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Abstract. Structure learning for 3D shapes is vital for 3D computer
vision. State-of-the-art methods show promising results by representing
shapes using implicit functions in 3D that are learned using discrim-
inative neural networks. However, learning implicit functions requires
dense and irregular sampling in 3D space, which also makes the sam-
pling methods affect the accuracy of shape reconstruction during test.
To avoid dense and irregular sampling in 3D, we propose to represent
shapes using 2D functions, where the output of the function at each 2D
location is a sequence of line segments inside the shape. Our approach
leverages the power of functional representations, but without the disad-
vantage of 3D sampling. Specifically, we use a voxel tubelization to rep-
resent a voxel grid as a set of tubes along any one of the X, Y, or Z axes.
Each tube can be indexed by its 2D coordinates on the plane spanned
by the other two axes. We further simplify each tube into a sequence
of occupancy segments. Each occupancy segment consists of successive
voxels occupied by the shape, which leads to a simple representation of
its 1D start and end location. Given the 2D coordinates of the tube and
a shape feature as condition, this representation enables us to learn 3D
shape structures by sequentially predicting the start and end locations
of each occupancy segment in the tube. We implement this approach
using a Seq2Seq model with attention, called SeqXY2SeqZ, which learns
the mapping from a sequence of 2D coordinates along two arbitrary axes
to a sequence of 1D locations along the third axis. SeqXY2SeqZ not
only benefits from the regularity of voxel grids in training and testing,
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but also achieves high memory efficiency. Our experiments show that
SeqXY2SeqZ outperforms the state-of-the-art methods under the widely
used benchmarks.

Keywords: 3D reconstruction · Voxel grids · Implicit function ·
RNN · Attention

1 Introduction

3D voxel grids are an attractive representation for 3D structure learning because
they can represent shapes with arbitrary topology and they are well suited to
convolutional neural network architectures. However, these advantages are dra-
matically diminished by the disadvantage of cubic storage and computation com-
plexity, which significantly affects the structure learning efficiency and accuracy
of deep learning models.

Recently, implicit functions have been drawing research attention as a promis-
ing 3D representation to resolve this issue. By representing a 3D shape as a
function, discriminative neural networks can be trained to learn the mapping
from a 3D location to a label, which can either indicate the inside or outside
of the shape [4,42,51] or a signed distance to the surface [47,60]. As a conse-
quence, shape reconstruction requires sampling the function in 3D, where the
3D locations are required to be sampled near the 3D surface for training. Recent
approaches based on implicit functions have shown superiority over point clouds
in terms of geometry details, and advantages over meshes in terms of being able
to represent arbitrary topologies. Although it is very memory efficient to learn
implicit functions using discriminative models, these approaches require sam-
pling dense 3D locations in a highly irregular manner during training, which
also makes the sampling methods affect the accuracy of shape reconstruction
during test.

To resolve this issue, we propose a method for 3D shape structure learning by
leveraging the advantages of learning shape representations based on continuous
functions without requiring sampling in 3D. Rather than regarding a voxel grid
as a set of individual 3D voxels, which suffers from cubic complexity in learning,
we represent voxel grids as functions over a 2D domain that map 2D locations
to 1D voxel tubes. This voxel tubelization regards a voxel grid as a set of tubes
along any one of three dimensions, for example Z, and indexes each tube by its
2D location on the plane spanned by the other two dimensions, i.e., X and Y. In
addition, each tube is represented as a sequence of occupancy segments, where
each segment consists of successive occupied voxels given by two 1D locations
indicating the start and end points. Given a shape feature as a condition, this
voxel tubelization enables us to propose a Seq2Seq model with attention as a
discriminative model to predict each tube from its 2D location. Specifically, we
leverage an RNN encoder to encode the 2D coordinates of a tube with a shape
condition, and leverage an RNN decoder to sequentially predict the start and
end locations of each occupancy segment in the tube. Because our approach
essentially maps a coordinate sequence to another coordinate sequence, we call
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our method SeqXY2SeqZ. Given the 2D coordinates of a tube, SeqXY2SeqZ pro-
duces the 1D coordinates of the occupancy segments along the third dimension.
Not only can SeqXY2SeqZ be evaluated with a number of RNN steps that is
quadratic in the grid resolution during test, but it is also memory efficient enough
to learn high resolution shape representations. Experimental results show that
SeqXY2SeqZ outperforms the state-of-the-art methods.

Our contributions are as follows. First, we propose a novel shape repre-
sentation based on 2D functions that map 2D locations to sequences of 1D
voxel tubes, avoiding the cubic complexity of voxel grids. Our representation
enables 3D structure learning of voxel grids in a tube-by-tube manner via dis-
criminative neural networks. Second, we propose SeqXY2SeqZ, an RNN-based
Seq2Seq model with attention, to implement the mapping from 2D locations
to 1D sequences. Given a 2D coordinate and a shape condition, SeqXY2SeqZ
sequentially predicts occupancy segments in a 1D tube. It requires a number
of RNN steps that grows only quadratically with resolution, and achieves high
resolutions due to its memory efficiency. Third, SeqXY2SeqZ demonstrates the
feasibility of generating 3D voxel grids using discriminative neural networks in a
more efficient way, and achieves state-of-the-art results in shape reconstruction.

2 Related Work

Deep learning models have made big progress in 3D shape understanding
tasks [13–20,22–25,27,28,40,41,49,62,63]. Recent 3D structure learning meth-
ods are also mainly based on deep learning models.

Voxel-Based Models. Because of their regularity, many previous studies
learned 3D structures from voxel grids with 3D supervision [6,50] or 2D supervi-
sion with the help of differentiable renderers [8,9,56,57,66,67]. Due to the cubic
complexity of voxel grids, these generative models are limited to relatively low
resolution, such as 323. Recent studies [6,65,70] employed shallow 3D convolu-
tional networks to reconstruct voxel grids in higher resolutions of 1283, however,
the computational cost is still very large. To remedy this issue, some meth-
ods employed a multi-resolution strategy [26,54]. However, these methods are
very complicated to implement and additionally require multiple passes over the
input. Another alternative was introduced to represent 3D shapes using multi-
ple depth images [50]. However, it is hard to obtain consistency across multiple
generated depth images during inference.

Different from these generative neural networks, we provide a novel perspec-
tive to benefit from the regularity of voxel grids but avoid their cubic complexity
by leveraging discriminative neural networks in shape generation. Moreover, our
representation is different from multi-layer depth maps [52] and scanline [64],
since we do not require additional support, such as binary masks [52] or edge
end point determination.

Point Cloud-Based Models. As pioneers, PointNet [48] and PointNet++ [49]
enabled the learning of 3D structure from point clouds. Later, different varia-
tions were proposed to improve the learning of 3D structures from 3D point
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clouds [7,24,40] or 2D images with various differentiable renderers [11,29,32,33,
44,68]. Although point clouds are a compact and memory efficient 3D repre-
sentation, they cannot express geometry details without additional non-trivial
post-processing steps to generate meshes.

Mesh-Based Models. 3D meshes are also attractive in deep learning [3,10,
31,34,35,38,58,61]. Supervised methods employed 3D meshes as supervision to
train networks by minimizing the location error of vertices with geometry con-
straints [10,58,61], while unsupervised methods relied on differentiable renderers
to reconstruct meshes from multiple views [3,31,34,35,38]. However, these meth-
ods cannot generate arbitrary vertex topology but inherit the connectivity of the
template mesh.

Implicit Function-Based Models. Recently, implicit functions have become
a promising 3D representation in deep learning models [4,42,43,46,47,51,60].
By representing a 3D shape as a 3D function, these methods employ discrimi-
native neural networks to learn the function from a 3D location to an indicator
labelling inside or outside of the shape [4,42,51] or a signed distance to the sur-
face [47,60]. However, these methods required to sample points near 3D surfaces
during training. To learn implicit functions without 3D supervision, different
differentiable renderers were proposed to back propagate the loss calculated on
2D images [12,30,36,39,45,53,69]. Although it is very memory efficient to learn
3D implicit functions using discriminative models in a point-by-point manner,
supervised method require sampling dense and irregular 3D locations during
training, which also makes the sampling methods affect the accuracy of shape
reconstruction during test.

Although our method is also a discriminative network for 3D structure learn-
ing, it can benefit from the regularity of voxel grids by learning a 2D function. It
is memory efficient and avoids the dense and irregular sampling during training.

3 Overview

The core idea of SeqXY2SeqZ is to represent shapes as 2D functions that map
each 2D location to a sequence of 1D occupancy segments. More specifically, we
interpret each 3D shape M as a set of 1D tubes ti, where each tube ti is indexed
by its 2D coordinate ci. Tube ti consists of a sequence of occupancy segments,
where we represent each segment oj by its 1D start and end locations sj and
ej . To generate M , SeqXY2SeqZ learns a 2D function to predict each tube ti
from its coordinate ci and a shape condition by generating the start and end
locations sj and ej of each occupancy segment oj in ti.
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Fig. 1. The overview of SeqXY2SeqZ.

Figure 1 illustrates
how SeqXY2SeqZ gen-
erates a tube along
the Z axis from its 2D
coordinates on the X-
Y plane. Specifically,
we input the 2D coor-
dinate X = 5 and
Y = 5 sequentially
into an encoder, and a
decoder sequentially
predicts the start and
end locations of two occupancy segments along the Z axis. In the figure, there
is one occupancy segment with only one voxel starting at Z = 1 and ending at
Z = 1, and a second segment starting at Z = 3 and ending at Z = 5. Therefore,
the decoder sequentially predicts Z = 1, Z = 1, Z = 3, Z = 5 to reconstruct
the tube at X = 5 and Y = 5. In addition, the decoder outputs a binary flag to
indicate whether there is any occupancy segment in this tube at all. The encoder
also requires a shape condition from an image or a learned feature as input to
provide information about the reconstructed shape.

4 Voxel Tubelization

To train the SeqXY2SeqZ model, we first need to convert each 3D voxel grid
into a tubelized representation consisting of sets of 1D voxel tubes over a 2D
plane. For a 3D shape M represented by a grid with a resolution of R3, voxel
tubelization re-organizes these R3 voxels into a set of R × R tubes ti along
one of the three axes. Each tube ti can then be indexed by its location on
the plane spanned by the other two dimensions using a 2D coordinate ci, such
that M = {(ci, ti)|i ∈ [1, R2]}. We further represent each tube ti using run-
length encoding of its Ji occupancy segments oj , where j ∈ [1, Ji] and Ji ∈
[1, R]. An occupancy segment is a set of consecutive voxels that are occupied
by the shape, which we encode as a sequence of start and end locations sj and
ej . Note that sj and ej are discrete 1D indices, which we will predict using a
discriminative approach. We denote the tubes consisting of occupancy segments
as ti = [s1, e1, ..., sj , ej , ..., sJi

, eJi
]. In our experimental section we show that

this representation is effective irrespective of the axis that is leveraged for the
tubelization.

Our approach takes advantage of the following properties of voxel tubeliza-
tion and run-length encoding of occupancy segments. First, run-length encod-
ing of occupancy segments significantly reduces the memory complexity of 3D
grids, since only two indices are needed to encode each segment, irrespective
of its length. Second, our approach allows us to represent shapes as 2D func-
tions that map 2D locations to sequences of 1D occupancy segments, which we
will implement using discriminative neural networks. This is similar to shape
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representations based on 3D implicit functions implemented by discriminative
networks, but our approach requires only O(R2) RNN evaluation steps dur-
ing shape reconstruction. Third, networks that predict voxel occupancy using a
scalar probability require an occupancy probability threshold as a hyperparame-
ter, which can have a large influence on the reconstruction accuracy. In contrast,
we predict start and end locations of occupancy segments and do not require
such a parameter.

5 SeqXY2SeqZ

SeqXY2SeqZ generates each tube ti from its coordinate ci and a shape condition.
We use an RNN encoder to encode the coordinate ci and the shape condition,
while an RNN decoder produces the start and end locations of the occupancy
segments oj in ti.

RNN Encoder. We condition the RNN encoder on a global shape feature
f ∈ R

1×D that represents the unique 3D structure of each object. For example,
in 3D shape reconstruction from a single image, f could be a feature vector
extracted from an image to guide the 3D shape reconstruction. In a 3D shape to
3D shape translation application, f could be a feature vector that can be jointly
learned with other parameters in the networks, such as shape memories [21] or
codes [47].

As shown in Fig. 2(a), the RNN encoder aggregates the shape condition f
and a 2D coordinate ci = [c1i , c

2
i ] into a hidden state hi, which is subsequently

leveraged by the RNN decoder to generate the corresponding tube ti. Rather
than directly employing a location c1i or c2i as a discrete integer, we leverage the
location as a location embedding x1

i or x2
i , which makes locations meaningful in

feature space. In this way, we have a location embedding matrix along each axis,
i.e., FX , FY and FZ . Each matrix holds the location embedding of all R locations
along an axis as R rows, i.e., FX ∈ R

R×D, FY ∈ R
R×D and FZ ∈ R

R×D, so
that we can get an embedding for a specific location by looking up the location
embedding matrix. In the case of tubelizing along the Z axis demonstrated in
Fig. 1, the RNN encoder would employ the location embeddings along the X
and Y axes, that is x1

i = FX(c1i ) and x2
i = FY (c2i ).

We employ Gated Recurrent Units (GRU) [5] as the RNN cells in
SeqXY2SeqZ. At each step, a hidden state is produced, and the hidden state
hi at the last step is leveraged by the RNN decoder to predict a tube ti for the
reconstruction of a shape conditioned on f , where hi ∈ R

1×H . The encoding
process is detailed in our supplemental material.

Location Embedding. Although we could employ three different location
embedding matrices to hold embeddings for locations along the X, Y, and Z
axes separately, we use FX , FY and FZ in a shareable manner. For example, we
can employ the same location embedding matrix on the plane used for indexing
the 1D tubes, such as FX = FY in the case shown in Fig. 1. In our experi-
ments, we justify that we can even employ only one location embedding matrix
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along all three axes, that is FX = FY = FZ . The shareable location embeddings
significantly increase the memory efficiency of SeqXY2SeqZ.

RNN Decoder. With the hidden state hi from the RNN encoder, the RNN
decoder needs to generate a tube ti for the shape indicated by condition f via
sequentially predicting the start and end locations of each occupancy segment
oj . To interpret the prediction of tubes with no occupancy segments, we include
an additional global occupancy indicator b that the decoder predicts first, where
b = 1 indicates that there are occupancy segments in the current tube.

We denote wi as the concatenation of b and ti, such that wi = [b, s1,
e1, ..., sJi

, eJi
], where each element in wi is uniformly denoted as wk

i and k ∈
[1, 2 × Ji + 1]. Note that the start and end points sj and ej are discrete voxel loca-
tions, which we interpret as class labels. In each step, the RNN decoder selects a
discrete label to determine either start or end location. Therefore, we leverage the
following cross entropy classification loss to push the decoder to predict the correct
label sequence wi as accurately as possible under the training set,

L = −
∑

k∈[1,2×Ji+1]

log p(wk
i |w<k

i ,hi), (1)

where wk
i is the k-th element in the sequence wi, w<k

i represents the elements
in front of wk

i , p(wk
i |w<k

i ,hi) is the probability of correctly predicting the k-th
element according to the previous elements w<k

i and the hidden state hi from
the encoder. Finally, our objective function is given as

F∗
X ,F∗

Y ,F∗
Z ,θ∗,f∗ = arg min

FX ,FY ,FZ ,θ ,f
L, (2)

where θ denotes the parameters of the RNN encoder and decoder, f is the
shape condition, which is fixed or trainable depending on the application, and
the location embedding matrices FX ,FY ,FZ could be shareable.

i

RNNRNNRNN h i

Softmax

w i1
Softmax

w i2
Softmax

w i3

yi
1yi

2

...

gi1gi2gi3

(a) (b)

RNN RNN RNN

f x i1

h 

x i2
c i1 c i2

Fig. 2. The illustration of RNN encoder (a) and
RNN decoder (b).

Training progress in a step
by step manner is shown in
Fig. 2(b). At the k-th step,
element wk

i in sequence wi

is predicted through a soft-
max layer. For example, w1

i

is either true or false for the
global occupancy indicator b,
and w2

i and w3
i are the start

and end locations s1 and e1 of
the occupancy segment o1 in the range of [1, R], etc. In addition, for each wk

i we
look up its location embedding yk

i from the location embedding matrix of the
coordinate axis corresponding to the tube direction. The embedding yk

i is then
used in the prediction of wk+1

i at the next step. For example, in the tubeliza-
tion along the Z axis demonstrated in Fig. 1, yk

i is looked up in FZ , such that
yk
i = FZ(wk

i ), where each row of FZ represents an embedding for a location,
and two additional rows for a true or false of b.
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Attention. Finally, we leverage a state-of-the-art attention mechanism [1] to
increase the prediction accuracy of the predicted locations. We employ a context
vector gk

i for the prediction of wk
i , where gk

i summarizes how well each step of the
encoder matches the prediction of wk

i . The decoding with attention is detailed
in supplemental material.

6 Experiments and Analysis

We employ tubelization along the Y axis in all our experiments and learn only
two location embedding matrices. We share the location embedding matrices
along the X and Z axes providing the 2D coordinates of tubes, such that FX =
FZ , while we use a separate matrix along the Y axis. The location embedding
is D = 512-dimensional, and the hidden state of the RNNs is also H = 512-
dimensional, where the RNN encoder is bidirectional.

Table 1. Reconstruction (643) comparison in terms
of IoU.

Methods Plane Car Chair Rifle Table
IM-AE [4] 78.77 89.36 65.65 72.88 71.44
CNN-AE [4] 86.07 90.73 74.22 78.37 84.67
OccNet(Train) [42] – – 89.00 – –
Our(512–512) 90.35 91.18 74.32 84.46 86.21
Our(1024–2048) – – 93.10 – –

We train SeqXY2SeqZ using
the Adam optimizer with ε =
8 × 10−6, with a batch size of
64 and a learning rate of 1 ×
10−3 in all experiments. The
maximum number of steps in
the encoder and decoder are
4 and 30, respectively. We
employ volumetric IoU to evaluate the accuracy of the reconstructed shapes,
and all reported IoU values are multiplied by 102.

6.1 Representation Ability

Dataset. For fair comparison, we leverage five widely used categories from
ShapeNetCore [2] in this subsection, including airplane, car, chair, rifle, and
table, and keep the same train and test splitting as [4]. The ground truth shapes
are also voxelized at a resolution of 643, such that R = 64.

Ours GT Ours GT Ours GT Ours GT

Fig. 3. Auto-decoded shapes by learned fea-
tures.

Auto-Encoding. We evaluate the
representation ability of SeqXY2SeqZ
in an auto-encoding task. We lever-
age a learnable shape condition f
to represent each shape. Specifi-
cally, shape features f are learned
together with the other parameters
in the RNN during training. During
testing, we keep updating the shape
features while fixing the parameters
in the RNN including the location
embedding matrices, which is simi-
lar as introduced by shape memories [21] or codes [47]. Note that f are also
D = 512-dimensional vectors, similar as the location embeddings.
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In this task, we compare SeqXY2SeqZ with results from the implicit decoder
(IM) [4] and occupancy network (OccNet) [42]. We show the comparison in
Table 1, where the mean IoU over the first 100 shapes in the test set of each
category is reported by IM while OccNet only reported its results on the training
set of chair at a resolution of 256.

Table 2. Tubelization direction
comparison.

Along Y Along Z Along X
IoU 90.35 89.96 90.21

As shown by “Our(512-512)” in Table 1,
our results with D = 512-dimensional location
embeddings and H = 512-dimensional hidden
states are the best among all compared meth-
ods under all shape categories. If we increase
the learning ability of SeqXY2SeqZ by using location embeddings and hidden
states with higher dimensions, such as D = 2048 and H = 1024 shown by
“Our(2048-1024)”, we achieve an even higher IoU of 93.10 under the challenging
chair class.

X axis Y axis Z axis GT X axis Y axis Z axis GT

(a)

(b)

64 128 256 512 GT3 3 3 3

Fig. 4. (a) Qualitative comparison of reconstruc-
tions with tubelization along different axes. (b)
Auto-encoded shapes in different resolutions.

In Fig. 3, we visualize
the reconstructed shapes in
the test set of each cate-
gory with our best results
in Table. 1. The recon-
structed shapes with high
fidelity demonstrate that SeqXY2SeqZ
is capable of learning very
complex structures of 3D
shapes, such as the ones on
chairs and tables.

Tubelization Direction. We can tubelize a voxel grid along any one of the X,
Y or Z axes, which should be kept consistent in training and testing. Although
the tubelization direction may lead to different ways of 3D structure learning,
SeqXY2SeqZ does not exhibit any bias on the tubelization direction. We demon-
strate this by training SeqXY2SeqZ using voxel grids tubelized under the X, Y
and Z axis, respectively. Table 2 shows that we achieve comparable results along
the three tubelization directions under the airplane class. Visual comparisons
are shown in Fig. 4(a).

High Resolutions. Thanks to the 2D functions and the shareable location
embedding matrices, SeqXY2SeqZ is memory efficient enough to reconstruct
shapes in high resolutions. We show auto-encoded airplanes in different reso-
lutions in Fig. 4(b). The high fidelity shapes justify our capabilities of high
resolution reconstruction.

6.2 Single Image 3D Reconstruction

Dataset. We employ the dataset released from [6], which contains 3D shapes
from 13 categories in the ShapeNetCore [2]. We also use the same train and test
splitting, where each shape is represented as a voxel grid with a resolution of 323

accompanying 24 rendered images. While many 3D reconstruction techniques
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(including ours, see Table 1 and Fig. 4) support higher resolutions, we follow
previous works [37,50,55] and choose ground truth voxel grids in the benchmark
to provide a comparison to a broad range of competing approaches.

Single Image Reconstruction. We leverage a CNN encoder from [38] to
extract a 512 dimensional feature from a rendered image as a shape condition in
this experiment. We compare with the state-of-the-art supervised and unsuper-
vised methods in Table 3. Among these methods, “DISN-V” is a network formed
by a DISN [60] encoder and a 3D CNN decoder, “DISN-C” is DISN [60] working
with the estimated camera poses which is required in the reconstruction, “PTN-
R” is the result using retrieval from PTN [67]. Besides the voxel-based methods
including R2N2 [6], PTN [67] and Matryoshka [50], all the other methods rep-
resent 3D shapes as triangle meshes, where IM [4], OccNet [42], and DISN [60]
are based on learning 3D implicit functions. For fair comparison, all the results
listed here are taken from the literature rather than being reproduced by us.
For example, the results of NMR [31], SoftRas [37] and DIB-R [3] are all from
DIB-R [3].

(a) (b)

Fig. 5. Single image reconstruction for airplanes (a) and tables (b).

Table 3 demonstrates the performance of our method, showing that in terms
of the mean IoU we improve by 6.3 over the best 3D implicit function based
method (DISN) and by 2.1 over the best unsupervised method (DIB-R). We
achieve the best IoU in 7 out of 13 categories among all supervised methods,
and in 8 out of 13 categories among all unsupervised methods. Matryoshka [50]
comes closest to our performance, but it employs non-standard augmentation on
training images, which we omit. Figure 6 shows a visual comparison, where the
shapes are reconstructed from the same input images using the trained network
parameters released by different methods. Although we trained our method at
a resolution of 323, the high accuracy enables us to reveal complex geometry
that other methods cannot handle, which makes our results comparable to the
meshes reconstructed by other methods. Figure 5 shows additional airplanes and
tables reconstructed by our method.
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Table 3. Quantitative comparison of single image 3D shape reconstruction in terms
of IoU.

Method Modality Plane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Boat Mean

Su
pe

rv
is
ed

AtlasNet [10]
Mesh

39.2 34.2 20.7 22.0 25.7 36.4 21.3 23.2 45.3 27.9 23.3 42.5 28.1 30.0
Pixel2mesh [59] 51.5 40.7 43.4 50.1 40.2 55.9 29.1 52.3 50.9 60.0 31.2 69.4 40.1 47.3

3DN [60] 54.3 39.8 49.4 59.4 34.4 47.2 35.4 45.3 57.6 60.7 31.3 71.4 46.4 48.7
R2N2 [6]

Voxel
51.3 42.1 71.6 79.8 46.6 46.8 38.1 66.2 54.4 62.8 51.3 66.1 51.3 56.0

Matryoshka [51] 64.7 57.7 77.6 85.0 54.7 53.2 40.8 70.1 61.6 68.1 57.3 75.6 59.1 63.5
IM [4]

3D Implicit

55.4 49.5 51.5 74.5 52.2 56.2 29.6 52.6 52.3 64.1 45.0 70.9 56.6 54.6
OccNet [43] 54.7 45.2 73.2 73.1 50.2 47.9 37.0 65.3 45.8 67.1 50.6 70.9 52.1 56.4
DISN-V [61] 50.6 44.3 52.3 76.9 52.6 51.5 36.2 58.0 50.5 67.2 50.3 70.9 57.4 55.3
DISN-C [61] 57.5 52.9 52.3 74.3 54.3 56.4 34.7 54.9 59.2 65.9 47.9 72.9 55.9 57.0

Ours 2D Implicit 73.2 58.5 71.0 78.1 50.3 60.0 44.7 62.2 66.7 68.4 55.0 80.2 58.4 63.6

U
ns
up

er
vi
se
d NMR [31]

Mesh
58.5 45.7 74.1 71.3 41.4 55.5 36.7 67.4 55.7 60.2 39.1 76.2 59.4 57.0

SoftRas [37] 58.4 44.9 73.6 77.1 49.7 54.7 39.1 68.4 62.0 63.6 45.3 75.5 58.9 59.3
DIB-R [3] 57.0 49.8 76.3 78.8 52.7 58.8 40.3 72.6 56.1 67.7 50.8 74.3 60.9 61.2
PTN-R [68]

Voxel
55.6 48.8 57.1 65.2 35.1 39.6 29.1 46.0 51.3 53.1 31.0 67.0 40.8 47.7

PTN [68] 55.6 49.2 68.2 71.2 44.9 54.0 42.2 58.7 59.9 62.2 49.4 75.0 55.1 57.4
IMRender [40] 3D Implicit 65.1 53.6 - 78.2 54.8 - - - - - 51.5 - 60.8 60.7

Ours 2D Implicit 73.2 58.5 71.0 78.1 50.3 60.0 44.7 62.2 66.7 68.4 55.0 80.2 58.4 63.6

6.3 Ablation Studies and Analysis

Ablation studies. We highlight some elements in our method by ablation stud-
ies in single image reconstruction under the chair class in Table 4. We compare
our result with the ones without attention (“NoAtt”), the ones with LSTM RNN
cells (“LSTM”), and the ones with single direction RNN encoder (“SingleDir”).
We find that GRU performs better than LSTM, and both attention mechanism
and bidirectional RNN encoder contribute to the performance.

Table 4. Ablation studies under chair class.

NoAtt LSTM SingleDir ShareableXYZ Our(GRU)

IoU 47.5 49.8 48.8 49.1 50.3

Shareable Location Embedding Matrix. The memory efficiency is one
advantage of SeqXY2SeqZ. We achieve this not only by avoiding the direct
involvement of 3D voxel grids, but also by sharing the location embedding
matrices. The above experiments have shown the effectiveness of shared loca-
tion embedding matrices for the X and Z axes to define the plane indexing the
tubes. In this experiment, we step further by employing only one location embed-
ding matrix for all three axes. We also tubelize the voxel grids along the Y axis,
and train SeqXY2SeqZ under the chair class in sigle image 3D reconstruction. In
Table 4, “ShareableXYZ” still achieves the comparable result with “Our(GRU)”.
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Fig. 6. Qualitative comparison with the state-of-the-art supervised and unsupervised
methods.
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Location Embedding Visualization. We visualize the location embeddings
learned in auto-encoding of Table 1 in Fig. 7(a), where each class leverages two
sets of location embeddings including one shared by the X and Z axes, and the
other along the Y axis. We visualize each set of location embeddings using a
cosine distance matrix whose element is the pairwise cosine distance between
arbitrary two location embeddings. The structure of a shape category is demon-
strated by the distinctive patterns on the cosine distance matrix in different
shape categories, which demonstrates the effectiveness of the learned location
embeddings. In each similarity matrix, blue means more similar between two
location embeddings while yellow means more different. The similarity indicates
whether the two corresponding locations show similar occupancy surrounding.
For a class containing shapes with similar structures, like cars, the patterns are
more obvious, while a class containing shapes with large structure variations,
like chairs, the patterns are less obvious. In addition, we visualize the location
embeddings learned in single image reconstruction of Table 3 in Fig. 7(b), where
we also observe the different patterns on the cosine distance matrix in differ-
ent shape categories. Note that we show the 642 dimensional distance matrix in
Fig. 7(a) and the 322 dimensional distance matrix in Fig. 7(b) in the same size.

Attention Visualization. We further visualize the attention learned in auto-
encoding of Table 1. At each 2D coordinate, an attention vector a is learned
at each decoder step for all encoder steps. For each decoder step, we leverage
entropy (−a.∗log2a) to visualize a at all 2D coordinates (if there is no output at
this decoder step, we encode −1 at this 2D coordinate) into an attention image,
and we normalize the whole attention image using the maximal entropy. We show
five attention images at the first five decoder steps for each shape in Fig. 8(a).
In each image, the higher entropy (above 0, the lighter color) indicates this
decoder step is paying attention more equally on all encoder steps to generate
more complex structure, such as chairs, while the lower entropy (above 0, the
darker color) indicates this decoder step is focusing on a specific encoder step
to generate relatively simple structure, such as cars. Similarly, we visualize the
attention learned in single image reconstruction of Table 3 in Fig. 8(b), where the
chair can be reconstructed by only one occupancy segment at all 2D coordinates,
which makes the attention much simpler than the one for the chair in Fig. 8(a).
Note that we show the 642 dimensional attention images in Fig. 8(a) and the
322 dimensional attention images in Fig. 8(b) in the same size.

Memory and Computation Time. We compare the memory and computa-
tion time requirements with methods based on learning 3D implicit functions
in Table 5, including OccNet [42] and DISN [60]. To reconstruct a 3D shape at
a resolution of R3 from a single image during test, OccNet [42] requires to get
occupancy values for about 3.8 ∗ R3 sampled points with sub additional steps
of subdivision, while DISN requires to get SDF values for R3 sampled points,
both of which are higher complexity than our O(R2) RNN steps. Since DISN
cannot run on a single GPU as OccNet and SeqXY2SeqZ, we report a fair com-
parison in terms of the CPU run time and RAM space with R = 64 and sub = 2
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(a) 3D-3D autoencoding (Voxel resolution: 64)

(b) 2D-3D reconstruction (Voxel resolution: 32)

Fig. 7. Pairwise cosine distances of location embeddings learned in auto-encoding (a)
and single image reconstruction (b). In each similarity matrix, blue means two locations
indicated by their embeddings show similar occupancy surrounding while yellow means
more different.

Table 5. Complexity comparison with 3D implicit functions.

OccNet [42] DISN [60] Ours

Network evaluations O(3.8 ∗ R2) O(R3) O(R2)

Time (CPU) 55.80 s 14.68 s 8.79 s

Space 1175MB >11 GB 286MB

for reconstructing one shape from a single image. Benefiting from learning 2D
functions that predict sparse representations of 1D voxel tubes, SeqXY2SeqZ
achieves both the lowest time and memory requirements by a large margin.

More Analysis. More analysis on the efficiency of our voxel tubelization and
the feature space learned by our method can be found in our supplemental
material.
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(a) 3D-3D autoencoding (Voxel resolution: 64)

(b) 2D-3D reconstruction (Voxel resolution: 32)

Fig. 8. The visualization of attention learned in auto-encoding. We visualize the atten-
tion weights learned at the first five steps of the decoder. The attention at each step
for all 2D coordinates is shown as an image, where attention weights on the encoder
at each 2D coordinate are encoded as entropy shown by color.

7 Conclusion

We propose SeqXY2SeqZ to learn the structure of 3D shapes using a discrimi-
native neural network not only benefiting from the regularity inherent in voxel
grids during both training and testing, but also avoiding cubic complexity for
high memory efficiency. SeqXY2SeqZ successfully resolves the issue of dense and
irregular sampling during structure learning or inference required by 3D implicit
function-based methods, which leads to higher inference times compared to our
approach. This is achieved based on the encoding of voxel grids by our 1D voxel
tubelization, which effectively represents a voxel grid as a mapping from dis-
crete 2D coordinates to sequences of discrete 1D locations. This mapping further
enables SeqXY2SeqZ to effectively learn the 3D structures as 2D functions. We
demonstrate that SeqXY2SeqZ outperforms the state-of-the-art methods under
widely used benchmarks.
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