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Abstract

In this paper, we present a novel unpaired point cloud

completion network, named Cycle4Completion, to infer the

complete geometries from a partial 3D object. Previous

unpaired completion methods merely focus on the learn-

ing of geometric correspondence from incomplete shapes

to complete shapes, and ignore the learning in the reverse

direction, which makes them suffer from low completion

accuracy due to the limited 3D shape understanding abil-

ity. To address this problem, we propose two simultaneous

cycle transformations between the latent spaces of com-

plete shapes and incomplete ones. Specifically, the first

cycle transforms shapes from incomplete domain to com-

plete domain, and then projects them back to the incom-

plete domain. This process learns the geometric character-

istic of complete shapes, and maintains the shape consis-

tency between the complete prediction and the incomplete

input. Similarly, the inverse cycle transformation starts

from complete domain to incomplete domain, and goes

back to complete domain to learn the characteristic of in-

complete shapes. We experimentally show that our model

with the learned bidirectional geometry correspondence

outperforms state-of-the-art unpaired completion methods.

Code will be available at https://github.com/

diviswen/Cycle4Completion.

1. Introduction

Point clouds, as a popular 3D representation, can be eas-

ily produced by 3D scanning devices and depth cameras.

However, due to the limitations of the view angles of cam-
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tional Natural Science Foundation of China (62072268), and in part by

Tsinghua-Kuaishou Institute of Future Media Data.

era/scanning devices and self-occlusion, raw point clouds

are often sparse, noisy and partial, which usually require

shape completion before being analyzed in further appli-

cations such as shape classification [27, 14, 23, 21, 24],

retrieval [11, 7, 12], semantic/instance segmentation [22,

39]. Although the recent data-driven supervised comple-

tion methods [16, 46, 42, 44, 17, 20] have achieved impres-

sive performance, they heavily rely on the paired training

data, which consists of incomplete shapes and their corre-

sponding complete ground truth. In real-world applications,

however, such high quality and large-scale paired training

dataset is not easy to access, which makes it hard to directly

train a supervised completion network.

A promising but challenging solution to this problem is

to learn a completion network in an unpaired way, where the

common practice is to establish the shape correspondence

between the incomplete shapes and complete ones from the

unpaired training data without requiring the incomplete and

complete correspondence. The latest work like Pcl2Pcl [2]

introduced an adversarial framework to merge the geomet-

ric gap between the complete shape distribution and incom-

plete one in the latent representation space. Although many

efforts have been made to learn the geometric correspon-

dence from incomplete shapes to complete ones, previous

methods ignore the inverse correspondence from complete

shapes to incomplete ones, which leads to low completion

accuracy due to the limited 3D shape understanding ability.

To address this problem, we propose a novel un-

paired point cloud completion network, named Cy-

cle4Completion, to establish the geometric correspondence

between incomplete and complete shapes in both directions.

We achieve this by designing two cycle transformations,

i.e. the incomplete cycle transformation (incomplete-cycle)

and the complete cycle transformation (complete-cycle), as

shown in Figure 1. The incomplete-cycle in Figure 1(a)

learns the mapping from the incomplete domain to the com-
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Figure 1. Illustration of cycle transformation, which consists of two inverse cycles, as shown in (a) and (b). The cycle transformation

promotes network to understand 3D shapes by learning to generate complete or incomplete shapes from their complementary ones.
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(a) Problem of target confusion. FX can learn to project multiple

incomplete input (A1, A2, A3) into one complete target (A), but its

inverse transformation FY may have difficulty to project one

complete input into multiple incomplete target.

(b) Solution of missing region coding. We propose to use a

learnable code Z to encode the missing regions.

FY FX

Figure 2. Illustration of target confusion and the solution of miss-

ing region coding.

plete one, which is then projected back to the incomplete

domain. On the other hand, the complete-cycle in Figure

1(b) provides the completion knowledge on the inverse di-

rection with incomplete input, which can be used to fur-

ther enhance the incompletion quality for incomplete-cycle.

However, as shown in Figure 2(a), directly applying a cy-

cle transformation in the latent space will encounter a new

problem which we name it as the target confusion problem.

This problem is raised when establishing shape correspon-

dence from multiple incomplete shapes (e.g. A1, A2 and

A3) to one complete shape (e.g. A). This is because one

of the cycle requires the network to predict the incomplete

shape based on the complete input, and the corresponding

transformation network FY cannot fully map one complete

input into multiple different incomplete targets only through

a deep neural network. To solve this problem, we propose

the learnable missing region coding (MRC) to transform

incomplete shapes to complete ones, as shown in Figure

2(b). The representations of incomplete shapes can be de-

composed into two parts: one is the representation A of

their corresponding complete shape, and the other one is

the code Z to encode their missing regions. When predict-

ing the complete shapes from the incomplete ones, only the

representation A is considered, and when predicting the in-

complete shapes from the complete ones, both the repre-

sentation A and code Z are considered. Thus, the transfor-

mation network FY will relieve the confusion by learning

to project one complete input to several incomplete targets.

Instead, the learnable missing region code Z can help the

network clarify which incomplete shape is the current target

for transformation, and relieve the target confusion prob-

lem. Our main contributions are summarized as follows.

• We propose a novel unpaired point cloud comple-

tion network, named Cycle4Completion. Compared

with previous unpaired completion methods which

only consider the single-side correspondence from in-

complete shapes to complete ones, Cycle4Completion

can enhance the completion performance by establish-

ing the geometric correspondence between complete

shapes and incomplete shapes from both directions.

• We propose the cycle transformation framework in la-

tent space, which is combined with the partial match-

ing loss and cycle matching loss to establish the bidi-

rectional geometric correspondence between the com-

plete and incomplete shapes, and maintain the shape

consistency throughout the whole transformation pro-

cess.

• We propose the missing region coding to decompose

the incomplete shape representation into a representa-

tion of its corresponding complete shape, and a miss-

ing region code to encode the missing regions of the

incomplete shapes, respectively. This solves the target

confusion when the network tries to predict multiple

incomplete shapes based on a single complete shape.

2. Related Work

3D shape completion has drawn an increasing attention

in recent years [45, 40, 35]. Previous completion methods

can be roughly divided into two categories, i.e. traditional

approaches and deep learning based approaches, which we

will detail below.

Traditional approaches for 3D shape completion. The

traditional geometry/statistic based methods [32, 1, 36, 29,

26, 30] exploit the geometric features of surface on the

partial input to generate the missing regions of 3D shapes

[32, 1, 34, 36], or exploit the large-scale shape database

to search for the similar shapes/patches to fill the missing

regions of 3D shapes [29, 19, 26, 30]. For example, Hu

et al.[36] proposed to exploit both the local smoothness

and the non-local self-similarity in point clouds, by defin-

ing the smoothing and denoising properties of point clouds
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and globally searching the similar area for the missing re-

gion. On the other hand, the data-driven shape completion

methods like Shen et al.[30] formulate the completion of

3D shapes as a bottom up part assembling process, where a

3D shape repository is adopted as the reference to recover a

variety of high-level complete structures. In all, these tradi-

tional shape completion approaches are mainly based on the

hand-crafted rules to describe the characteristics of miss-

ing region, and the similarities between the missing region

and complete shape. Therefore, the generalization ability

of such kind of methods is usually limited. For example,

the method proposed by Sung et al.[32] predefines several

categories of semantic parts of 3D shapes, and uses geomet-

ric characteristics such as part positions, scales, and orien-

tations to find similar parts for missing regions from shape

database. Such kind of methods usually fails in the situation

of more complicated shapes, which are beyond the descrip-

tion of the predefined semantic part categories or geometric

characteristics. In contrast, deep learning based completion

methods can learn more flexible features to predict a com-

plete shape from an incomplete input. This kind of methods

will be detailed in the subsection below.

Deep learning approaches for 3D shape completion. The

second category includes neural networks based methods,

which take advantage of deep learning to learn the represen-

tation from the input shape [12, 38, 8, 22, 18] and predict

the complete shape according to the representation, using an

encoder-decoder framework. This category can be further

classified according to different input shape forms includ-

ing: volumetric shape completion [3, 5, 31] and point cloud

completion [13, 33, 28, 15, 35, 37]. Our Cycle4Completion

also falls into this category, which completes 3D shapes

represented by point clouds. Notable recent studies like

CDN [35], NSFA [47] and SA-Net [40] have achieved im-

pressive results on supervised point cloud completion task.

Moreover, RL-GAN-Net [28] introduced the reinforcement

learning with the adversarial training to further improve

the reality and consistency of the generated complete point

clouds. However, although great improvements have been

made in supervised point cloud completion task, this task

strongly depends on the paired training data, but the paired

ground truth for incomplete real-world scan is rarely avail-

able. On the other hand, there is very few studies concern-

ing the unpaired point cloud completion task. As one of

the pioneering work, AML [31] directly measured the maxi-

mum likelihood between the latent representation of incom-

plete and complete shapes. Following the similar practice,

Pcl2Pcl [2] introduced the GAN framework to bridge the se-

mantic gap between incomplete and complete shapes. And

Wu et al. [41] proposed a VAE based framework to predict

multiple complete shapes for a single incomplete input.

Compared with the above-mentioned unpaired meth-

ods, our Cycle4Completion further establishes the self-

supervision by cycle transformations in the latent space

from both directions, which can provide a better guidance to

learn the bidirectional geometric correspondence between

incomplete shape and complete ones.

Relationships with GANs. Our work is also related to

the generative adversarial networks (GAN). Especially, our

work is inspired by the unpaired style transferring network

CycleGAN [48] in 2D domain. However, it is usually diffi-

cult to directly apply a framework like CycleGAN to point

cloud completion, where the simple cycle-consistency loss

often fails to guide the generator to infer the missing shapes,

because conceiving a consistent missing shape for the in-

complete input is more complicated than transferring styles.

Therefore, we propose to perform the cycle transformation

in the latent space, where the partial and cycle matching

losses are proposed for maintaining the transferred shapes

consistency. Considering that 3D completion is essentially

a reconstruction process from 3D shape to 3D shapes, the

reconstruction of 3D shapes from 2D images [9, 6, 10] is

also a notable research direction, which is closely related to

3D completion. The difference between the two tasks is that

3D reconstruction from 2D images does not require 3D in-

formation as input, while the completion task based on 3D

shapes requires 3D shape information as input.

3. The Architecture of Cycle4Completion

3.1. Formulation

We first describe the basic formulations in our method.

As shown in Figure 3(a), let PX={px
i } denote the point

cloud of an incomplete shape, and PY ={py
i } denote the

point cloud of complete one. Our goal is to learn two

mappings FX and FY between the latent representations

{x} of incomplete shapes and the latent representations

{y} of complete shapes. These representations are gen-

erated by the point cloud encoders EX : PX → x and

EY : PY → y, respectively, which are trained under the

auto-encoder framework with the point cloud generators

GX and GY , respectively. In addition, two adversarial dis-

criminators DX and DY are introduced. DX aims to distin-

guish between {x} and {yx}, where yx=FY (y). DY aims

to distinguish between {y} and {xy}, where xy=FX(x).
We denote the compound operation of two functions FX

and FY as FXFY .

3.2. Encoder-decoder for Learning Latent Space

The two auto-encoders learn the latent representation

spaces for incomplete and complete shapes, respectively.

We define the full Chamfer distance (CD) between two

point clouds P1 and P2 as

LCD(P1 ⇌ P2)=
∑

p
1

i
∈P1

min
p
2

i
∈P2

‖p1
i−p

2
i ‖+

∑

p
2

i
∈P2

min
p
1

i
∈P1

‖p2
i−p

1
i ‖.

(1)
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Figure 3. Illustration of Cycle4Completion. The overall structure in (a) consists of the incomplete cycle transformation in (b), which

produces the complete prediction (green) from the incomplete input (red), and the complete cycle transformation in (c), which produces

the incomplete prediction (yellow) from the complete input (blue). Both of the two cycles use self-reconstruction to learn the shape

consistency.

The reconstruction loss LAE for training the auto-encoder

framework is formulated as:

LAE = LCD(PX ⇌ GX(x)) + LCD(PY ⇌ GY (y)). (2)

3.3. Cycle Transformation

Transformation with missing region coding. For the in-

complete cycle transformation in Figure 3(b), the missing

region code xz
y and the complete shape representation xr

y

are generated by FX when transferring x from the incom-

plete domain into the complete domain as xy . Therefore,

xy can be further denoted as xy = [xr
y : xz

y]. The remark

“:” indicates the concatenation of two feature vectors. The

complete shape is then predicted based on xr
y by GY as

GY (x
r
y). And the discriminator DY only discriminates be-

tween xr
y and y. In order to establish the shape consistency

during the transformation process, xy is projected back into

the incomplete domain again by FY , denoted as x̂. The

cycle reconstructed shape is predicted by GX , denoted as

GX(x̂).
For the complete cycle transformation in Figure 3(c), the

encoder EY directly predicts a complete shape representa-

tion yr. In order to predict an incomplete shape, we ran-

domly sample a missing region code from an uniform distri-

bution between [0, 1], denoted as yz , and concatenate it with

yr, denoted as y = [yr : yz]. Then, the transformation net-

work FY transforms y into the incomplete domain, denoted

as yx. Similar to the incomplete cycle transformation, the

incomplete shape is predicted based on yx by GX , denoted

as GX(yx). And the discriminator DX discriminates be-

tween yx and x. Following the inverse direction of incom-

plete cycle transformation, the shape consistency during the

complete cycle transformation is established by predicting

the reconstructed shape GY (ŷ), where ŷ = FX(yx). Note

that same as y, ŷ also consists of a complete representation

ŷr and a missing region code ŷz .

Code matching Loss. In the complete cycle transformation

in Figure 3(c), a missing region code yz is sampled from a

uniform distribution in order to create missing regions from

the current complete input PY . After the shape PY is cy-

cled through FY and FX , a new missing region code ŷz is

predicted by the transformation network FY FX . Because

both yz and ŷz correspond to the same incomplete shape,

the two codes should be equal. Therefore, we propose to

use the Euclidean distance between yz and ŷz as the code

matching loss, which can be formulated as:

Lcode = ‖yz − ŷz‖
2. (3)

Cycle matching loss. The cycle matching loss aims to

match the shapes of cycle reconstruction GY (ŷ)/GX(x̂) to

their corresponding input PY /PX , which should keep the

shape consistency throughout the whole transformation pro-

cess. Specifically, we define the cycle matching loss as the

full Chamfer distance between the input PY /PX and the

reconstructed point cloud GY (ŷ)/GX(x̂) as LCD(PX ⇌

GX(x̂)) and LCD(PY ⇌ GY (ŷ)), respectively. Then we

indicate the full cycle matching loss for transferring network

FX and FY as:

Lcycle = LCD(PX ⇌ GX(x̂)) + LCD(PY ⇌ GY (ŷ)). (4)

Partial matching loss. The partial matching loss is a direc-

tional constraint, which aims to match one shape to another

without the matching in the inverse direction. Similar prac-

tice can be found in previous work [2], which adopted the

directional Hausdoff distance to partially match the com-

plete prediction to the incomplete input. However, the par-

tial matching on the single direction cannot provide further

guidance for the inference of missing regions, so we inte-

grate the partial matching into the cycle transformation to

establish a more comprehensive geometric correspondence

on both directions. We define the partial Chamfer distance

between two point clouds P1 and P2 as:

LCD′(P1 → P2) =
∑

p
1

i
∈P1

min
p
2

i
∈P2

‖p1
i − p

2
i ‖. (5)

It is a constraint that only requires that the shape of

P2 partially matches the shape of P1. For incomplete-
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cycle in Figure 3(b), the partial matching loss is formu-

lated as LCD′(PX → GY (x
r
y)), and for complete-cycle

in Figure 3(c), the partial matching loss is formulated as

LCD′(GX(yx) → PY ). Note that the directions of above

two partial Chamfer distances are always pointed from in-

complete shapes to complete ones, which guarantees the in-

complete shape partially matches the complete one, no mat-

ter whether it is predicted or real. The full partial matching

loss is defined as:

Lpartial = LCD′(PX → GY (xr
y)) + LCD′(GX(yx)→ PY ).

(6)

Adversarial loss. To further bridge the geometric gap be-

tween the latent representations of complete and incomplete

shapes, the adversarial learning framework is adopted as an

unpaired constraint. Specifically, two discriminators DX

and DY are used to distinguish the real and fake representa-

tions in the incomplete and complete domains, respectively.

The DX in incomplete domain discriminates between the

real latent representations {x} and the fake latent represen-

tations {yx}; in the same way, the DY in complete domain

discriminates between {y} and {xy}. In order to stabilize

the training, we formulate the objective loss for discrimina-

tor under the WGAN-GP [4] framework. For simplicity, we

formulate the loss for DX as:

LDX
= ExDX(x)− EyxDX(yx) + λgpTDX

, (7)

where λgp is a pre-defined weight factor and TDX
is gradi-

ent penalty term, denoted as:

TDX
= Ex[(‖∇xDX(x)‖

2
− 1)2]. (8)

The discriminator loss LDY
for DY can be formulated in

the same way. The final adversarial losses for generator

{FX , FY } and discriminator {DX , DY } are given as

LD = LDX
+ LDY

, (9)

LG = EyxDX(yx) + ExyDY (xr
y). (10)

3.4. Training Strategy

In our model, there are four sets of losses in total. We use

ΘD to denote the trainable parameters in {DX , DY }, ΘAE

to denote the trainable parameters in {EX , GX , EY , GY },

and ΘF to denote the trainable parameters in {FX , FY }.

We use LG(ΘAE ,ΘF ,ΘD) to denote that there are three

parts of network (i.e. auto-encoder, transferring network,

and discriminator) involved in calculating LG.

Given the learning rate γ, the encoder-decoder loss reg-

ularizes the parameters ΘAE , where the gradient optimiza-

tion step is expressed as

ΘAE ← ΘAE − γ
∂LAE(ΘAE)

∂ΘAE

. (11)

The cycle matching loss and partial matching loss along

with the adversarial loss regularize the transferring network.

The gradient descent step for ΘF is given as

ΘF ←ΘF − γ[λg
∂LG(ΘAE ,ΘF ,ΘD)

∂ΘF

+

λp
∂Lpartial(ΘAE ,ΘF )

∂ΘF

+ λc
∂Lcycle(ΘAE ,ΘF )

∂ΘF

],

(12)

where {λg, λc, λp} are weight factors. Note that although

LG and Lpartial involve the parameter ΘAE , we fix the pa-

rameter ΘAE when training LG and Lpartial. The reason

is that both LG and Lpartial are constraints for the transfor-

mation process, while the two auto-encoders aim to learn a

latent representation space instead of transferring features

between complete and incomplete domains. The weight

factors are fixed to λg=1, λc=0.01 and λp=1 in our experi-

ments. Finally, the discriminators DX and DY are regular-

ized by the discriminator loss LD

ΘD ← ΘD − γ
∂LD(ΘAE ,ΘF ,ΘD)

∂ΘD

. (13)

The pseudo code for training is given in Algorithm 1.

Algorithm 1 Pseudo code for training Cycle4Completion.

The critic step nD is fixed to 3 during training.

1: while model has not converged do

2: Update ΘAE following Eq.11

3: for t = 0, ..., nD do

4: Update ΘD following Eq.13

5: end for

6: Update ΘF following Eq.12

7: end while

4. Experiments

4.1. Evaluation on ShapeNet Dataset

Dataset. Following the previous studies [3, 2], we evaluate

our methods on 3D-EPN dataset [3], in order to fairly com-

pare Cycle4Completion with the previous unpaired point

cloud completion methods. For each 3D object, 8 partial

point clouds are generated by back-projecting 2.5D depth

images from 8 views into 3D. We uniformly sample only

2,048 points on the mesh surfaces for both the complete and

partial shapes.

Quantitative and qualitative evaluation. We use the per

point Chamfer distance as the evaluation metric. In Table

1, we compare Cycle4Completion with some state-of-the-

art supervised and unpaired point cloud completion meth-

ods. Since the training and testing split of Pcl2Pcl and 3D-

EPN is different at ShapeNet dataset, we report our results

on both of the two splittings for fair comparison. In Table

1, the Cycle4Completion is the results of 3D-EPN splitting
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Table 1. Point cloud completion comparison on ShapeNet dataset in terms of per point Chamfer distance ×104 (lower is better).

Methods Supervised Average Plane Cabinet Car Chair Lamp Sofa Table Boat

3D-EPN [3] Yes 29.1 60.0 27.0 24.0 16.0 38.0 45.0 14.0 9.0

FoldingNet [43] Yes 9.2 2.4 8.5 7.2 10.3 14.1 9.1 13.6 8.8

PCN [46] Yes 7.6 2.0 8.0 5.0 9.0 13.0 8.0 10.0 6.0

TopNet [33] Yes 8.4 2.5 8.8 5.9 9.3 12.0 8.4 13.5 7.1

SA-Net [40] Yes 7.7 2.2 9.1 5.6 8.9 10.0 7.8 9.9 7.2

AE (baseline)[2] No 25.4 4.0 37.0 19.0 31.0 26.0 30.0 44.0 12.0

Pcl2Pcl [2] No 17.4 4.0 19.0 10.0 20.0 23.0 26.0 26.0 11.0

Cycle4Completion (Ours) No 14.1 3.1 10.9 7.5 14.6 16.7 26.7 24.5 9.1

Cycle4Completion* (Ours) No 14.3 3.7 12.6 8.1 14.6 18.2 26.2 22.5 8.7
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Figure 4. Visual comparison with the state-of-the-art completion

methods on ShapeNet dataset.

and the Cycle4Completion* is the results of Pcl2Pcl split-

ting. Moreover, we also quote the results of the baseline

auto-encoder from [2] for comparison. The experimental

results show that our method achieves the best completion

performance on all categories compared with the unpaired

counterpart method Pcl2Pcl [2]. And even comparing with

the supervised methods, our Cycle4Completion still out-

performs 3D-EPN [3] and yields a comparable results to

PCN [46] and TopNet [33]. In Figure 4, we show the

visualization results of point cloud completion using Cy-

cle4Completion and compare it with other methods, from

which we can find that our model predicts the complete

shapes with higher accuracy than the unpaired Pcl2Pcl, es-

pecially on the regions highlighted by red rectangles. And

the completion quality of our method is also comparable to

the results of supervised methods.

4.2. Evaluation on KITTI Dataset

We supplement the following qualitative results on

the KITTI dataset, which contains car objects in real-

world auto-navigation dataset scanned by LIDAR sen-

sor in streets. The Cycle4Completion is first trained on

ShapeNet dataset under car category, and then the trained

Cycle4Completion is directly used to predict complete

shapes on the KITTI dataset without any further fine-tuning

Input
Pred

Figure 5. Visualizing the completion results of more similar car

objects acquired from the KITTI dataset.

(a) Original point clouds of street scene in KITTI, with cars colored by blue.

(b) The completion results of street scene in KITTI, with complete prediction colored by red.
Figure 6. Visualizing the KITTI dataset with multiple completion

cars.

process. In Figure 5, we show the original incomplete

point clouds of cars (highlighted with blue) directly ob-

tained by LIDAR sensor, and the complete shape (high-

lighted with red) predicted by our Cycle4Completion. In

Figure 6, we further show the completion results integrated

into the streets scene. Although there is no ground truth

(i.e. the complete shapes of cars) for the KITTI dataset, we

can still qualitatively find that Cycle4Completion predicts

complete cars very robustly on the KITTI dataset, even our

model is only trained on the ShapeNet dataset. This exper-

iment shows that our Cycle4Completion model trained on

ShapeNet dataset can achieve good completion results for

more similar objects in the real-world scenario data.

4.3. Model Analysis

For clarity, we typically analyze the performance of Cy-

cle4Completion on four categories, i.e. plane, cabinet, car

and chair.

Visual analysis of complete cycle transformation. We
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(a.3) Incomplete cycle reconstruction

(a.1) Incomplete input

(a.2) Complete prediction

(b.3) Complete cycle reconstruction
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(b.2) Incomplete prediction
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Figure 7. Visualization of the generated shapes in each step of cy-

cle transformation.

visualize the results of incomplete-cycle in Figure 7(a),

and the results of complete-cycle in Figure 7(b). For

incomplete-cycle, the input to the network is the incomplete

shape, as shown in Figure 7(a.1). The complete predic-

tion in Figure 7(a.2) demonstrates the effectiveness of Cy-

cle4Completion to produce complete shapes from incom-

plete input, and the comparison between Figure 7(a.1) and

Figure 7(a.3) proves that Cycle4Completion successfully

learns to keep shape consistency throughout the whole cy-

cle transformation. Similar conclusions can also be drawn

from Figure 7(b) for the complete-cycle.

Visual analysis of incompletion quality. In Figure 8, we

visually evaluate the quality of incomplete shapes, which

are generated by Cycle4Completion from the complete in-

put on a specific category of chair. The visual compari-

son between the incomplete prediction in Figure 8(a) and

the real incomplete shapes in Figure 8(b) proves that Cy-

cle4Completion successfully learns the geometric corre-

spondence from the complete shapes to the incomplete

ones. The similar pattern of incompleteness to the real in-

complete shapes justifies the good 3D shape understanding

ability of our model.

(a) Generated fake incomplete shape. (b) Real incomplete shape.

Figure 8. Visualization comparison of predicted incomplete shapes

in (a) with the real incomplete shapes in (b).

Visual analysis of latent space. In Figure 9(a), we use t-

SNE[25] to visualize the latent features of complete shape

and the ones of incomplete shapes that are transferred from

incomplete domain into the complete domain. The red

points stand for the latent features of incomplete shapes, and

the blue points stand for the complete ones. Note that the

incomplete shape is generated from partial views of com-

plete ones, and we have 8 partial shapes generated from 8

different views of each complete shape. In Figure 9(a), we

can find that red and blue points are arranged in a paired

pattern, and from Figure 9(a) we can find that in each lo-

cal area highlighted by black rectangles, there is a pair of

one complete shape and its 8 partial incomplete shapes,

which are exactly the geometric corresponding pattern be-

tween complete and incomplete shapes in the dataset. The

visualization of latent space shows the effectiveness of Cy-

cle4Completion to establish a well arranged latent space,

and the ability to capture the shape correspondence between

the complete and incomplete ones.

C.

B.

D.

A.

A.

B.

C.

D.

(a)Visualization of complete domain.

Incomplete shape transferred into complete domainComplete shape

(a)Visualization of shapes in marked areas.

8 incomplete shapes of 8 different views. Gt.

…………
Figure 9. Visualization of the latent representation space in com-

plete domain. We randomly choose four areas in (a) and visualize

the shape represented by these points in (b).

Effect of each module to our model. In order to analyze

the effect of each module to our model, we develop three

variations by removing element from Cycle4Completion in-

cluding: (1) w/o Partial is the variation that removes the

partial matching loss; (2) w/o GAN is the variation that

removes the discriminator and its corresponding adversar-

ial loss; (3) w/o Cycle is the variation that removes the

cycle matching loss; (4) w/o Coding is the variation that

removes all the missing region codes and the correspond-

ing code matching loss. The results are shown in Table 2,

where the Full model represents the original version of Cy-

cle4Completion. In Table 2, the Full Model achieves the

best completion performance, which proves the contribu-

tions of each part to the performance of Cycle4Completion.

Moreover, w/o Partial variation yields the worst completion

performance. This is because the model loses its supervi-

sion for learning the shape consistency when transferring

representations from incomplete domain to complete one.

Effect of input point number. In order to further evaluate

the performance of Cycle4Completion on more sparse in-

put, we evaluate Cycle4Completion using the input of par-

tial point clouds with different resolutions. Specifically,
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Figure 10. Visualization of completion performance under differ-

ent input point numbers.

Table 2. The effect of each part (per point CD ×104).

Methods Average Plane Cabinet Car Chair

w/o Partial 23.7 15.6 27.8 14.8 36.6

w/o GAN 12.8 4.7 18.4 9.1 19.0

w/o Cycle 10.4 3.6 12.5 8.9 15.8

w/o Coding 9.4 3.2 11.8 7.7 14.8

Full Model 9.1 3.1 10.9 7.5 14.6

we keep the number of 2048 points on the output com-

plete shape unchanged, and evaluate the performance of Cy-

cle4Completion on the input point clouds with resolutions

ranging from 256 to 2048. The quantitative completion re-

sults are given in Table 3, and the visualization results are

shown in Figure 10. Both quantitative and qualitative results

demonstrate a robust performance of Cycle4Completion on

various input resolutions.

Table 3. The effect of input point number (CD ×104).

#Points Average Plane Cabinet Car Chair

256 14.4 3.3 15.9 9.9 28.4

512 10.0 3.2 12.1 7.9 16.9

1024 9.6 3.2 11.9 7.9 15.5

2048 9.1 3.1 10.9 7.5 14.6

Effect of different training strategies. In our model, the

generator loss LG, cycle matching loss Lcycle and partial

matching loss Lpartial involves multiple parameter sets.

We selectively update some of the parameter sets while re-

main the others unchanged when training these losses. To

evaluate the effectiveness of other potential training strate-

gies, we develop the variation of (a) ∂LG/∂(ΘAE ,ΘF )
which updates both ΘAE and ΘF when training genera-

tor loss. Similarly, we also develop the variations of (b)

∂Lpartial/∂(ΘAE ,ΘF ) and (c) ∂Lcycle/∂(ΘAE ,ΘF ) and

report the results in Table 4. We observe a severe mode col-

lapse in both variations (a) and (b), which is caused by train-

ing the auto-encoder cross different domain (both Lpartial

and LAE involve transformation from one domain to the

other). In contrast, Lcycle is a regularization considering

one domain, and only involves reconstruction to input.

Table 4. The effect of training strategies (CD ×104)..

Strategies Average Plane Cabinet Car Chair

∂LG/∂(ΘAE ,ΘF ) collapsed - - - -

∂Lpartial/∂(ΘAE ,ΘF ) collapsed - - - -

∂Lcycle/∂(ΘAE ,ΘF ) 10.1 3.3 12.5 9.4 15.1

Original 9.1 3.1 10.9 7.5 14.6𝜆𝑐 of ℒ𝑐𝑦𝑐𝑙𝑒
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Figure 11. Visualization comparison of completion performance

under different weight parameters λp and λc.

Effect of λc and λp. The cycle matching loss tends to keep

shape consistent throughout the whole cycle transformation,

while the partial matching loss only keeps a single side con-

sistency. Different ratio between λc and λp will result in

different preference of model to establish the shape con-

sistency. In Table 5, we quantitatively analyze the effect

of weight factors λc and λp to our model on the specific

car class, and in Figure 11, we visually evaluate the cor-

responding completion performance. Since the completion

task is a single-side transformation, a larger weight of λp

yields better performance. However, as shown in Table 2,

totally removing partial matching loss (λp=0) will degrade

the performance of our model.

Table 5. The effect of λp and λc (CD ×104).

λp

λc
0.0 10-2 10-1 1.0

0.0 18.8 17.1 16.9 14.8

10-2 15.8 15.6 12.4 12.4

10-1 9.8 10.2 9.8 9.4

1.0 8.9 7.5 8.1 9.3

5. Conclusions

We propose the Cycle4Completion for unpaired point

cloud completion task. Our model successfully captures

the bidirectional geometric correspondence between incom-

plete and complete shapes, which enables the learning of

point cloud completion without the paired complete shapes.

Our model effectively learns to generate fake incomplete

shapes to guide the completion network. The proposed Cy-

cle4Completion is evaluated on the widely used ShapeNet

dataset, and the experimental results demonstrate the state-

of-the-art performance compared with other unpaired com-

pletion methods.
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