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Abstract

The task of point cloud completion aims to predict

the missing part for an incomplete 3D shape. A widely

used strategy is to generate a complete point cloud from

the incomplete one. However, the unordered nature of

point clouds will degrade the generation of high-quality 3D

shapes, as the detailed topology and structure of discrete

points are hard to be captured by the generative process

only using a latent code. In this paper, we address the above

problem by reconsidering the completion task from a new

perspective, where we formulate the prediction as a point

cloud deformation process. Specifically, we design a novel

neural network, named PMP-Net, to mimic the behavior of

an earth mover. It moves move each point of the incomplete

input to complete the point cloud, where the total distance

of point moving paths (PMP) should be shortest. There-

fore, PMP-Net predicts a unique point moving path for each

point according to the constraint of total point moving dis-

tances. As a result, the network learns a strict and unique

correspondence on point-level, and thus improves the qual-

ity of the predicted complete shape. We conduct compre-

hensive experiments on Completion3D and PCN datasets,

which demonstrate our advantages over the state-of-the-art

point cloud completion methods. Code will be available at

https://github.com/diviswen/PMP-Net.

1. Introduction

As one of the widely used 3D shape representations,

point cloud can be easily obtained through depth cameras or

other 3D scanning devices. Due to the limitations of view-

angles or occlusions of 3D scanning devices, the raw point

clouds are usually sparse and incomplete [41]. Therefore, a
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Step1 Step2 Step3 Output
Figure 1. Illustration of completion by multi-step point cloud de-

formation. The point moving paths are denoted by grey lines. At

each step, the source point cloud is colored by orange and the tar-

get point cloud is colored by yellow, respectively.

shape completion/consolidation process is usually required

to generate the missing regions of 3D shape for the down-

stream 3D computer vision applications like classification

[12, 6, 39, 10, 22, 21], segmentation [40, 17] and other vi-

sual analysis [47].

In this paper, we focus on the completion task for 3D

objects represented by point clouds, where the missing

parts are caused by self-occlusion due to the view angle

of scanner. Most of the previous methods formulate the

point cloud completion as a point cloud generation problem

[2, 41, 48, 34], where an encoder-decoder framework is usu-

ally adopted to extract a latent code from the input incom-

plete point cloud, and decode the extracted latent code into

a complete point cloud. Benefiting from the deep learning

based point cloud learning methods, the point cloud com-

pletion methods along this line have made huge progress in

the last few years [41, 34]. However, the generation of point

clouds remains a difficult task using deep neural network,

because the unordered nature of point clouds makes the gen-

erative model difficult to capture the detailed topology or

structure among discrete points [34]. Therefore, the com-

pletion quality of point clouds based on generative models

is still unsatisfying.

To address this issue, in this paper, we propose a novel

neural network, named PMP-Net, to formulate the task of

point cloud completion from a new perspective. Different

from the generative model that directly predicts the coor-

dinations of all points in 3D space, the PMP-Net learns to
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A

A’RPA Previous point moving paths.Current point moving paths.Previous information input to RPA module.Current inference made by RPA module.
Figure 2. Illustration of path searching with multiple steps under

the coarse-to-fine searching radius. The PMP-Net moves point A

to point A’ by three steps, with each step reducing its searching

radius, and looking back to consider the moving history in order

to decide the next place to move.

move the points from the source 3D shape to the target one.

Through the point moving process, the PMP-Net establishes

the point-level correspondences between the source point

cloud and the target, which captures the detailed topology

and structure relationships between the two point clouds.

On the other hand, there are various solutions to move

points from source to target, which will confuse the network

during training. Therefore, in order to encourage the net-

work to learn a unique arrangement of point moving path,

we take the inspiration from the Earth Mover’s Distance

(EMD) and propose to regularize a Point-Moving-Path Net-

work (PMP-Net) under the constraint of the total point mov-

ing distances (PMDs), which guarantees the uniqueness of

path arrangement between the source point cloud and the

target one.

Moreover, in order to predict the point moving path more

accurately, we propose a multi-step path searching strategy

to continuously refine the point moving path under multi-

scaled searching radius. Specifically, as shown in Figure 2,

the path searching is repeated for multiple steps in a coarse-

to-fine manner. Each step will take the previously predicted

paths into consideration, and then plan its next move path

according to the previous paths. To record and aggregate

the history information of point moving path, we take the

inspiration from Gated Recurrent Unit (GRU) to propose

a novel Recurrent Path Aggregation (RPA) module. It can

memorize and aggregate the route sequence for each point,

and combine the previous information with the current lo-

cation of point to predict the direction and the length for the

next move. By reducing the searching radius step-by-step,

PMP-Net can consistently refine a more and more accurate

path for each point to move from its original position on the

incomplete point cloud to the target position on the com-

plete point cloud. In all, the main contribution of our work

can be summarized as follows.

• We propose a novel network for point cloud comple-

tion task, named PMP-Net, to move each point from

the incomplete shape to the complete one to achieve

a high quality point cloud completion. Compared

with previous generative completion methods, PMP-

Net has the ability to learn more detailed topology and

structure relationships between incomplete shapes and

complete ones, by learning the point-level correspon-

dence through point moving path prediction.

• We propose to learn a unique point moving path ar-

rangement between input and output point clouds, by

regularizing the network using the constraint of Earth

Mover’s Distance. As a result, the network will not

be confused by multiple solutions of moving points,

and finally predicts a meaningful point-wise corre-

spondence between the source and target point clouds.

• We propose to search point moving path with multiple

steps in a coarse-to-fine manner. Each step will de-

cide the next move based on the aggregated informa-

tion from the previous paths and its current location, by

using the proposed Recurrent Path Aggregation (RPA)

module.

2. Related Work

The deep learning technology in 3D reconstruction [8,

5, 9, 18, 5] and representation learning [23, 11, 24, 7] have

boosted the research of 3D shape completion, which can

be roughly divided into two categories. (1) Traditional 3D

shape completion methods [33, 1, 35, 15] usually formu-

late hand-crafted features such as surface smoothness or

symmetry axes to infer the missing regions, while some

other methods [30, 19, 25, 31] consider the aid of large-

scale complete 3D shape datasets, and perform searching to

find the similar patches to fill the incomplete regions of 3D

shapes. (2) Deep learning based methods [50, 29, 16, 14],

on the other hand, exploit the powerful representation learn-

ing ability to extract geometric features from the incomplete

input shapes, and directly infer the complete shape accord-

ing to the extracted features. Those learnable methods do

not require the predefined hand-crafted features in contrast

with traditional completion methods, and can better uti-

lize the abundant shape information lying in the large-scale

completion datasets. The proposed PMP-Net also belongs

to the deep learning based method, where the methods along

this line can be further categorized and detailed as below.

Volumetric aided shape completion. The representation

learning ability of convolutional neural network (CNN) has

been widely used in 2D computer vision research, and

the studies concerning application of 2D image inpainting

have been continuously surging in recent years. A intu-

itive idea for 3D shape completion can be directly borrowed

from the success of 2D CNN in image inpainting research

[46, 44, 20], extending it into 3D space. Recently, sev-

eral volumetric aided shape completion methods, which are

based on 3D CNN structure, have been developed. Note that

we use the term “volumetric aided” to describe this kind

of methods, because the 3D voxel is usually not the final
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output of the network. Instead, the predicted voxel will be

further refined and converted into other representations like

mesh [2] or point cloud [42], in order to produce more de-

tailed 3D shapes. Therefore, the voxel is more like an inter-

mediate aid to help the completion network infer the com-

plete shape. Notable works along this line like 3D-EPN [2]

and GRNet [42] have been proposed to reconstruct the com-

plete 3D voxel in a coarse-to-fine manner. They first predict

a coarse complete shape using 3D CNN under an encoder-

decoder framework, and then refine the output using similar

patches selected from a complete shape dataset [2] or by

further reconstructing the detailed point cloud according to

the output voxel [42]. Also, there are some studies that con-

sider purely volumetric data for shape completion task. For

example, Han et. al [4] proposed to directly generate the

high-resolution 3D volumetric shape, by simultaneously in-

ferring global structure and local geometries to predict the

detailed complete shape. Stutz et. al [32] proposed a varia-

tional auto-encoder based method to complete the 3D voxel

under weak supervision. Despite the fascinating ability of

3D CNN for feature learning, the computational cost which

is cubic to the resolution of input voxel data makes it diffi-

cult to process fine-grained shapes [41].

Point cloud based shape completion. There is a growing

attention on the task of point cloud based shape comple-

tion [38, 34, 41, 13] in recent years. Since point cloud is

a direct output form of many 3D scanning devices, and the

storage and process of point clouds require much less com-

putational cost than volumetric data, many recent studies

consider to perform direct completion on 3D point clouds.

Enlighten from the improvement of point cloud representa-

tion learning [27, 26], previous methods like TopNet [34],

PCN [48] and SA-Net [41] formulate the solution as a gen-

erative model under an encoder-decoder framework. They

adopted encoder like PointNet [26] or PointNet++ [27] to

extract the global feature from the incomplete point cloud,

and use a decoder to infer the complete point cloud accord-

ing to the extracted features. Compare to PCN [48], TopNet

[34] improved the structure of decoder in order to implic-

itly model and generate point cloud in a rooted tree archi-

tecture [34]. SA-Net [41] took one step further to preserve

and convey the detailed geometric information of incom-

plete shape into the generation of complete shape through

skip-attention mechanism. Other notable work like RL-

GAN-Net [29] and Render4Completion [13] focused on the

framework of adversarial learning to improve the reality and

consistency of the generated complete shape. In all, most of

the above methods are generative solution for point cloud

completion task, and inevitably suffer from the unordered

nature of point clouds, which makes it difficult to recon-

struct the detailed typology or structure using a generative

decoder. Therefore, in order to avoid the problem of pre-

dicting unordered data, PMP-Net uses a different way to

reconstruct the complete point cloud, which learns to move

all points from the initial input instead of directly generating

the final point cloud from a latent code. The idea of PMP-

Net is also related to the research of 3D shape deformation

[45], which mainly considered one-step deformation. How-

ever, the deformation between the incomplete and complete

shapes is more challenging, which requires the inference of

totally unknown geometries in missing regions without any

other prior information. In contrast, we propose multi-step

searching to encourage PMP-Net to infer more detailed ge-

ometric information for missing region, along with point

moving distance regularization to guarantee the efficiency

of multi-step inference.

3. Architecture of PMP-Net

3.1. Point Displacement Prediction

Multi-step framework. An overview of the proposed

PMP-Net is shown in Figure 3(a). Given an input point

cloud P = {pi} and a target point cloud P ′ = {p′

j}.

The objective of PMP-Net is to predict a displacement vec-

tor set ∆P = {∆pi}, which can move each point from P

into the position of P ′ such that {(pi + ∆pi)} = {p′

j}.

PMP-Net moves each point pi for K = 3 steps in total.

The displacement vector for step k is denoted by ∆pk
i , so

∆pi =
∑3

k=1
∆pk

i . For step k, the network takes the de-

formed point cloud {pk−1

i } = {pi +
∑k−1

j=1
∆p

j
i} from the

last step k−1 as input, and calculates the new displacement

vector according to the input point cloud. Therefore, the

predicted shape will be consistently refined step-by-step,

which finally produces a complete shape with high quality.

Displacement vector prediction. At step k, in order to

predict the displacement vector ∆pk
i for each point, we

first extract per-point features from the point cloud. This

is achieved by first adopting the basic framework of Point-

Net++ [27] to extract the global feature of input 3D shape,

and then using the feature propagation module to propagate

the global feature to each point in 3D space, and finally

producing per-point feature h
k,l
i for point pk

i . Since our

experimental implementation applies three levels of feature

propagation to hierarchically produce per-point feature (see

Figure 3(b)), we use superscript k to denote the step and the

subscript l to denote the level in h
k,l
i . The per-point fea-

ture h
k,l
i is then concatenated with a random noise vector

x̂, which according to [45] can give point tiny disturbances

and force it to leave its original place. Then, the final point

feature h
k,3
i at step k and level 3 is fed into a multi-layer

perceptron (MLP) followed by a hyper-tangent activation

(tanh), to produce a 3-dimensional vector as the displace-

ment vector ∆pk
i for point pk

i as

∆p
k
i = tanh(MLP([hk,3

i : x̂])), (1)

where “:” denotes the concatenation operation.
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(a) Network overview. (b) Architecture of PMP-module at step k .
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Figure 3. Illustration of path searching with multiple steps under the coarse-to-fine searching radius. The PMP-Net moves point A to point

A’ by three steps, with each step reducing its searching radius, and looking back to consider the moving history in order to decide the next

place to move.
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Figure 4. Detailed structure of RPA module at step k, level l.

Recurrent information flow between steps. The informa-

tion of previous moves is crucial for network to decide the

current move, because the previous paths can be used to in-

fer the location of the final destination for a single point.

Moreover, such information can guide the network to find

the direction and distance of next move, and prevent it from

changing destination during multiple steps of point moving

path searching. In order to achieve this target, we propose to

use a special RPA unit between each step and each level of

feature propagation module, which is used to memorize the

information of previous path and to infer the next position

of each point. As shown in Figure 3(b), the RPA module in

(step k, level l) takes the output f
k,l−1

i from the last level

i-1 as input, and combines it with the feature h
k−1,l
i from

the previous step k − 1 at the same level l to produce the

feature of current level h
k,l
i , denoted as

h
k,l
i = RPA(fk,l−1

i ,h
k−1,l
i ). (2)

The detailed structure of RPA module is described below.

3.2. Recurrent Path Aggregation

The previous paths of point moving can be regarded as

the sequential data, where the information of each move

should be selectively memorized or forgotten during the

process. Following this idea, we take the inspiration from

the recurrent neural network, where we mimic the behavior

of gated recurrent unit (GRU) to calculate an update gate

z and reset gate r to encode and forget information, which

is according to the point feature h
k−1,l
i from the last step

k − 1 and the point feature f
k,l−1

i of current step k. The

calculation of two gates can be formulated as

z = σ(Wz[f
k,l−1

i : hk−1,l
i ] + bz), (3)

r = σ(Wr[f
k,l−1

i : hk−1,l
i ] + br), (4)

where Wz,Wr are weight matrix and bz, bz are biases. σ

is the sigmoid activation function, which predicts a value

between 0 and 1 to indicate the ratio of information that

allowed to pass the gate. “:” denotes the concatenation of

two features.

Different from the standard GRU, which emphasizes

more importance on the preservation of previous informa-

tion when calculating the output feature h
k,l
i at current step,

in RPA, we address more importance on the preservation

of current input information, and propose to calculate the

output feature h
k,l
i as

h
k,l
i = z ⊙ ĥ

k,l

i + (1− z)⊙ f
k,l−1

i , (5)

where ĥ
k,l

i is the intermediate feature of current step. It

contains the preserved information from the past, which is

calculated according to the current input feature. The for-

mulation of ĥ
k,l

i is given as

ĥ
k,l

i = ϕ(Wh[r ⊙ h
k−1,l
i : fk,l−1

i ] + bh), (6)

where ϕ is relu activation in our implementation.

The reason of fusing ĥ
k,l

i with f
k,l−1

i instead of h
k−1,l
i

is that, compared with standard unit in RNN unit, the cur-

rent location of point should have greater influence to the

decision of next move. Especially, when RPA module needs

to ignore the previous information which is not important

in the current decision making, Eq.(5) can easily allow RPA

model to forget all history by simply pressing the update

gate z to a zero-vector, and thus enables the RPA module

fully focus on the information of current input f
k,l−1

i .

3.3. Optimized Searching for Unique Paths

Minimizing moving distance. As shown in Figure 5, the

unordered nature of point cloud allows multiple solutions

to deform the input shape into the target one, and the direct
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(a) PMP-constrained solution. (b) Other solutions.
Figure 5. Illustration of multiple solutions when deforming in-

put point cloud (green) into target point cloud (red). The PMD-

constraint guarantees the uniqueness of point level correspondence

(a) between input and target point cloud, and filter out various re-

dundant solutions for moving points (b).

constraint (e.g. chamfer distance) on the deformed shape

and its ground truth cannot guarantee the uniqueness of cor-

respondence established between the input point set and the

target point set. Otherwise, the network will be confused by

the multiple solutions of point moving, which may lead to

the failure of capturing detailed topology and structure rela-

tionships between incomplete shapes and complete ones. In

order to establish a unique and meaningful point-wise corre-

spondence between input point cloud and target point cloud,

we take the inspiration from Earth Mover’s Distance [28],

and propose to train PMP-Net to learn the path arrange-

ment φ between source and target point clouds under the

constraint of total point moving path distance. Specifically,

given the source point clouds X̂ = {x̂i|i = 1, 2, 3, ..., N}
and the target point cloud X = {xi|i = 1, 2, 3, ..., N},

we follow EMD to learn an arrangement φ which meets the

constraint below

LEMD(X̂,X) = min
φ:X̂→X

1

X̂

∑

x̂∈X̂

‖x̂− φ(x̂)‖, (7)

In Eq.(7), φ is considered as a bijection that minimizes the

average distance between corresponding points in X̂ and X .

According to Eq.(7), bijection φ established by the net-

work should achieve the minimum moving distance to move

points from input shape to target shape. However, even if

the correspondence between input and target point clouds is

unique, there still exist various paths between source and

target points, as shown in Figure 6. Therefore, in order

to encourage the network to learn an optimal point mov-

ing path, we choose to minimize the point moving distance

loss (LPMD), which is the sum of all displacement vector

{∆pk
i } output by all three steps in PMP-Net. The Point

Moving Distance loss is formulated as

LPMD =
∑

k

∑

i

‖∆p
k
i ‖2. (8)

Eq.(8) is more strict than EMD constraint. It requires not

only the overall displacements of all point achieve the short-

est distance, but also limits the point moving paths in each

𝐿PMD
𝐿PMD Optimal point moving path. Optimized point moving path. Current point moving path.

Source Target

Figure 6. Illustration of the effectiveness of LPMD . By minimiz-

ing the point moving distance, the network is encouraged to learn

more consistent paths from source to target, which will reduce re-

dundant searching in each step and improve the efficiency.

step to be the shortest one. Therefore, in each step, the net-

work will be encouraged to search new path following the

previous direction, as shown in Figure 6, which will lead to

less redundant moving decision and improve the searching

efficiency.

Multi-scaled searching radius. PMP-Net searches the

point moving path in a coarse-to-fine manner. For each

step, PMP-Net reduces the maximum stride to move a point

by the power of 10, which is, for step k, the displacement

∆pk
i calculated in Eq.(1) is limited to 10−k+1∆pk

i . This

allows the network converges more quickly during training.

And also, the reduced searching range will guarantee the

network at next step not to overturn its decision made in

the previous step, especially for the long range movements.

Therefore, it can prevent the network from making redun-

dant decision during path searching process.

3.4. Training Loss

The deformed shape is regularized by the complete

ground truth point cloud through Chamfer distance (CD)

and Earth Mover Distance (EMD). Following the same no-

tations in Eq.(7), the Chamfer distance is defined as:

LCD(X, X̂) =
∑

x∈X

min
x̂∈X̂

‖x− x̂‖+
∑

x̂∈X̂

min
x∈X

‖x̂− x‖. (9)

The total loss for training is then given as

L =
∑

k

LCD(P
k
, P

′) + LPMD, (10)

where P k and P ′ denote the point cloud output by step k

and the target complete point cloud, respectively. Note that

finding the optimal φ is extremely computational expensive.

In experiments, we follow the simplified algorithm in [48]

to estimate an approximation of φ.

4. Experiments

4.1. Evaluation on Completion3D Dataset

Dataset. We evaluate our PMP-Net on the widely used

benchmark of 3D point cloud completion, i.e. Comple-
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Table 1. Point cloud completion on Completion3D dataset in terms of per-point L2 Chamfer distance ×104 (lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FoldingNet [43] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51

PCN [48] 18.22 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73

PointSetVoting [49] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16

AtlasNet [3] 17.77 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62

SoftPoolNet [37] 16.15 5.81 24.53 11.35 23.63 18.54 20.34 16.89 7.14

TopNet [34] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82

SA-Net [41] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84

GRNet [42] 10.64 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86

PMP-Net(Ours) 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77

Input Folding PCN TopNet SA-Net GRNet PMD-Net Gt

(a) Visualized completion comparison on ShapeNet. (b) More completion results of PMD-Net on ShapeNet.

Input
Ours
Gt

Boat
Table

Sofa
Chair

Figure 7. Visualization of point cloud completion results on Completion3D dataset. PMP-Net is compare with other methods in (a), and

(b) shows more completion results of PMP-Net.

tion3D [34], which is a large-scaled 3D object dataset de-

rived from the ShapeNet dataset. The partial 3D shapes

are generated by back-projecting 2.5D depth images from

partial views into 3D space.We follow the settings of train-

ing/validation/test splits in Completion3D for fair compari-

son with the other methods.

Evaluation metric. Following previous studies [34, 42, 41,

48], we use the per-point L1/L2 Chamfer distance (CD) as

the evaluation metric. L1 version is the CD in Eq.(9) aver-

aged by the point number, and L2 version is the CD replac-

ing L1-norm in Eq.(9) by L2-norm.

Quantitative comparison. The comparison results1 of

PMP-Net with the other state-of-the-art point cloud com-

pletion methods is shown in Table 1, in which the PMP-Net

achieves the best performance in terms of average chamfer

distance across all categories. Compared with the second

best completion method GRNet (in terms of average cham-

fer distance), PMP-Net achieves better results in 6 out of

8 categories, which proves the better generalization ability

of PMP-Net across different shape categories. As we dis-

cussed in Sec.2, GRNet [42] is a voxel aided shape com-

pletion method, where the conversion between point clouds

and 3D voxel along with applying 3D CNN on voxel data

is a time consuming process. Other methods like SA-Net

[41] in Table 1 are typical generative completion methods

which are fully based on point clouds, and the nontrivial

1Results are cited from https://completion3d.stanford.

edu/results

improvement of PMP-Net over these methods proves the

effectiveness of deformation based solution in point cloud

completion task.

Qualitative comparison. In Figure 7(a), we visually com-

pare PMP-Net with the other completion methods on Com-

pletion3D dataset, from which we can find that PMP-Net

predicts much more accurate complete shapes on various

input categories, while the other methods may output some

failure cases for certain input shapes. For example, the input

table in Figure 7(a) loses the entire desktop, and methods

like GRNet and SA-Net almost cannot predict the whole

desktop, while other methods like FoldingNet [43], PCN

[48] and TopNet [34] intend to repair the desktop but fail to

predict a good shape of it. Moreover, the advantage of de-

formation based PMP-Net over the generative methods can

be well proved by the case of boat in Figure 7(a). Genera-

tive methods, especially like PCN and TopNet, successfully

learn the overall structure of the input boat, but fail to re-

construct even the residual part of it. On the other hand, the

deformation based PMP-Net can directly preserve the input

shape by moving small amount of point to perform comple-

tion on certain areas, and keep the input shape unchanged.

In Figure 7(b), we visualize some more completion results

of PMP-Net.

Qualitative comparison on ScanNet chairs. To evalu-

ate the generalization ability of PMP-Net on point cloud

completion task, we pre-train PMP-Net on Completion3D

dataset and evaluate its performance on the chair instances

7448



Table 2. Point cloud completion on PCN dataset in terms of per-point L1 Chamfer distance ×103 (lower is better).

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FoldingNet [43] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99

TopNet [34] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12

AtlasNet [3] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61

PCN [48] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59

GRNet [42] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04

CDN. [36] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05

PMP-Net(Ours) 8.66 5.50 11.10 9.62 9.47 6.89 10.74 8.77 7.19

GRNet Ours Input GRNet Ours Input

Figure 8. Visual comparison of PMP-Net and GRNet on ScanNet

chairs.

in ScanNet dataset without finetune, and compare with GR-

Net (which is the second best method in Table 1, and also

pre-trained on Completion3D). The visual comparison is

shown in Figure 8. The PMP-Net completes shapes with

less noise than GRNet, which benefits from its point mov-

ing practice. Because the differences in data distribution be-

tween Completion3D and ScanNet will inevitably confuse

the network, and the point moving based PMP-Net can sim-

ply choose to leave those points in residual part of an object

to stay at their own place to preserve a better shape, in con-

trast, generation based GRNet has to predict new points for

both residual and missing part of an object.

4.2. Applying to Dense Point Cloud Completion

We show that PMP-Net learned on sparse point cloud

can be directly applied to the dense point cloud completion.

Specifically, we keep training PMP-Net on sparse shape

with 2,048 points, and reveal its generalization ability by

predicting dense complete shape with 16,384 points on PCN

dataset [48]. PCN dataset is derived from ShapeNet dataset,

in which each complete shape contains 16,384 points. The

partial shapes have various point numbers, so we first down-

sample shapes with more than 2,048 points to 2,048, and

up-sample shapes with less than 2048 points to 2048 by

randomly copying points. Since PMP-Net learns to move

points instead of generating points, it requires the same

number of points in incomplete point cloud and complete

one. In order to predict complete shape of 16,384 points, we

repeat 8 times of prediction for each shape during testing,

with each time moving 2,048 points. Note that PMP-Net is

still trained on sparse point clouds with 2,048 points, which

are sampled from the dense point clouds of PCN dataset.

The comparison in Table 2 shows that PMP-Net yields

a comparable performance to the state-of-the-art method

[36], and ranks second on PCN dataset. The result of Wang

et al.[36] is cited from its original paper, while the results of

other compared methods are all cited from [42]. Note that

most generation based methods (like Wang et al. [36] and

GRNet [42] in Table 2) specially designed a coarse-to-fine

generation process in order to obtain better performance on

dense point cloud completion. In contrast, our PMP-Net

trained on 2,048 points can directly generate arbitrary num-

ber of dense points by simply repeating the point moving

process, and still achieves comparable results to the coun-

terpart methods.

4.3. Model Analysis

In this subsection, we analyze the influence of different

parts in the PMP-Net. By default, we use the same net-

work sittings in all experiments except for the analyzed part.

All studies are typically conducted on the validation set of

Completion3D dataset under four categories (i.e. plane, car,

chair and table) for convenience.

Analysis of RPA module and PMP loss. We analyze the

effectiveness of RPA module by replacing it with other units

in PMP-Net. And for PMP loss, we analyze its effectiveness

by removing PMP loss from the network. Specifically, we

develop six different variations for comparison: (1) NoPath

is the variation that removes the RPA module from the net-

work; (2) Add is the variation that replaces RPA module

with element-wise add layer in the network; (3) RNN, (4)

LSTM and (5) GRU are variations that replace RPA mod-

ule with different recurrent unit; (6) w/o PMP is the varia-

tion that removes PMP loss from the PMP-Net, where only

Chamfer distance is used for training.

The shape completion results are shown in Table 3,

from which we can find that baseline RPA module achieves

the best performance. The worst results yielded by Add

variation indicate that directly utilizing history information

(paths in previous step) without processing will in return

degenerate the network performance, compared to NoPath

variation. The comparison between RPA baseline and GRU

variation proves the effectiveness of our designation of RPA

module, which can give more consideration to the informa-

tion from current step than GRU unit, and help the network

to make more precise decision for point moving.

By comparing baseline variation with w/o PMP varia-
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tion, we can find that PMP loss significantly improves the

performance of our network, which is in accordance with

our opinion that point moving path should be regularized

to better capture the detailed topology and structure of 3D

shapes.

Table 3. Analysis of RPA and PMP loss (baseline marked by “*”).

Unit. avg. plane chair car table

NoPath 11.95 3.55 8.30 16.15 19.79

Add 12.23 3.32 8.10 16.47 21.05

RNN 12.12 3.55 8.14 16.19 20.58

LSTM 11.99 3.79 8.09 15.37 20.72

GRU 11.87 3.44 7.85 15.44 20.72

w/o PMP 13.66 4.26 8.21 16.69 25.19

baseline* 11.58 3.42 7.87 15.88 19.15

Effect of multi-step path searching. In Table 4, we ana-

lyze the effect of different steps for point cloud deformation.

Specifically, we fix the ratio of searching radius between

each step to 10, and evaluate the performance of PMP-Net

under different step sittings. For example, the searching ra-

dius for step=4 is set to {1.0, 10−1, 10−2, 10−3}, and the

searching radius for step=2 is set to {1.0, 10−1}, respec-

tively. From Table 4, we can find that deforming point

cloud by multiple steps effectively improves the completion

performance, by comparing the results of step 1, 2 and 3.

On the other hand, the comparison between step 3 and step

4 shows that the performance of multi-step path searching

will reach its limitation, because too many steps may cause

information redundancy in path searching.

Table 4. The effect of different steps (baseline marked by “*”).

Steps. avg. plane chair car table

1 12.26 3.71 8.27 15.59 21.48

2 11.90 3.47 7.95 15.66 20.53

3* 11.58 3.42 7.87 15.88 19.15

4 11.67 3.39 7.91 15.89 19.48

Analysis of searching radius. By default, we decrease

the searching radius for each step by the ratio of 10.

In Table 5, we analyze different sittings of searching ra-

dius and evaluate their influence to the performance of

PMP-Net. We additionally test two different strategies

to perform point moving path searching, i.e. the strat-

egy without decreasing searching radius ([1.0, 1.0, 1.0] for

each step), and the strategy with smaller decreasing ra-

tio ([1.0, 0.5, 0.25]). The baseline result is the default sit-

ting of PMP-Net ([1.0, 0.1, 0.01] for each step). Table 5

shows that PMP-Net achieves the worst performance at

[1.0, 1.0, 1.0], which proves the effectiveness of the strategy

to decrease searching radius. And when comparing strat-

egy of [1.0, 0.5, 0.25] with [1.0, 0.1, 0.01], we can find that

decreasing searching radius with larger ratio can improve

the model performance, because larger ratio can better pre-

Step1 Step2 Step3 Step1 Step2 Step3

(a) Searching radius 1.00.10.01

(b) Searching radius 1.00.50.25

(c) Searching radius 1.01.01.0
Figure 9. Illustration of deformation process in each step under

different strategies of searching radius.

vent the network from overturning the decisions in previous

steps. We also note that when the decreasing ratio goes to

large, the PMP-Net will approximate the behavior of net-

work with step=1 in Table 4, which can in return harm the

performance of shape completion.

Table 5. The effect of searching radius (baseline marked by “*”).

Radius. Avg. Plane Chair Car Table

[1.0, 1.0, 1.0] 12.01 3.61 8.22 16.44 19.79

[1.0, 0.5, 0.25] 11.77 3.36 8.01 15.92 19.79

[1.0, 0.1, 0.01]* 11.58 3.42 7.87 15.88 19.15

Visual analysis of point moving path under different ra-

dius. In Figure 9, we visualize the searching process under

different strategies of searching radius in Table 4. By an-

alyzing the deformation output in step 1, we can find that

PMP-Net with a coarse-to-fine searching strategy can learn

to predict a better shape at early step, where the output of

step 1 in Figure 9(a) is more complete and tidy than the ones

in Figure 9(b) and Figure 9(c). Moreover, a better overall

shape predicted in the early stage will enable the network

focus on refining a better detailed structure of point cloud,

which can be concluded from the comparison of step 3 in

Figure 9, where the region highlighted by red rectangles in

Figure 9(a) is much better than the other two subfigures.

5. Conclusions

In this paper, we propose a novel PMP-Net for point

cloud completion by multi-step shape deformation. By

moving points from source to target point cloud with mul-

tiple steps, PMP-Net can consistently refine the detailed

structure and topology of the predicted shape, and establish

the point-level shape correspondence between the incom-

plete and the complete shape. In experiments, we show the

superioty of PMP-Net by comparing with other methods on

the Completion3D benchmark and PCN dataset.
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