
sity from the NeRF prior as an additional supervision for 063
our neural implicit networks. With the predicted density 064
at each sample along a ray, we find the intersection with 065
the surface, and then, we use the prior color to determine 066
whether this intersection is visible from another view. If it is 067
visible, our multi-view constraint is triggered to make this 068
intersection participate in the rendering along the two rays 069
for better surface inference. For the textureless areas where 070
the multi-view consistency constraint does not work well, we 071
further introduce a depth consistency loss with confidence 072
weights to improve the completeness and smoothness of the 073
surface. Our method does not require additional datasets 074
to learn priors or suffer from a generalization issue. Our 075
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experimental results outperform the state-of-the-art methods076
under widely used benchmarks. Our contributions are listed077
below.078

• We propose NeRFPrior to reconstruct accurate and smooth079
scene surfaces by exploiting NeRF as a prior. Such prior is080
learned by merely overfitting the scene to be reconstructed,081
without requiring any additional large-scale datasets.082

• We introduce a novel strategy to impose a multi-view con-083
sistency constraint using our proposed NeRFPrior, which084
reveals more accurate surfaces.085

• We propose a novel depth consistency loss with confidence086
weights to improve the smoothness and completeness of087
reconstructed surfaces for textureless areas in the real-088
world scenes.089

2. Related Work090

2.1. Multi-view Reconstruction091

Multi-view reconstruction aims at reconstructing 3D sur-092
faces from a given set of uncalibrated multi-view images.093
Traditional multi-view reconstruction pipeline is split into094
two stages: the structure-from-motion (SFM) [31] and the095
multi-view-stereo (MVS) [13, 15]. MVSNet [42] is the first096
to introduce the learning-based idea into traditional MVS097
methods. It applies 3D CNN on a plane-swept cost volume098
for depth estimation and outperforms the classical traditional099
methods [22]. Many following studies improve MVSNet100
from different aspects, such as training speed [39, 45], mem-101
ory consumption [16, 40] and network structure [7, 10].102

2.2. Neural Surface Reconstruction103

Recently, NeRF [26] has achieved impressive results in novel104
view synthesis and has attracted lots of follow-up work.105
NeRF uses a single continuous 5D coordinate to represent the106
scene and predicts per-point density and color to render novel107
views using volume rendering algorithm. Following stud-108
ies develop the potential of NeRF in various aspects, such109
as generation [25, 49], relighting [30, 41], human [6, 14]110
and so on. More and more strategies have been recognized111
and applied in improving NeRF performances, such as inte-112
grated positional encoding [2], voxelization [5, 33] and patch113
loss [12]. Among the studies improving the rendering per-114
formance of NeRF, Mip-NeRF [2] and Mip-NeRF-360 [3]115
aim at avoiding aliased images in novel view synthesis by116
considering the conical frustum area instead of the ray inter-117
val. PixelNeRF [44] makes use of image features to improve118
NeRF on the condition of sparse inputs. Other methods im-119
prove NeRF in generalization ability [24, 34] and some of120
them [20, 24] seek to exclude features of invisible image121
pixels to avoid providing misleading image priors to NeRF122
training.123

Recent works [28, 37] investigate learning neural implicit124
fields from multi-view image inputs by differentiable ray125

marching. They replace the density field in NeRF with an 126
implicit SDF field or occupancy field, which greatly im- 127
proves the ability of reconstructing 3D geometry. More 128
recently, many methods focus on variant kinds of priors to 129
improve the reconstruction quality, for example, depth prior 130
from MVS [4, 9], ground truth depth [1], estimated normals 131
from pre-trained models [36, 38] and pre-trained semantic 132
segmentation [50]. Latest methods infer SDF fields from 3D 133
Gaussians [17, 19, 48]. However, they struggle to produce 134
plausible surfaces because the geometry and color in 3D is 135
not continuous with 3D Gaussians. 136

We notice that although the above-mentioned priors can 137
improve the reconstruction quality to some extent, there still 138
exist various shortcomings. Data-driven based priors used 139
by the previous methods do not generalize well to different 140
kinds of datasets, while overfitting priors can not provide 141
photometric information for the network. To address the 142
above problems, we propose NeRFPrior, which introduces 143
a neural radiance field as a prior to learn implicit functions 144
to reconstruct accurate surfaces without requiring any addi- 145
tional information from large-scale datasets. 146

3. Method 147

Given a set of posed images captured from a scene, we aim to 148
learn neural implicit functions to reconstruct the scene with- 149
out requiring any additional information from other datasets. 150
We represent the geometry in the scene as a signed dis- 151
tance field and then extract the mesh using marching cubes 152
algorithm. In this section, we first discuss the insight of 153
adopting neural radiance field as a prior. Then we introduce 154
multi-view consistency constraint and the depth consistency 155
loss with confidence weights as two of our contributions 156
to improve the reconstruction quality. An overview of our 157
framework is provided in Fig. 1. 158

3.1. Neural Radiance Field Prior 159

NeRF [26] models a static scene using a continuous 5D 160
function which takes a 3D coordinate and a corresponding 161
viewing direction as input and outputs per-point density σ 162
and color c. Specifically, let xi denotes the i-th sampled 163
point along the ray r, and d denotes the viewing direction. 164
The predicted ray color Ĉ(r) is obtained by volume render- 165
ing below: 166

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σθ(xi)δi))cϕ(xi,d)

Ti = exp(−
i−1∑
k=1

σθ(xk)δk),

(1) 167

where δi and Ti represent the sampling interval and the 168
accumulated transmittance of the ray r at i-th sampled point, 169
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Figure 1. An overview of our NeRFPrior method. Given multi-view images of a scene as input, we first train a grid-based NeRF to obtain the
density field and color field as priors. We then learn a signed distance function by imposing a multi-view consistency constraint using volume
rendering. For each sampled point on the ray, we query the prior density and prior color as additional supervision of the predicted density
and color, respectively. To improve the smoothness and completeness of textureless areas in the scene, we propose a depth consistency loss,
which forces surface points in the same textureless plane to have similar depths.

Reference Image Depth Prior MonoSDF Ours

Figure 2. Comparison on object-surrounding scenes between
MonoSDF and ours. The performance of MonoSDF drastically
degenerates because the depth prior cannot generalize well to dif-
ferent kinds of datasets.

respectively. θ and ϕ are the parameters of the density and170
color networks, respectively.171

Recently, there has been a number of studies com-172
bining NeRF framework and implicit functions to recon-173
struct 3D surfaces. However, the advanced NeRF tech-174
niques [5, 11, 27, 33] inspire us that NeRF itself can serve175
as a prior for surface reconstruction. Compared to NeRF-176
based surface reconstruction methods [28, 37, 50], we have177
the ability to explicitly use geometry and color information178
from the field for visibility check and imposing multi-view179
depth consistency constraints. This design has two main180
advantages. Firstly, our NeRF prior is able to provide color181
cues for optimization, which is missing in other methods182
combining priors [12, 46].183

Secondly, our prior is easily accessed compared to ex-184
isting prior acquisition methods. Data-driven priors such185

as depth and normal priors [36, 38, 46], need days of pre- 186
training on large-scale datasets. Additionally, data-driven 187
priors do not generalize well to different kinds of scenes, 188
as shown in Fig. 2. The prior of MonoSDF is pretrained 189
on indoor scene datasets, so the quality of prior degener- 190
ates while generalizing to object-surrounding datasets. On 191
the other hand, overfitting priors such as sparse depth and 192
sparse point cloud from COLMAP argorithm [12, 18, 38], 193
are sparse and incontinuous that most pixels or points cannot 194
be supervised. And it lacks the supervision of color. Thanks 195
for the advance in NeRF training acceleration, we can opti- 196
mize a grid-based NeRF, which can be trained in minutes. 197
Additionally, the grid-based structure has advantages in per- 198
ceiving high-frequency surface details, which is beneficial 199
to our accurate reconstruction. 200

As shown in Fig. 1 (a), to obtain the neural radiance field 201
prior from multi-view images, we firstly construct a pair 202
of density grid Fσ ∈ R[N1,N2,N3,1] and color feature grid 203
Fc ∈ R[N1,N2,N3,d], where N1, N2, N3 are the resolutions 204
of the feature grids, and d is the feature length of color 205
grid. For a 3D point x sampled along the rendering ray with 206
viewing direction d, the density and color are interpolated 207
from the feature grids of the trained NeRF, as denoted by 208

σprior(x) = act(interp(Fσ,x))

cprior(x,d) = act(MLP(interp(Fc,x),d)),
(2) 209

where the operation act represents activation function and 210
interp represents trilinear interpolation, respectively. For 211
color prediction, we use an additional shallow MLP to take 212
viewing direction into consider. The network is trained using 213
volume rendering and then frozen as our NeRF prior. 214
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Figure 3. An illustration of our multi-view consistency constraint.
To judge the visibility of the intersection, we conduct a local-prior
volume rendering around the intersection and compare the render-
ing color with the projection color. The ray from source view is
participated in training only if the intersection is visible along this
ray.

Following [37], we further integrate the signed distance215
field into neural surface reconstruction by learning SDF to216
represent density in volume rendering:217

σ(x) = max

(
−Φ′(fs(x))
Φ(fs(x))

, 0

)
, (3)218

where x represents the sampled point along the ray. Φ and fs219
represent sigmoid function and SDF network, respectively.220
To combine the prior field and the signed distance field221
together, we query the density and color of each sampled222
point from the prior fields and use them as supervision of the223
predicted density and color from neural implicit network:224

Lσ = ∥σ̂(x)− σprior(x)∥1
Lc = ∥ĉ(x,d)− cprior(x,d)∥1.

(4)225

We notice that the prior density field is usually noisy, which226
may mislead the neural implicit network. Therefore, we use227
a threshold to filter out the fuzzy density value and apply228
supervision only if the density value is convincing. The229
filtering strategy will be discussed in the supplementary in230
detail. Benefiting from the NeRF prior, we are able to learn231
the signed distance field to reconstruct accurate 3D geometry232
details at a fast speed.233

3.2. Multi-view Consistency Constraint234

Multi-view consistency is a key intuition for geometry ex-235
traction because the photometric consistency information ex-236
isted in the multi-view images is a powerful prompt to help237
revealing the surface. To reconstruct accurate 3D surfaces,238
we explicitly impose a multi-view consistency constraint on239
each ray for its SDF inference. Specifically, for an emitted240
ray rm from a reference view Im, we firstly apply root find-241
ing [28] to locate the intersection point p∗ where the ray242
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Figure 4. A comparison on the accuracy of visibility check. The
first row shows the ground truth result of projecting pixels from
reference view to source view. The second row shows the visibility
mask, indicating which points in the reference view are visible after
projection. The third row is the error map of visibility check.

hits the surface. Then we select several nearby images as 243
source views. For each source view, we emit an additional 244
ray from the camera viewpoint to the intersection p∗. The 245
ray from reference view and the rays from source views are 246
gathered and fed into volume rendering in parallel. An intu- 247
ition of this idea is that the network is enabled to inference 248
the zero-level-set of the intersection from the photometric 249
difference of multi-view images, as shown in Fig. 1 (b) and 250
detailed in Fig. 3. While emitting multi-view rays towards 251
an intersection, some rays may be blocked by some objects 252
in front of the intersection. To resolve this issue, we use 253
our prior field to conduct a local-prior volume rendering for 254
visibility check. Specifically, to determine the visibility of 255
intersection p∗ from source view Is with viewing direction 256
rs, we sample M points in a small interval [d∗s −∆, d∗s +∆] 257
centered at p∗ along rs, where d∗s is the distance between p∗ 258
and the viewpoint of Is. Next we apply volume rendering on 259
the sampled points using the queried prior density and prior 260
color: 261

c∗s =

M∑
k=1

Tk(1− exp(−σprior(xk)δ))cprior(xk,d(rs)),

Tk = exp(−
k−1∑
q=1

σprior(xq)δ),

(5) 262
where d(rs) represents the viewing direction of rs. In prac- 263
tice, we typically set ∆ = 0.1, M = 64 and δ = 0.003. The 264
rendered color c∗s is compared with the pixel color cprojs , 265
which is the projection of p∗ on the source view Is. If the 266
two colors differ a lot, we consider that p∗ is invisible from 267
Is, otherwise visible: 268

p∗ =

{
visible |c∗s − cprojs | < t0

invisible |c∗s − cprojs | ≥ t0
(6) 269

If p∗ is visible, we then emit the ray rs for volume rendering 270
together with the ray rm from the reference view. 271
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Our visibility check is more robust than traditional MVS272
methods which directly match the projection color on two273
views, since the color of projections is significantly biased274
on illumination. Our NeRFPrior resolves this issue by pre-275
dicting view-dependent color. Although the standard volume276
rendering needs sampling in a fairly long interval, we ob-277
serve that due to the pulse characteristics of density, only278
a small interval is enough for volume rendering to get ac-279
curate color in the pretrained NeRF. Fig. 4 provides an ex-280
ample. Comparing to Geo-NeuS [12] which uses patched281
normalization cross correlation (NCC) to judge visibility282
and MVS [31] which depends on projection color to judge283
visibility, our method achieves significantly more accurate284
results.285

3.3. Depth Consistency Loss286

plane distance0

(b) Plane Not Detected

𝜎

plane distance0

surface

(a) Plane Detected

ℒ𝑑𝑒𝑝𝑡ℎ = 𝑑𝑖 − ҧ𝑑 cos 𝜃𝑖 2

𝜎

(c) Depth Consistency Loss

𝑑1
𝑑2 𝑑3

𝜃1
𝜃2

𝜃3

surface

Figure 5. An illustration of our depth consistency loss. We calculate
the density variance of the intersection and its neighboring points
on the tangent plane. If (a) the variance is small, we constrain these
points to maintain the same depth on normal directions as in (c).
Otherwise, (b) we do not impose depth constraints.

It is hard for neural implicit functions to infer accurate287
surfaces in textureless areas in indoor scenes such as walls288
and floors, due to the lack of distinctive color information.289
We further propose a depth consistency loss with confidence290
weights to improve the smoothness and completeness in tex-291
tureless areas. We observe that continuous textureless areas292
usually have consistent or continuously varying colors, and293
are ususally composed of planes [38]. Hence, we use density294
distribution as a clue to determine whether the neighboring295
area of an intersection is a plane, and then add depth consis-296
tency constraints if it is the case, as shown in Fig. 1 (c) and297
detailed in Fig. 5.298

In order to impose depth consistency constraints on sur-299
face points, two prerequisites are needed: (i) the intersection300
and its neighboring points have similar colors on the projec-301
tion view, (ii) the intersection and its neighboring points are302
nearly on a plane. For (i), we calculate the color variance303
of each pixel and its neighboring pixels on the input views.304
For (ii), we calculate density variance of the intersection305
and its neighboring points as a confidence to judge whether306
a surface is a plane. If the density variance and the color307
variance are both small, we assume that the ray hits a plane.308
Then we constrain the neighborhood points to maintain the309
same depth on their normal directions. Otherwise, we do310

not impose depth constraints. Formally, let p∗ be the inter- 311
section between ray r and the object surface, cproj be the 312
projection pixel color of p∗ on the source view. The depth 313
loss can be written as following: 314

Ldepth =
∑
r∈R

∥(D̂(r)− D̄) cos ⟨n, r⟩ ∥2 ∗ sgnc ∗ sgnσ (7) 315

316

sgnc =

{
1 var(cproj) < t1
0 var(cproj) ≥ t1

sgnσ =

{
1 var(σ(p∗)) < t2
0 var(σ(p∗)) ≥ t2

(8) 317

where D̂(r) is the rendered depth of ray r and D̄ is the mean 318
depth in a batch of rays R, which are emitted from some 319
neighboring pixels. n is the rendered normal vector of ray r, 320
and var represents the variation. In a word, only when the 321
intersection is on a plane and it is in the textureless areas of 322
the image, we constrain the depth of the intersection to keep 323
similar with the depth of its neighboring intersections. 324

3.4. Loss Function 325

We render the color of each ray using Eq. (1) and measure the 326
error between rendered color and ground truth pixel color: 327

Lrgb =
∑
r∈R

∥Ĉ(r)− C(r)∥1, (9) 328

where R denotes all of the rays in a training batch. Follow- 329
ing [37], we add an Eikonal term on the sampled points to 330
regularize the SDF field by 331

Lreg =
1

N

∑
i

∥∇fs(pi)− 1∥2, (10) 332

where pi is the sampled point on the ray and N is the number 333
of sampled points. 334

With our additional prior field supervision (Eq. 4) and 335
depth loss (Eq. 7), the overall loss function can be written as 336

L = Lrgb + λ1Lσ + λ2Lc + λ3Lreg + λ4Ldepth. (11) 337

4. Experiments 338

4.1. Implementation Details 339

To train a neural radiance field as our NeRF prior, we adopt 340
the grid-based architecture of TensoRF [5]. We train the 341
prior NeRF for each scene in 30k iterations, which takes 342
about 30 minutes per scene. For our implicit surface func- 343
tion, we adopt the architecture of NeuS [37], where the 344
signed distance function and color function are modeled 345
by an MLP with 8 and 6 hidden layers, respectively. We 346
train our implicit surface function for 200k iterations in to- 347
tal. The multi-view consistency constraint is applied after 348
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Figure 6. Visualization comparison on ScanNet Dataset.

Ground TruthUNISURF NeuS Ours w/o depthN-RGBD w/o depth N-RGBD w/ depth

Figure 7. Visualization comparison on BlendSwap Dataset.

100k iterations and the depth consistency loss is applied af-349
ter 150k iterations. We adopt such strategy based on the350
observation that the multi-view consistency and depth loss351
may mislead the network at the early training stage when352
the surface is noisy and ambiguous. We set t0 = 0.02 in353
Eq. (6), t1 = 0.04 and t2 = 0.1 in Eq. (8), λ1 = λ2 = 0.1354
and decreases exponentially to 0, λ3 = 0.05 and λ4 = 0.5355
in Eq. (11). The choice of hyperparameters and thresholds356
will be discussed in supplementary in details. All the ex-357
periments are conducted on a single NVIDIA RTX 3090Ti358
GPU.359

4.2. Experimental Settings 360

Datasets. We evaluate our method quantitatively and qual- 361
itatively on real-captured dataset ScanNet [8]. Following 362
previous works [46], we use 4 scenes from ScanNet for our 363
evaluation. We also evaluate our method under two synthetic 364
scene datasets, including BlendSwap [1] and Replica [32], 365
each of which contains 8 indoor scenes. 366

Baselines. We compare our method with the follow- 367
ing state-of-the-art methods: (1) Classic MVS method: 368
COLMAP [31]. (2) Neural raidance field methods without 369
data-driven priors: NeRF [26], UNISURF [28], NeuS [37], 370
Geo-NeuS [12], PermutoSDF [29], NeuralAngelo [23]. 371
(3) Neural implicit reconstruction methods with data- 372
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Ground TruthUNISURF NeuS Ours w/o cuesMonoSDF w/o cues MonoSDF w/ cues

Figure 8. Visualization comparison on Replica Dataset.

Table 1. Evaluation results on ScanNet dataset. MonoSDF∗ repre-
sents MonoSDF with its monocular depth and normal cues.

Methods Acc ↓ Comp ↓ Prec ↑ Recall ↑ F1 ↑
NeRF[26] 0.735 0.177 0.131 0.291 0.176
NeuS[37] 0.179 0.208 0.313 0.275 0.291
Geo-Neus[12] 0.236 0.206 0.282 0.313 0.291
MonoSDF[46] 0.214 0.180 0.297 0.325 0.310
PermutoSDF[29] 0.143 0.219 0.448 0.209 0.285
NeuralAngelo[23] 0.245 0.272 0.274 0.311 0.292
Ours 0.133 0.120 0.439 0.429 0.433

Manhattan[18] 0.072 0.068 0.621 0.586 0.602
NeuRIS[36] 0.054 0.052 0.729 0.684 0.705
MonoSDF∗[46] 0.042 0.049 0.760 0.707 0.732
Ours (+monocular cues) 0.037 0.042 0.799 0.766 0.782

Go-Surf[35] 0.048 0.021 0.880 0.894 0.887
Ours (+depth) 0.027 0.020 0.931 0.928 0.930

Table 2. Evaluation results on BlendSwap dataset. Results are
averaged among the 8 scenes.

Methods CD ↓ NC ↑ Prec ↑ Recall ↑ F1 ↑
COLMAP[31] 0.420 0.556 0.429 0.353 0.387
UNISURF[28] 0.213 0.710 0.610 0.413 0.484
NeuS[37] 0.180 0.731 0.526 0.454 0.483
N-RGBD[1] 0.380 0.423 0.266 0.219 0.292

Ours 0.088 0.813 0.651 0.594 0.621

driven priors: Neural RGB-D [1], Manhattan-SDF [18],373
NeuRIS [36], MonoSDF [46], GO-Surf [35].374
Evaluation Metrics. For ScanNet dataset, following [46],375
we adopt Accuracy, Completeness, Precision, Recall and376
F1-score as evaluation metrics. For synthetic dataset, fol-377
lowing [1], we adopt Chamfer Distance (CD), Normal Con-378
sistency (NC), Precision, Recall and F1-score as evaluation379
metrics. Please refer to the supplementary for more details380
on these metrics.381

4.3. Quantitative and Qualitative Comparison382

Evaluation on ScanNet Dataset. We report our evaluation383
on ScanNet datset in Tab. 1 and Fig. 6. The comparison is384
splitted into three parts. The first part is the comparison with385
the methods that do not use data-driven priors, including386

Table 3. Evaluation results on Replica dataset. Results are averaged
among the 8 scenes.

Methods CD ↓ NC ↑ Prec ↑ Recall ↑ F1 ↑
COLMAP[31] 0.232 0.468 0.455 0.408 0.430
UNISURF[28] 0.110 0.769 0.566 0.449 0.496
NeuS[37] 0.066 0.883 0.709 0.626 0.665
MonoSDF[46] 0.075 0.867 0.657 0.609 0.632

Ours 0.038 0.912 0.833 0.795 0.813

Table 4. Comparison of the total time of training pipeline.

Methods Getting Priors Training Total

COLMAP[31] 10.7h - 8.7h
NeuS[37] - 7.2h 7.2h
Neural RGB-D[1] - 10.3h 10.3h
Geo-NeuS[12] 1.5h 7.5h 9.0h
MonoSDF[46] - 10.6h 10.6h

Ours 37min 4.2h 4.7h

NeRF, NeuS, Geo-NeuS, MonoSDF without cues, Permu- 387
toSDF. The second part is the comparison with the methods 388
that use data-driven priors, including Manhattan with pre- 389
trained segmentation priors, NeuRIS with pretrained normal 390
priors, MonoSDF with estimated depth and normal cues 391
(marked as “MonoSDF∗”), and our results integrated with 392
MonoSDF cues. The third part is the comparison with the 393
methods that use ground truth depth supervision, including 394
Go-Surf and our results with depth supervision. Our method 395
exceeds other baselines without data-driven priors. On the 396
other hand, integrated with monocular cues or ground truth 397
depth supervision, our method also achieves the best per- 398
formance comparing to other methods with priors. Visual 399
comparisons in Fig. 6 show that our method is able to re- 400
construct complete and smooth surfaces and captures more 401
scene details, such as the lamp and the bedside cupboard. 402

Evaluation on BlendSwap Dataset. We report our evalua- 403
tion on BlendSwap dataset in Tab. 2 and Fig. 7. We compare 404
our method with state-of-the-art methods that do not use 405
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Table 5. Ablation study on each module of our method.

Base NeRF prior Multi-view Depth loss Reg term CD ↓ NC ↑ F1 ↑
✓ ✓ 0.083 0.832 0.619
✓ ✓ ✓ ✓ 0.051 0.893 0.781

✓ ✓ 0.049 0.763 0.673
✓ ✓ ✓ 0.050 0.887 0.744
✓ ✓ ✓ ✓ 0.044 0.897 0.773
✓ ✓ ✓ ✓ 0.043 0.873 0.794
✓ ✓ ✓ ✓ ✓ 0.038 0.912 0.813

data-driven priors, including COLMAP, UNISURF, NeuS406
and Neural-RGBD without ground truth depth supervision407
(marked as “N-RGBD”). The results show our brilliant abil-408
ity of inferring implicit representations from multi-view im-409
ages. Additionally, our advantages over our baseline “NeuS”410
highlight the benefits we get from the NeRF prior. Visual411
comparisons in Fig. 7 show that our reconstruction does not412
have artifacts, and contains more details with much higher413
accuracy than other methods.414
Evaluation on Replica Dataset. We evaluate our method415
on Replica dataset, as shown in Tab. 3 and Fig. 8. We report416
comparisons with the latest methods, including COLMAP,417
UNISURF, NeuS and MonoSDF without cues. Qualitative418
results in Fig. 8 further demonstrate the advantages of our419
method on reconstructing complete, smooth and high fidelity420
surfaces.421
Optimization Time. We evaluate the total time of training422
pipeline of different methods, including the time of obtaining423
priors and the time of training, as reported in Tab. 4. Benefit-424
ing from the advance in NeRF training acceleration [5], we425
are able to obtain our NeRF prior in half an hour, comparing426
to COLMAP which takes a long time in dense reconstruction.427
With the guidance of the NeRF prior, our network is able to428
converge fast in the early stage of training, which reduces429
the total training time by about 50% compared to current430
neural implicit function methods.431

(a) Base (b) Prior (c)  Base＋Prior

(f) All(e)  All－Eikonal(d)Base+Prior+Multiview

Figure 9. Ablation study on each module of our method.

4.4. Ablation Study432

To demonstrate the effectiveness of our proposed compo-433
nents, we conduct ablation studies on Replica dataset, as434
reported in Tab. 5 and Fig. 9. We report our visualization435

这两个场景是office4和room2

Reference Ours with 
depth loss

  Ours w/o 
depth loss Ground Truth

Figure 10. A visualization of the ablation on depth consistency
loss. The first line is the normal map and the second line is the
reconstructed mesh.

and quantification results on 6 different settings: (a) only the 436
base implicit function network, (b) only the NeRF prior, (c) 437
the base network with our NeRF prior, (d) the base network 438
with NeRF prior and the multi-view consistency constraint, 439
(e) the complete method without eikonal regularization term, 440
(f) our complete method. Our NeRF prior is able to perceive 441
geometric details but shows very poor performance on con- 442
sistency and smoothness, as shown in Fig. 9 (b). With the 443
help of multi-view consistency constraint and depth consis- 444
tency loss, we can reconstruct high fidelity scene surfaces. 445

We further conduct an ablation study on depth consistency 446
loss, as shown in Fig. 10. We select a room corner, where 447
the input views contain lots of textureless areas. Our depth 448
consistency loss greatly improves the consistency of surface 449
normals and the smoothness of the textureless surfaces. 450

5. Conclusion 451

We propose NeRFPrior for reconstructing indoor scenes 452
from multi-view images. We introduce to learn a NeRF 453
as a prior which can be trained very fast to sense the ge- 454
ometry and color of a scene. With NeRF prior, we are en- 455
abled to use view-dependent color to check visibility, impose 456
multi-view consistency constraints to infer SDF on the sur- 457
face through volume rendering, and introduce a confidence 458
weighted depth consistency loss to infer planes from tex- 459
tureless areas. Our method provides a novel perspective to 460
learn neural implicit representations from multi-view images 461
through volume rendering, which is much different from 462
the latest methods merely using geometry prior learned in 463
a data-driven or overfitting manner. Our method success- 464
fully learns more accurate implicit representations which 465
produces smoother, sharper and more complete surfaces 466
than the state-of-the-art methods. Our experimental results 467
justify the effectiveness and superior of our method. 468
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