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Abstract

Point cloud completion aims to infer the complete ge-

ometries for missing regions of 3D objects from incomplete

ones. Previous methods usually predict the complete point

cloud based on the global shape representation extracted

from the incomplete input. However, the global represen-

tation often suffers from the information loss of structure

details on local regions of incomplete point cloud. To ad-

dress this problem, we propose Skip-Attention Network (SA-

Net) for 3D point cloud completion. Our main contributions

lie in the following two-folds. First, we propose a skip-

attention mechanism to effectively exploit the local struc-

ture details of incomplete point clouds during the inference

of missing parts. The skip-attention mechanism selectively

conveys geometric information from the local regions of in-

complete point clouds for the generation of complete ones

at different resolutions, where the skip-attention reveals the

completion process in an interpretable way. Second, in or-

der to fully utilize the selected geometric information en-

coded by skip-attention mechanism at different resolutions,

we propose a novel structure-preserving decoder with hier-

archical folding for complete shape generation. The hier-

archical folding preserves the structure of complete point

cloud generated in upper layer by progressively detailing

the local regions, using the skip-attentioned geometry at the

same resolution. We conduct comprehensive experiments

on ShapeNet and KITTI datasets, which demonstrate that

the proposed SA-Net outperforms the state-of-the-art point

cloud completion methods.

1. Introduction

Recently, point cloud has received an extensive attention

as a format of 3D objects, which can be easily accessed

by 3D scanning devices and depth cameras. However, the

raw point clouds produced by those devices are usually
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Figure 1. Illustration of the proposed skip-attention. Compared

with the previous methods that simply rely on the global shape rep-

resentation for completing point clouds, our skip-attention mech-

anism directly searches for informative local regions in input air-

plane shape, and selectively uses these regions for predicting the

missing right wing or reconstructing the similar left wing (red).

sparse, noisy and mostly with serious missing regions due

to the limited view angles or occlusion [47], which are dif-

ficult to be directly processed by the further shape analy-

sis/rendering methods. Therefore, raw point cloud prepro-

cessing becomes an important requirement for many real-

world 3D computer vision applications. In this paper, we

focus on the task of completing the missing regions of 3D

shapes represented by point clouds.

The task of point cloud completion can be roughly de-

composed into two targets [41, 47]. The first target is

to preserve the geometric shape information of the origi-

nal input point cloud, and the second target is to recover

the missing regions according to the given inputs. In or-

der to achieve such two targets, current studies usually fol-

lowed the paradigm framework to learn a global shape rep-

resentation from incomplete point clouds, which is further

leveraged to estimate the missing geometric information

[45, 47, 22]. However, the encoded global shape repre-

sentation often suffers from the information loss of some

structure details on local regions of incomplete point clouds,

which should be fully preserved for further inferring the

missing geometric information. As shown in Figure 1,

to predict the complete wings of an airplane, the network

should first preserve the existing left wing in the incom-

plete point cloud. And then, in order to infer the missing

right wing, the network could refer to the existing left wing

according to the pattern similarity between the regions of

two similar wings.
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An intuitive idea to address this problem is to adopt

the skip-connection mechanism like U-Net [35], which is

widely used for local region reconstruction and reason-

ing in images. However, there are two problems for di-

rectly adopting skip-connection into point cloud comple-

tion. First, the previous skip-connection developed in [35]

can not be directly applied to unordered inputs, since it con-

catenates the feature vectors according to the pixel order of

2D grids. Second, in the task of point cloud completion,

not all the local region features under each level of resolu-

tions will be of help for shape inferring and reconstruction.

Equally revisiting them with skip-connection may introduce

the information redundancy, and limit the feature learning

ability of the entire network.

Therefore, in order to preserve the information of

structure details while addressing the problem of skip-

connection, we propose a novel deep neural network for

point cloud completion, named Skip-Attention Network

(SA-Net). The network is designed in an end-to-end frame-

work, where an encoder-decoder architecture is specially

designed for feature extraction and shape completion. The

skip-attention refers to the attention based feature pipeline,

which reveals completion process in an interpretable way.

The skip-attention selectively conveys geometric informa-

tion from the local regions of incomplete point clouds for

the generation of the complete ones at different resolutions.

The skip-attention enables the decoder to fully exploit and

preserve the structure details on local regions. Compared

with the skip-connection, the skip-attention can be general-

ized to unordered point clouds, since attention mechanism

has no pre-requirements on the order of the input features.

Moreover, our skip-attention provides an attentional choice

for network to revisit the features under different resolu-

tions, which allows the network to selectively incorporate

the features encoded with desirable geometric information,

and avoid the problem of information redundancy.

In order to fully utilize the selected geometric informa-

tion from skip-attention at different resolutions, we further

propose a structure-preserving decoder with hierarchical

folding to generate complete point clouds. The hierarchi-

cal folding preserves the structure of point cloud generated

in the upper layer, by progressively detailing the local re-

gions using the skip-attentioned geometric information at

the same resolution from the encoder. Specifically, the de-

coder has the same number of resolution levels as the en-

coder, with the skip-attention connecting each level of en-

coder to the corresponding level of decoder. In order to

hierarchically fold the point clouds through levels, we pro-

pose to sample 2D grids with an increasing density from a

2D plane of fixed size. Compared with the decoders in ex-

isting point cloud completion methods [47, 41, 45], the pro-

posed structure-preserving decoder can preserve the struc-

ture details on local regions under the whole resolution lev-

els, which enables the network to predict complete shape

that maintains the global shape consistency while capturing

more local region information. Our main contributions can

be summarized as follows.

• We propose a novel Skip-Attention Network (SA-Net)

for the point cloud completion task, which achieves

state-of-the-art results. Moreover, the architecture of

SA-Net can also be used for improving the perfor-

mance of shape segmentation, and achieving the state-

of-the-art results in unsupervised shape classification.

• We propose the skip-attention mechanism to fuse the

informative local region features from encoder into

the point features of decoder at different resolutions,

which enables the network to infer the missing re-

gions using more detailed geometry information from

incomplete point clouds. In addition, skip-attention re-

veals the completion process in an interpretable way.

• We propose a structure-preserving decoder for high

quality point cloud generation. It can progressively

detail the point clouds at different resolutions with hi-

erarchical folding, which hierarchically preserves the

structure of complete shape at different resolutions.

2. Related Work

3D computer vision is an active research field in re-

cent year [5, 11, 10, 12, 29, 13, 31], where the studies of

3D shape completion lead to many branches. For exam-

ples, geometry based [40, 2, 42, 23] methods exploit the

geometric features of surface on the partial input to gen-

erate the missing part of 3D shapes, and alignment-based

methods [37, 24, 32, 38] maintain a shape database and

search for the similar patches to fill the incomplete regions

of 3D shapes. Our method belongs to the deep learning

based methods, which benefits a lot from the recent de-

velopment of deep neural network in 3D computer vision

[9, 28, 20, 16, 18, 15, 17, 14]. This branch can be further

categorized according to the input form of 3D shapes.

Volumetric shape completion. 3D volumetric shape

completion is a direction that is benefited a lot from the

progress in 2D computer vision. Notable work like 3D-EPN

[4] considered a progressive reconstruction of 3D volumet-

ric shapes. And Han et. al [8] combined the inference of

global structure with the local geometry refinement to di-

rectly generate the complete 3D volumetric shape of high

resolution. More recently, the variational auto-encoder was

introduced to learn a shape prior for inferring the latent rep-

resentation of complete shapes [39]. Although fascinating

improvements have been made in the research area of 3D

volumetric data, the computational cost which is cubic to

the resolution of input data makes it difficult to process fine-

grained shapes.
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Figure 2. The overall architecture of SA-Net. SA-Net mainly consists of three modules: the encoder (yellow) aims to extract local region

features from the input point clouds; the structure-preserving decoder (green) aims to reconstruct the complete point clouds and preserve

the local region details; the skip-attention (sky blue) bridges the local region features in encoder and the point features in decoder.

Point cloud completion. The point cloud based 3D

shape completion is a surging research area benefited from

the pioneering work of PointNet [33] and PointNet++ [34].

As a compact representation of 3D shapes, point cloud can

represent arbitrary detailed structure of 3D shape with a

smaller storage cost compared to 3D volumetric data. Re-

cent notable studies like PCN [47], FoldingNet [45] and At-

lasNet [7] usually learn a global representation from par-

tial point cloud, and generate the complete shape based on

the learned global feature. Following the same practice,

a tree-structured decoder was proposed in TopNet [41] for

better structure-aware point cloud generation. By combin-

ing the reinforcement learning with the adversarial network,

RL-GAN-Net [36] and Render4Completion [21] further im-

proved the reality and consistency of the generated com-

plete point cloud with the ground truth. However, most of

these studies suffer from the information loss of structure

details, as they predict the whole point cloud only from a

single global shape representation.

3. The Architecture of SA-Net

Figure 2 shows the overall architecture of SA-Net, which

consists of an encoder and a structure-preserving decoder.

Between the encoder and the decoder, the skip-attention

serves as the pipeline that connects the local region features

(extracted from different resolutions in encoder) with the

point features in the corresponding resolutions of decoder.

3.1. Encoder

Given the input point cloud of size N=2,048 with its 3-

dimensional coordinates, the encoder of SA-Net aims to ex-

tract the features from the incomplete input point clouds. In

SA-Net, we adopt the PointNet++ [34] framework as the

backbone of our point cloud feature encoder. As shown in

Figure 2, there are three levels of feature extraction, with

the first level and the second level sampling the input point

cloud into the size NE
1 =512 and NE

2 =256 (the superscript

E denotes the encoder), and the last level grouping the in-

put point cloud into a global representation. As a result, the

encoder generates one global representation, and some lo-
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Figure 3. Illustration of the folding block, which consists of

a down-module and two up-modules with self-attention inside.

Folding block aims to lift the number of point features and refine

the geometric information lying within these features.

cal region features extracted from different resolution levels

for the input point clouds, respectively.

3.2. Structure­Preserving Decoder

Considering that the encoder extracts the local region

features from different resolution levels, it is a natural prac-

tice for decoder to generate point features following the

same way but with inverse resolution levels. This allows

the skip-attention to establish a level-to-level connection be-

tween the extracted local region features in encoder and the

generated point features in decoder. Inspired by this idea,

we propose the structure-preserving decoder, which aims to

progressively generate the complete point clouds and pre-

serve the structure details of local regions under all resolu-

tion levels. Specifically, as shown in Figure 2, the structure-

preserving decoder hierarchically folds the point clouds for

three resolution levels, which is equal to the number of res-

olution levels in the encoder. Each resolution level of de-

coder consists of a skip-attention to convey the local region

features from the same level of encoder, and a folding block

to increase the number of point features.

3.3. Folding Block

Except for lifting the number of point features, the fold-

ing block also concerns the refinement of the expanded

point features, which allows the decoder to produce more

1941



consistent geometric details on the local regions of point

clouds. Note that, such problem is usually ignored by pre-

vious methods, in which they either directly fold the en-

tire point set based on the duplicated global representation

[47, 45], or simply produce the point clouds through multi-

layer perceptrons (MLPs) and reshape operations [41]. In

SA-Net, we take the inspiration of the up-down-up frame-

work from [26] to address this problem, which is adopted as

the base of our folding block. Figure 3 shows the detailed

structure of the folding block in the i-th level of decoder.

The up-module with hierarchical folding. As shown in

the yellow part of Figure 3, for the input ND
i+1 (the super-

script D denotes the decoder) point features from the pre-

vious level, the up-module first copies the point features by

the time of up-sampling ratio ri =
ND

i

ND

i+1

, and concatenates

them with the 2D grids. Different from previous folding

based decoders [26, 47, 45], which only have one resolu-

tion level for point cloud generation, the decoder in SA-Net

progressively generates the point clouds for multiple reso-

lution levels. In order to hierarchically fold point clouds

through these levels, we propose to sample 2D grids with an

increasing density from the 2D plane of fixed size. Specifi-

cally, for the ND
i point features in the i-th level of decoder,

the ND
i 2D grids is evenly sampled from the 46 × 46 2D

plane (the smallest number of square greater than 2,048),

as illustrated in the up-module of Figure 3. These sampled

2D grids are then concatenated with the point features. Af-

ter that, the point features with 2D grids are passed through

MLPs and transformed into 3-dimensional latent codewords

[45]. These 3-dimensional codewords are again concate-

nated with the point features in the i-th level of decoder.

In order to integrate the semantic and spatial relation-

ships between these point features, we adopt a self-attention

module with MLPs to establish the inner links between fea-

tures, which aims to selectively fuse the similar features to-

gether through attention mechanism. This process is shown

in the bottom half of Figure 3. Given the j-th point feature

p
i
j of i-th level in decoder, the skip-connection first calcu-

lates the attention scores {aj,k|k = 1, 2, ..., ND
i } between

p
i
j and all of the point features {pi

k|k = 1, 2, ..., ND
i } in

i-th level of decoder as

aj,k =
exp(M(pi

j |θh)
T ·M(pi

k|θl))∑Ni

n=1
exp(M(pi

j |θh)
T ·M(pi

n|θl))
(1)

where M denotes the MLPs with parameters θ, and T de-

notes the transposition operation. h and l indicate that two

MLPs have different parameters. We take the weighted sum

of point features {pi
k} as the final context vector, and fuse

it into the point feature p
i
j as follow:

p
i
j ← p

i
j +

ND

i∑

k=1

aj,k ·M(pi
k|θg) (2)

…

Decoder

Input Pred

Point features in

2nd layer of decoder

Points generated

by red point feature
Weighted sum

Encoder

Point cloud in 2nd resolution level

(colored by attention to red feature)

Low High
Attention color map

Figure 4. Illustration of the skip-attention. The skip-attention cal-

culates the pattern similarity between local regions of complete

point cloud (red points in Pred, which is generated by red feature)

and the local regions of incomplete one. The similar local regions

in the incomplete point clouds is selectively fused into the decoder

with attentioned weighted sum.

The down-module. The point features expanded by the

up-module actually occupy a small local region in the fea-

ture space, which can be aggregated as one local region fea-

ture through reshape and feature concatenation. Such ag-

gregated local region feature can be regarded as a refined

point feature of higher quality compared with the one in pre-

vious levels, since it contains not only the information from

previous level of decoder, but also the detailed information

produced by the current up-module. Then, followed by the

MLPs and another up-module, the aggregated local region

feature can be further used to reproduce the new point fea-

tures with better structure details.

3.4. Skip­attention

The skip-attention serves as the pipeline to communicate

the local region features extracted by encoder with the point

features generated by decoder. It also interprets how the

network completes shapes using information from incom-

plete ones. The skip-attention is designed for two purposes.

First, when generating points that are located in the existing

region of incomplete inputs, the skip-attention should fuse

the feature of the same region from the encoder into the de-

coder, and guide the decoder to reconstruct more consistent

structure details in such region. Second, when generating

points that are located at the missing region of input, the

skip-attention should search for referable similar regions in

the original input point clouds, and guide the decoder to

incorporate the shape of these similar regions as reference

for inferring the shapes of missing regions. Both of the

above purposes are achieved through an attention mecha-

nism, as shown in Figure 4, where the semantic relativeness

between point features in decoder and local region features

in encoder are measured by attention scores, with the higher

scores indicating the more significant pattern similarity (the

wings of airplane). Then, the local region features are fused

into point feature by weighted sum, and finally used for pre-

dicting related regions (also the wings of plane) in the com-

plete point cloud.

There are different possible ways to calculate attentions

for the skip-attention pipeline. In this paper, we do not ex-

plore the whole space but typically choose two straightfor-
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ward implementation, which work well in SA-Net. The first

one in skip-attention is to directly adopt the learnable atten-

tion mechanism as described in the up-module. And the

second one is to calculate the cosine similarity as the atten-

tion measurement between features. Compare with learn-

able attention, the unsmoothed (no softmax activation) co-

sine attention brings in more information from the previ-

ous encoder network, which can establish a strong connec-

tion between point features in decoder and local region fea-

tures in encoder. On the other hand, the smoothed learnable

attention can preserve more information from the original

point features. For learnable attention, the attention score

in the i-th resolution level is computed between the point

feature p
i
j from decoder and all of the local region features

{rik|k = 1, 2, ..., NE
i } from encoder, given as

a
L

j,k =
exp(M(pi

j |θ
L

h)
T ·M(ri

k|θ
L

l ))∑Ni

n=1
exp(M(pi

j |θ
L

h)
T ·M(ri

n|θ
L

l ))
, (3)

where the superscript L denotes the word learnable. For

cosine distance, the attention score is given as

a
C

j,k =
(ri

k)
T
p
i
j

‖ri
k‖2‖p

i
j‖2

, (4)

where the superscript C denotes the word cosine. Same as

the self attention in up-module, we fuse the weighted sum

of local region features {rik} into the point feature pi
j using

element-wise addition, which is the same as Eq. (2). In

ablation study (Sec. 4.2), we will quantitatively compare

the performance of these two attentions.

3.5. Training

During training, the Chamfer distance (CD) LCD and the

Earth Mover distance (EMD) LEMD are adopted as the op-

timization losses. The total loss for training is the weighted

sum of the CD and EMD, defined as

Ltotal = LEMD + λLCD, (5)

where λ is the weight parameter fixed to 10 for the experi-

ments in our paper. The definition of LCD and LEMD will

be detailed in Supplementary.

4. Experiments

By default, we use the cosine similarity based skip-

attention for all experiments. In Sec. 4.2, we compare it

with learnable attention. During evaluation, we mainly use

Chamfer distance as the measurement to compare the pre-

dicted point clouds with the ground truth.

4.1. Evaluation of Completion Performance

Datasets. To evaluate the performance of SA-Net, we

conduct experiments on two large scale datasets for point

cloud completion. For quantitative comparison, we follow

[47] to evaluate our methods on ShapeNet dataset [3], and

generate 8 partial point clouds for each object by back-

projecting 2.5D depth images from 8 views into 3D. Unlike

Render4Completion [21], we follow [41] to evaluate on the

sparse input, which is more close to the real-world scenar-

ios. We uniformly sample only 2,048 points on the mesh

surfaces for both the complete and partial shapes. We also

qualitatively evaluate SA-Net on KITTI dataset [6], since

there is no ground truth for the incomplete shape of cars in

KITTI.

ShapeNet dataset. We use the per point Chamfer dis-

tance as the evaluation metric. In Table 1, SA-Net is com-

pared with two point cloud completion methods PCN [47]

and TopNet [41]. The reconstruction based unsupervised

representation learning methods FoldingNet [45] and Atlas-

Net [7] are also included, since their basic encoder-decoder

framework can also be generalized to point cloud comple-

tion task. The results of the above 4 methods are cited from

[41]. The comparison shows that SA-Net outperforms the

other methods on 6 out of 8 categories, and also achieves

the best average Chamfer distance.

In Figure 5, we show the visualization results of point

cloud completion using SA-Net and compare it with the

other methods, from which we can find that SA-Net pre-

dicts more reasonable shape, while preserving more consis-

tent geometric shapes for the existing parts. For example, in

Figure 5(a.2) and 5(a.3), when predicting the missing lamp

holders and table legs, the SA-Net generates more realis-

tic shapes compared with the other three methods, and the

points generated by SA-Net are arranged more tightly and

shaped more close to the ground truth. In Figure 5(a.1)

and 5(a.4), the SA-Net preserves the shapes of wings and

the beam more consistently compared with the other three

methods. The quantitative and qualitative improvements

in shape completion task prove the effectiveness of skip-

attention for introducing local region features, and the abil-

ity of structure-preserving decoder for utilizing the local re-

gion features to reconstruct completion point clouds. More-

over, in Table 2, we compare the number of trainable pa-

rameters in network of different methods, which shows that

SA-Net has the least number of parameters, while achieving

significantly better performance.

KITTI dataset. The KITTI dataset is collected from the

real-world LiDAR scans, where the ground truth is miss-

ing for quantitative evaluation. Therefore, we qualitatively

evaluate the performance of SA-Net by the visualization re-

sults. The complete cars are predicted using the parame-

ters trained under car category in ShapeNet dataset for all

methods in Figure 6. Note that in KITTI dataset, the point

number of incomplete car has a large range of variation. In

order to obtain a fixed point number of input, for the incom-

plete cars with more than 2048 points, we randomly choose

1943



Table 1. Point cloud completion comparison on ShapeNet dataset in terms of per point Chamfer distance ×104 (lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

AtlasNet [7] 17.69 10.37 23.4 13.41 24.16 20.24 20.82 17.52 11.62

PCN [47] 14.72 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21

FoldingNet [45] 16.48 11.18 20.15 13.25 21.48 18.19 19.09 17.8 10.69

TopNet [41] 9.72 5.5 12.02 8.9 12.56 9.54 12.2 9.57 7.51

SA-Net(Ours) 7.74 2.18 9.11 5.56 8.94 9.98 7.83 9.94 7.23

Input TopNet FoldingNet PCN Ours Gt

Gt

Input

Ours

(a) Visualized completion comparison on ShapeNet. (b) More completion results of SA-Net on ShapeNet.

a.1

a.2

a.3

a.4

Figure 5. Visualization of point cloud completion comparison on ShapeNet dataset. We compare SA-Net with other methods in (a), and in

(b) we show more completion results of SA-Net.

Table 2. The number of trainable parameters in each method.

Methods TopNet [41] PCN [47] FoldingNet [45] SA-Net(Ours)

Params (×106) 9.97 5.29 2.40 1.67

FoldingNet PCN TopNet OursInput

Figure 6. Visualization of the completion results on KITTI dataset.

2,048 points, otherwise, we randomly select points from the

input to make up to the 2,048 points. The results are shown

in Figure 6, from which we can find that our SA-Net pre-

dicts more structure details (car tiers) and shapes of higher

quality (car trunks).

4.2. Ablation Study

In this subsection, we analysis the effect of important

modules and hyper-parameters to SA-Net. All studies are

typically conducted on the plane category for convenience.

Effect of attention. We developed three variations

of SA-Net to verify the effectiveness of attention in SA-

Net: (1) “No-skip” is the variation that removes the skip-

attention from the SA-Net. (2) “Skip-L” is the variation

that replaces the cosine attention in skip-attention by the

learnable attention. (3) “Fold-C” is the variation that re-

places the learnable attention by the cosine similarity in the

self-attention of folding block. All three variations have the

same structure as SA-Net except for the removed/replaced

module. The results are shown in Table 3, in which the

original SA-Net achieves the best performance. The exper-

imental results prove the effectiveness of attention used in

SA-Net. The performance drop for replacing the attention

in skip-attention (Skip-L) and self-attention (Fold-C) can

be dedicated to the different design purposes for the two

modules. The skip-attention aims to incorporate the local

region features, and the unsmoothed cosine similarity al-

lows more information to be fused into decoder. In contrast,

the self-attention aims to learn a discriminative point fea-

tures instead of simply merging the neighborhood features,

therefore, smoothed weights (by softmax) in self-attention

is more desirable for the network to preserve the original

information of the point features. We specially note that,

since removing the decoder of multi-resolution levels will

also change the linkages of skip-attention, in Sec 4.3, we

will instead evaluate the effectiveness of decoder on the task

of unsupervised shape classification.

Table 3. The effect of each module to SA-Net (plane category).

Methods No-skip Skip-L Fold-C SA-Net

CD (×104) 2.31 2.25 2.34 2.18

Effect of optimization loss. To evaluate the effect of

EMD loss and CD loss to SA-Net, we developed two vari-

ations: (1) “SA-Net-EMD” is the variation of SA-Net that

is only trained using EMD loss; (2) “SA-Net-CD” is the

variation that is only trained with CD loss. The comparison

results are shown in Table 4, which proves that both EMD

and CD contribute to the performance of SA-Net.

Table 4. The effect of each optimization loss (plane category).

Methods SA-Net-EMD SA-Net-CD SA-Net

CD (×104) 2.39 2.23 2.18

EMD (×102) 3.06 4.58 3.02
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Figure 7. Visualization of completion results on different resolu-

tions of input.

Effect of input point number. We analyze the robust-

ness of SA-Net on various resolutions of inputs, especially

for the performance on sparse input. In this experiment, we

fix the number of output point clouds to 2,048, and evaluate

the performance of SA-Net on the input point clouds with

resolutions ranging from 256 to 2,048. For the point size

less than 2,048, we use the same strategy in KITTI dataset

to randomly select points from input, and lift the number of

points up to 2,048. The model performance in terms of per

point CD is reported in Table 5. In Figure 7, we visualize

the completion quality under different point number of in-

complete point clouds, in which the SA-Net shows a robust

performance on all input resolutions.

Table 5. The effect of input point number (plane category).

#Points 2048 1024 512 256

CD (×104) 2.18 2.28 2.45 3.31

Visualization of skip-attention. In Figure 8, we visual-

ize the attention in the second resolution level of decoder,

which is to predict a complete plane. We compare the skip-

attention learned for generating the empennage and part of

the two wings. The points generated by the same point fea-

ture are colored by red in the left half of Figure 8(a) and

8(b), and the corresponding attention scores that point fea-

ture assigned to the local regions of incomplete point cloud

are visualized in the right half. As shown in Figure 8(a),

when generating points that belong to the empennage, the

skip-attention searches for relative local regions (which is

also the empennage) in the input point clouds for predic-

tion. In Figure 8(b), when predicting the points of wings

(where the right wing are missing), the skip-attention se-

lects the region of left wing (by assigning higher attention)

in incomplete point cloud for predicting the shape of both

wings. Similar pattern is also observed on other categories

as shown in Figure 8.

Visualization of hierarchical folding. In Figure 9, we

visualize the hierarchical folding in decoder. We track the

folding process of a specific vector colored by blue, and

Car
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(b) Skip-attention learned for generating wings.
Low

High

A
tt

e
n

ti
o

n
 c

o
lo

r 
m

a
p

Figure 8. Visualization of the attention learned in skip-attention.
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Figure 9. Visualization of the hierarchical folding in each level of

decoder. We track the folding and point number expansion process

of a specific initial vector colored by blue, and illustratively show

the 2D grids sampling process.

denote the points derived from this blue vector with blue

rectangular in each level. From a local perspective, we ob-

serve that each initial point feature successfully learns to

generate a specific region on the plane. And in the case of

blue initial point feature, it generates the left wing of the

plane. On the other hand, from a global perspective, we can

observe that the folding process of SA-Net does not restric-

tively follow the 2D manifold assumption like FoldingNet

[45]. As pointed out by [41], enforcing learning from the

2D manifold structure may not be optimal for training, be-

cause the space of possible solutions is constrained. There-

fore, the subtle deviation from 2D manifold, which is ob-

served in SA-Net, is more flexible for learning to generate

variant shapes and preserve better structure details. Both

of the observations prove the effectiveness of hierarchical

folding. In addition, we also visualize the folding process

under car and table categories in Figure 9.

4.3. Model Analysis on Applications

Skip-attention for semantic segmentation. To fur-

ther verify the effectiveness of skip-attention proposed in

Sec 3.4, we conduct the semantic segmentation experi-

ment on the ShapeNet dataset [46], where the dataset split-

tings follow the previous method of PointNet++ [34]. The

segmentation variation (SA-Net-seg) of SA-Net uses ex-

actly the same architecture as PointNet++, except for the

skip-attention connecting the local region features in en-
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(a) Visualized segmentation comparison on ShapeNet. (b) More segmentation results of SA-Net on ShapeNet.

Ours PointNet++ PointNet Gt

Figure 10. Segmentation visualization on ShapeNet. We compare SA-Net with baseline PointNet and PointNet++ in (a). In (b), we show

more segmentation results of SA-Net. Note that there is no correspondence between colors and labels across object categories in (b).

coder with the features in interpolation layers. The com-

parison in terms of part-averaged intersection over union

(pIoU, %) and mean per-class pIoU (mpIoU, %) [27] is

shown in Table 6, from which we can find that SA-Net-seg

drastically improves the segmentation performance com-

pared with the baseline method of PointNet++. Specifically,

the skip-attention improves the performance of backbone

PointNet++ by 0.6% in terms of mIoUs. In Figure 10(a),

we visualize the segmentation results and compared SA-

Net-seg with the baseline PointNet and PointNet++, from

which we can find that SA-Net-seg yields more precise pre-

diction of semantic labels. Especially, the SA-Net-seg sig-

nificantly improves the segmentation accuracy on the tier

of the motorcycle, where the body and the tier are heav-

ily overlapped with each other. Such improvement results

from the local region features conveyed by skip-attention

from the encoder, which helps the interpolation layers make

more discriminative prediction in the local regions. Figure

10(b) gives more segmentation results.

Table 6. Semantic segmentation results (%) on ShapeNet.

Methods pIoU mpIoU

PointNet [33] 83.7 80.4

PointNet++ [34] 85.1 81.9

SO-Net [25] 84.9 81.0

DGCNN[43] 85.1 82.3

PointCNN [27] 86.1 84.6

SA-Net-seg(Ours) 85.7 83.0

Structure-preserving decoder for unsupervised rep-

resentation learning in shape classification. In order to

verify the effectiveness of our structure-preserving decoder,

we further conduct unsupervised shape classification exper-

iments on ModelNet40 [44]. The training and test settings

on ModelNet40 also follow the PointNet++ [34]. In this ex-

periment, we use a classification variation (SA-Net-cls) of

SA-Net, in which we remove the skip-attention from SA-

Net. The reason is that we use the global representation for

predicting class label by a support vector machine (SVM),

and remove the skip-attention can enhance the information

embedded in the global representation, since it forces the

decoder to decode a whole point cloud only based on the

Table 7. The classification comparison under ModelNet40.

Methods Supervised Accuracy(%)

PointNet[33] Yes 89.2

PointNet++ [34] Yes 90.7

PointCNN[27] Yes 92.2

DGCNN[43] Yes 92.2

SO-Net[25] Yes 90.9

LGAN[1] No 85.7

LGAN[1](MN40) No 87.3

FoldingNet[45] No 88.4

FoldingNet[45](MN40) No 84.4

MAP-VAE[19] No 90.2

L2G[30] No 90.6

SA-Net-cls(Ours) No 90.6

single global representation. The encoder and decoder are

trained by reconstructing itself. In Table 7, we compare the

classification performance of SA-Net-cls with counterpart

methods, where all results are obtained under 1,024 points

input without normal vector. From Table 7 we can find that

our SA-Net-cls achieves the best performance in the unsu-

pervised learning methods. The result of SA-Net-cls is also

comparable with the supervised methods. Especially, we

note that the classification accuracy of our SA-Net-cls is

only 0.1% lower than the supervised PointNet++, which is

exactly the same backbone used as our encoder.

5. Conclusion

We propose a novel Skip-Attention Network (SA-Net)

for point cloud completion. Through the proposed skip-

attention, SA-Net can effectively utilize the features of local

regions in input point clouds for completion task. In or-

der to exploit the local regions at different resolutions, the

structure-preserving decoder is further proposed to progres-

sively generate point clouds, and incorporate local region

features at different resolutions. The completion experi-

ments on ShapeNet and KITTI prove the effectiveness of

SA-Net. The segmentation and classification experiments

on ShapeNet and ModelNet40 further demonstrate the ef-

fectiveness of skip-attention and structure-preserving de-

coder, respectively.
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