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Figure 1. GAP gaussianizes point clouds into high-fidelity 3D Gaussians with diverse appearances. Left: Examples of text-guided Gaussian
generation from object-level point cloud. Bottom-right: Scene-level results with prompts ’A modern lounge’ and ’A rainbow bedroom’.

Abstract

3D Gaussian Splatting (3DGS) has demonstrated its advan-001
tages in achieving fast and high-quality rendering. As point002
clouds serve as a widely-used and easily accessible form of003
3D representation, bridging the gap between point clouds004
and Gaussians becomes increasingly important. Recent005
studies have explored how to convert the colored points into006
Gaussians, but directly generating Gaussians from color-007
less 3D point clouds remains an unsolved challenge. In this008
paper, we propose GAP, a novel approach that gaussianizes009
raw point clouds into high-fidelity 3D Gaussians with text010
guidance. Our key idea is to design a multi-view optimiza-011
tion framework that leverages a depth-aware image diffu-012
sion model to synthesize consistent appearances across dif-013
ferent viewpoints. To ensure geometric accuracy, we intro-014
duce a surface-anchoring mechanism that effectively con-015
strains Gaussians to lie on the surfaces of 3D shapes dur-016

ing optimization. Furthermore, GAP incorporates a diffuse- 017
based inpainting strategy that specifically targets at com- 018
pleting hard-to-observe regions. We evaluate GAP on the 019
Point-to-Gaussian generation task across varying complex- 020
ity levels, from synthetic point clouds to challenging real- 021
world scans, and even large-scale scenes. 022

1. Introduction 023

Point clouds serve as a fundamental representation in 3D 024
computer vision, playing a crucial role across various do- 025
mains, e.g., autonomous driving, augmented/virtual reality 026
and robotics. With recent advances in 3D scanning de- 027
vices, such as LiDAR sensors and depth cameras, point 028
clouds have bridged the gap between the physical and dig- 029
ital worlds. However, it still remains a research challenge 030
to effectively transform the geometries of raw point clouds 031
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into high-quality 3D appearances that maintain structural fi-032
delity while providing visual-appealing renderings.033

For high-quality 3D visualization, mesh-based represen-034
tation has long been the standard approach. However, such035
a representation faces two major limitations: (1) for meshes036
with dense faces, the constrained texture resolution limits037
the final rendering quality, and (2) the heavy reliance on038
UV unwrapping [58] introduces additional complications039
such as texture overlapping, fragmentation, and distortion040
issues. While these limitations can be addressed with care-041
ful manual intervention, they present significant obstacles042
in fully automated pipelines. Recent advances in 3D Gaus-043
sian Splatting (3DGS) [21] have revolutionized neural ren-044
dering by offering an efficient and high-quality alternative045
to NeRF-based [27] or mesh-based representations. More-046
over, 3DGS eliminates the need for explicit UV parameteri-047
zation, which makes it particularly attractive for real-world048
applications.049

Althought several attempts have been made to bridge050
point clouds and 3DGS, existing approaches still face sev-051
eral significant limitations. For example, Large Point-052
to-Gaussian [25] model trains a feedforward network for053
Gaussian primitive generation, but it requires point cloud054
inputs with color attributes. DiffGS [57] approaches this055
challenge by learning a reconstruction scheme from points056
to Gaussians, yet struggles in generalizing to generate di-057
verse and high-quality 3D appearances.058

To address these challenges, we propose GAP, a novel059
approach that generates high-quality Gaussian primitives by060
Gaussianizing 3D raw point clouds. GAP leverages both061
geometric information from input point clouds and appear-062
ance guidance from pretrained text-to-image diffusion mod-063
els. Specifically, we first introduce a progressive generation064
scheme that optimizes Gaussian primitives across multiple065
viewpoints by leveraging a depth-aware text-to-image dif-066
fusion model. To ensure geometric accuracy, we design067
a surface-anchoring mechanism that effectively constrains068
Gaussians to lie on object surfaces during optimization,069
leading to Gaussian generations consistent to the geome-070
try. After optimization, the generated high-quality Gaus-071
sians can cover most of the surface, however, there are still072
some unseen areas that require further processing. To ad-073
dress this, we propose a diffuse-based Gaussian inpainting074
strategy that gaussianizes the unseen points by leveraging075
the spatial relationships and geometric consistency of the076
visible Gaussians. To this end, GAP generates high-fidelity077
3D Gaussians that maintain both geometric accuracy and078
visual quality.079

We evaluate GAP extensively across diverse datasets, in-080
cluding both synthetic and real-world scanned point clouds081
of objects and scenes. Comprehensive experiments demon-082
strate that our method consistently outperforms state-of-083
the-art alternatives in terms of visual quality. We believe084

GAP opens new possibilities for Point-to-Gaussian genera- 085
tion, bridging the gap between widely-used, easily accessi- 086
ble point cloud data and high-quality 3D Gaussian represen- 087
tations. Our contributions can be summarized as follows: 088

• We proposed GAP, a novel framework that gaussianizes 089
raw point clouds into high-quality Gaussian primitives. 090
GAP introduces both geometric priors and text guid- 091
ance with large text-to-image diffusion models to gener- 092
ate diverse and visual-appealing appearances from point 093
clouds. 094

• We design a Gaussian optimization framework that pro- 095
gressively optimizes Gaussian attributes across multiple 096
viewpoints, with a surface anchoring constraint to ensure 097
geometric accuracy. A diffuse-based Gaussian inpainting 098
strategy is further introduced to handle occluded regions. 099

• Comprehensive evaluations under synthetic and real- 100
scanned point cloud datasets of objects and scenes 101
demonstrate that GAP significantly outperforms the state- 102
of-the-art methods. 103

2. Formatting your paper 104

2.1. Texture Generation 105

The advent of deep learning has revolutionized texture gen- 106
eration for 3D models. Early learning-based approaches 107
primarily utilized GANs [15, 28, 31], while recent methods 108
[5, 20, 24, 43, 48] leverage large-scale text-to-image dif- 109
fusion models [16, 35] as powerful priors for high-fidelity 110
texture synthesis. A series of works [9, 26, 45] adopts Score 111
Distillation Sampling [30] as their optimization strategy 112
for texture generation, iteratively refining textures through 113
optimizing rendered images with respect to text prompts. 114
Another stream of research [7, 33, 39] proposes efficient 115
texture synthesis through depth-guided inpainting, where 116
textures are progressively generated along specified view- 117
points. Additionally, some approaches [1, 10, 51] focus on 118
multi-view generation with geometric guidance, followed 119
by UV-space refinement. However, maintaining texture 120
continuity across UV seams remains challenging due to the 121
discontinuous nature of UV mapping. Despite these ad- 122
vances, UV distortion and cross-view consistency remain 123
challenging, particularly for complex objects. 124

2.2. Rendering-Driven 3D Representation 125

While mesh-based representations [4, 37] remain the stan- 126
dard for 3D visualization, they face limitations in tex- 127
ture resolution and UV parameterization [22, 36]. Re- 128
markable progress has been achieved in the field of novel 129
view synthesis with the proposal of Neural Radiance Fields 130
(NeRF) [27]. Through volume rendering[13] optimization, 131
NeRF achieves outstanding view synthesis quality, though 132
its computational overhead during rendering is consider- 133
able. 3D Gaussian Splatting (3DGS) has emerged as an 134
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advanced 3D representation which shows convincing per-135
formance in real-time rendering. [21, 23, 38, 42, 46, 50]136
By representing scenes with a set of 3D Gaussian primi-137
tives, 3DGS achieves both high-quality rendering and effi-138
cient real-time performance.139

2.3. 3DGS Generation Methods140

With the advancement of 3D Gaussian Splatting, develop-141
ing effective generative models for 3DGS has emerged as a142
popular research topic. A series of studies [17, 44, 52, 61]143
have explored image-based reconstruction without genera-144
tive modeling, which fundamentally limits their ability to145
generate diverse shapes. These methods also lack point-146
conditioned generation capabilities. Recent point cloud-to-147
Gaussian conversion approaches [25] rely heavily on the148
availability of RGB point clouds as input. While Gaussian149
painter [56] uses reference images for stylization, it lacks150
precise control over the final appearance. This highlights151
the need for a framework generating high-quality Gaussians152
from point clouds with flexible appearance control.153

3. Method154

We introduced GAP, a novel method that establishes a155
bridge between raw point clouds and 3D Gaussians by neu-156
ral gaussianizing. Given an input point cloud P = {pi}Ni=1,157
our goal is to generate Gaussians G = {gi}Mi=1 from P ,158
conditioned on the text prompt c. The overview of GAP159
is shown in Fig. 2. We begin by previewing Gaussian160
Splatting, along with the initialization strategy in Sec. 3.1.161
In Sec. 3.2, we present a progressive Gaussian genera-162
tion scheme that utilizes a powerful text-to-image diffusion163
model to generate or inpaint images from a given view-164
point. We further introduce a Gaussian optimization strat-165
egy which learns Gaussian attributes from the generated166
images representing high-fidelity appearance, in Sec. 3.3.167
While the object is largely observable from various view-168
points, certain regions remain difficult to capture. To ad-169
dress this, we introduce a diffuse-based Gaussian inpainting170
method in Sec. 3.4.171

3.1. Gaussian Initialization172

Preview 3D Gaussian Splatting. 3D Gaussian Splatting173
(3DGS) [21] is a modern representation technique that mod-174
els 3D shapes or scenes through a collection of Gaussian175
primitives. Each Gaussian gi is defined by a set of param-176
eters that characterize its geometry and appearance proper-177
ties. The geometry of gi is mathematically defined by its178
center position σi ∈ R3 and a covariance matrix Σi, formu-179
lated as:180

gi(x) = exp

(
−1

2
(x− σi)

TΣ−1(x− σi)

)
. (1)181

The covariance matrix Σi is constructed from a rota- 182
tion matrix ri ∈ R4 and a scale matrix si ∈ R3 (Σi = 183
risis

T
i r

T
i ). Σi determines the Gaussian’s shape, orienta- 184

tion, and range in space. Beyond geometry, each Gaussian 185
encompasses visual attributes including an opacity term oi 186
and view-dependent color properties ci, implemented as 187
spherical harmonics. 188
Initialization Scheme. When generating Gaussians from 189
an input point cloud P = {pi}Ni=1, we initialize the center 190
positions σi of Gaussian primitives as the spatial coordi- 191
nates of the points. This direct spatial mapping provides 192
fine initial geometries for Gaussians, which roughly repre- 193
sent the underlying 3D surfaces. To better exploit the inher- 194
ent geometric information embedded in the point cloud, we 195
employ CAP-UDF [55] to learn a neural Unsigned Distance 196
Field (UDF) [11] fu from the point cloud and derive point 197
normals N = {ni}Ni=1 through gradient inference: 198

ni =
∇fu(pi)
∥∇fu(pi)∥

. (2) 199

Instead of vanilla 3DGS, we adopt 2D Gaussian Splat- 200
ting (2DSG) [19] as our representation. The key idea of 201
2DGS is to replace 3D Gaussian ellipsoids with 2D-oriented 202
Gaussian disks for scene representation, demonstrating bet- 203
ter performances in representing detailed local geometries. 204
2DGS inherently encodes the normal as the disk orienta- 205
tion. We initialize the rotation matrix ri of each Gaussian 206
using its normal ni from the field fu, ensuring that each 207
2D Gaussian disk is accurately aligned to the correct orien- 208
tation, providing a good initialization for subsequent opti- 209
mization. 210

3.2. Multi-View Inpainting and Updating 211

For a sequence of specified viewpoints {vj}Kj=1, we pro- 212
gressively generate the visual appearance at each perspec- 213
tive to optimize the associated Gaussians. Using the learned 214
UDF field, we employ ray marching techniques to compute 215
the depth value for each pixel on the depth map Dj . As 216
shown in Fig. 2(a), we render an image Ij from a specific 217
viewpoint vj . The rendered image Ij , along with its corre- 218
sponding depth map Dj , mask Mj and text prompt c, are 219
fed into the depth-aware inpainting model. 220
Depth-aware Inpainting Model. We leverage a depth- 221
aware inpainting diffusion model [34, 53] as the appearance 222
generation model. By integrating depth information into the 223
diffusion-based inpainting process, the model enables more 224
geometrically consistent image generation. Its encoder E 225
operates by first encoding the masked image I concatenated 226
with the depth map D into a latent code z0. The initial en- 227
coding is: 228

z0 = E [I ∥ D] . (3) 229

The process gradually degrades the initial latent code 230
through a series of noise-adding operations. At each 231
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Figure 2. Overview of GAP. (a) We rasterize the Gaussians though an unprocessed view, where a depth-aware image diffusion model
is used to generate consistent appearances using the rendered depth and mask with text guidance. The mask is dynamically classified
as generate, keep, or update based on viewing conditions. (b) The Gaussian optimization includes three constraints: the Distance Loss
and Scale Loss introduced to ensure geometric accuracy, and the Rendering Loss that ensures high-quality appearance. (c) The Gaussian
inpainting strategy which diffuses the geometric and appearance information from visible regions to hard-to-observe areas, considering
local density, spatial proximity and normal consistency.

timestep t, the model add Gaussian noise according to a232
variance schedule defined by βt. The transformation fol-233
lows a probabilistic distribution:234

zt | y, gϕ (y, t, I ∥ D) ∼ N
(√

1− βt zt−1, βt I
)
, (4)235

where y is text embeddings, and gϕ is ControlNet function236
processing the image-depth input.237

To maintain generation consistency, mask blending is238
operated at each timestep. Specifically, the latent encod-239
ing zt at timestep t is combined with the masked region240
encoding zM,t according to masks M . The mask blending241
operation ensures that the content in the unmasked regions242
is well preserved. It can be formulated as:243

zt ← zt ⊙M + zM,t ⊙ (1−M) . (5)244

Updating Scheme for Inpainting. For the same area of the245
3D shape, the inpainting model may generate varying ap-246
pearances. We implemented an updating scheme that allows247

us to refine previously processed regions when more favor- 248
able viewing angles become available. Hence, masks M are 249
divided into three distinct regions based on their visibility 250
from the current viewpoint vj : generate mask Mgenerate, 251
keep mask Mkeep and update mask Mupdate. 252

The generate masks Mgenerate refer to blank areas that 253
have never been generated before. The keep masks Mkeep 254
are those that have been processed before and the current 255
viewpoint does not provide better viewing conditions. The 256
calculation of the update mask Mupdate involves evaluating 257
whether to refresh a region based on the similarity between 258
its viewing directions and normals. Specifically, we define 259
a similarity mask Msimilarity to quantify the observabil- 260
ity of surface details from different viewing angles. For a 261
viewpoint vj , the similarity mask value is computed as the 262
cosine similarity between the viewing direction dj and the 263
point normal N : Msimilarity = dj ·N . A region should be 264
updated when the current view provides a better observation 265
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angle than any other view:266

M j
update =

{
1, if M j

similarity > Mothers
similarity

0, otherwise.
(6)267

The final inpainting Iinpaint is generated by combining268
two different denoising processes: a stronger denoising for269
newly generated regions (generate masks) and a weaker de-270
noising for regions requiring updates (update masks). The271
final appearance is achieved as:272

I ← Iinpaint ⊙ (1−Mkeep) + I ⊙Mkeep. (7)273

3.3. Gaussian Optimization274

For a given viewpoint vj , we can now generate the appear-275
ance Ij with the powerful inpainting model. The Gaussians276
G can be optimized through Ij . Unlike the vanilla 3DGS277
fitting scheme that optimizes Gaussian attributes through278
multiple iterations across different viewpoints, GAP oper-279
ates only a single optimization pass per viewpoint, which280
leads to more robust Gaussian generations faithfully rep-281
resenting the high-quality appearance Ij . Specifically, in282
each view-specific optimization step, we focus exclusively283
on optimizing the Gaussians that represent the nearest visi-284
ble surface layer from the current viewpoint, without mod-285
ifying the Gaussians on the back-facing surfaces, as shown286
in Fig. 3. To this end, we implement a Gaussian selection287
scheme that identifies the first intersecting Gaussian along288
each viewing ray originating from pixels within the generate289
or update mask. To manage the computational intensity of290
processing numerous rays, we develop a CUDA [29] imple-291
mentation that exploits GPU parallelism. accelerating the292
Gaussian selection process to just 3 seconds.293
Surface-anchoring Mechanism. During Gaussian opti-294
mization, Gaussians that float away from their expected295
surface positions introduce significant challenges for multi-296
view inpainting and updating. These Gaussians produce297
incorrect occlusion relationships in subsequent viewpoints,298
resulting in distorted masks and further degrading the qual-299
ity of generation and inpainting. To this end, we introduce300
a surface-anchoring mechanism in terms of a distance loss301
which aligns Gaussians with the zero-level set of the learned302
unsigned distance field. Practically, we constrain distance303
value at each Gaussian center, queried from fu, to be close304
to zero during optimization. The distance loss is formulated305
as:306

LDistance = ∥fu(σi)∥2. (8)307

Scale Constraint. During optimization from a single view-308
point, some oversized Gaussians may lead to incorrect ge-309
ometries which adversely affect the inpainting results of310
subsequent views. To address this issue, we introduce a311
scale loss that constrains the maximum value of si for each312
Gaussian. The Scale Loss is defined as:313

LScale = (min(max(si), τ)−max(si))
2
, (9)314

Trainable

Frozen

Cuda
Implementation

Figure 3. Gaussian Selection scheme. We identifies the first inter-
secting Gaussian along each viewing ray within generate or update
masks, implemented with CUDA for efficient processing.

where τ is a predefined threshold value. The scale loss 315
effectively prevents Gaussians from growing excessively 316
large while still allowing sufficient flexibility to model the 317
appearance. 318
Rendering Constraint. Following 3DGS [21], we also em- 319
ploy the Rendering Loss during optimization. The render- 320
ing constraint consists of an L1 loss term and a D-SSIM 321
term with weights of 0.8 and 0.2 respectively: 322

LRendering = 0.8L1(I
′
j , Ij) + 0.2LD−SSIM (I ′j , Ij), (10) 323

where I ′j is the rendered image. With the balanced weight 324
α and β, the final optimization objective can be formulated 325
as: 326

L = LRendering + αLDistance + βLScale. (11) 327

3.4. Diffuse-based Gaussian Inpainting 328

Before After

Figure 4. The Gaussian inpaint-
ing approach effectively com-
pletes the unseen regions by
propagating properties from visi-
ble Gaussians.

Even with comprehen- 329
sive multi-view captur- 330
ing from densely sam- 331
pled viewpoints, certain 332
regions of the 3D ob- 333
ject are still challeng- 334
ing to observe. As 335
shown in Fig. 2(c), to 336
model the appearances 337
of the unseen areas, we 338
propose a diffuse-based 339
Gaussian inpainting ap- 340
proach. Our method effectively recovers missing appear- 341
ance in the final representation, as shown in Fig. 4. Our ap- 342
proach operates inpainting directly in 3D space, leveraging 343
the inherent structure and spatial relationships of the visi- 344
ble Gaussians. Using the Gaussian selection scheme across 345
multiple viewpoints, we can effectively identify the unseen 346
Gaussians G′ = {g′j}M

′

j=1, which are not optimized at any 347
view. For the unseen Gaussians, whose positions and nor- 348
mal directions have already been well initialized through the 349
Gaussian initialization scheme proposed in Sec. 3.1, we pri- 350
marily focus on predicting their remaining properties, such 351
as color, scale, and opacity. 352
Color Diffuse. To predict the color attributes of the unseen 353
regions, we implement a diffusion mechanism that propa- 354
gates the attributes of nearby Gaussians. For each unseen 355
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Figure 5. Visual comparison of text-guided appearance generation results on the Objaverse dataset.

Gaussian g′j , we first locate its L nearest optimized neighbor356
Gaussians as the reference. We design a weighting strategy357
that incorporates spatial proximity, geometric consistency,358
and opacity reliability during color diffuse. Let omax be359
the maximum opacity value among all neighbor Gaussians.360
For each valid neighbor gi of the unseen Gaussian g′j , we361
define its color weight λi as follows: when the angle be-362
tween the normals of gi and g′j is less than 60 degrees, i.e.,363
(ni · nj) > 0.5, the weight is calculated as:364

λi =
1/di∑L

k=1 1/dk
· (ni · nj) ·

oi
omax

. (12)365

Otherwise, the weight is set to 0. The distance term 1/di366
prevents the far Gaussians with inconsistent appearances to367
largely affect the color, while the normal consistency term368
(ni · nj) preserves geometric features by prioritizing color369
propagation between Gaussians with similar surface orien-370
tations. The opacity reliability term oi/omax ensures that371
Gaussians with higher opacity values have a stronger influ-372
ence on the color prediction. Finally, the color c′j of the373
unseen Gaussian g′j can be formulated as:374

c′j =

∑L
i=1(ci ∗ λi)∑L

i=1 λi

. (13)375

Size Scale. To predict appropriate scales for the unseen376
Gaussians g′j , we consider the L nearest neighbors (includ-377
ing both optimized and unseen Gaussians). The scale is ad-378
justed based on the spatial proximity of these neighbors.379
The scale s′j of an unseen Gaussian is computed as:380

s′j = log(

∑L
i=1 di
L

), (14)381

where di represents the distance between the unseen Gaus- 382
sian g′j and its neighbor gi. We incorporate distance weight- 383
ing, as larger distances indicate sparser regions that require 384
larger scales. 385
Opacity Control. For predicting the opacity o′j of an un- 386
seen Gaussian g′j , we employ a density-based control mech- 387
anism. The opacity within a radius ρ is inversely propor- 388
tional to the local Gaussian density. The opacity o′j of an 389
unseen Gaussian g′j is computed as: 390

o′j =
o0

max(1, P/P0)
, (15) 391

where o0 is a base opacity value, P is the number of neigh- 392
boring Gaussians within a specified radius ρ, and P0 is a 393
reference density threshold. The opacity control scheme en- 394
sures that regions with higher Gaussian density have lower 395
opacity values, preventing over-accumulation of color while 396
maintaining proper surface coverage. 397

4. Experiments 398

We first evaluate GAP’s core capability of text-driven ap- 399
pearance generation in Sec. 4.1. In Sec. 4.2, we compare 400
GAP’s performance specifically on the Point-to-Gaussian 401
generation task with other Gaussian generation methods. 402
Next, we further validate GAP’s capability on real-world 403
scanned point clouds, where the inputs are often incomplete 404
in Sec. 4.3. In Sec. 4.4, we showcase GAP’s scalability by 405
applying it to scene-level point clouds. Finally, the ablation 406
studies are shown in Sec. 4.5. 407

4.1. Text-Driven Appearance Generation 408

Datasets and Metrics. Following prior works [7, 33], we 409
conduct experiments on the curated subset of the Obja- 410
verse [12] dataset containing 410 textured meshes across 411
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Figure 6. Visual comparison of point-to-Gaussian generation results on DeepFashion3D.

225 categories. Unlike previous methods that require per-412
fect meshes, we only use a sampled point cloud of 100K413
points as input. We employ three complementary metrics:414
Fréchet Inception Distance (FID) [49] and Kernel Inception415
Distance (KID ×10−3) [3] for assessing image quality, and416
CLIP Score [32] for measuring text-image alignment. All417
methods use identical text prompts describing each object.418
We render all objects at a high resolution of 1024 × 1024419
pixels from fixed viewpoints.420

Baselines. For visual appearance, we compare GAP with421
state-of-the-art 3D texture generation methods: TexTure422
[33], Text2Tex [7], Paint3D [51], and SyncMVD [24], all423
of which rely on UV-mapped meshes. And the original424
meshes in the subset of the Objaverse dataset include artist-425
created UV maps. For a fair comparison with those meth-426
ods under the same conditions of point cloud inputs, we427
reconstruct meshes from the input point clouds using the428
traditional Ball-Pivoting Algorithm (BPA) [2] and SOTA429
learning-based method CAP-UDF [54]. We then generate430
UV maps through xatlas [47] unwrapping.431

Comparison. The quantitative comparison in Tab. 1 shows432
that GAP outperforms previous state-of-the-art methods.433
Unlike approaches relying on artist-created UV maps, GAP434
leverages Gaussian Splatting for inherently higher render-435
ing quality. The performance gap is even more pronounced436
compared to baselines using reconstructed meshes, which437
suffer from topological ambiguities, connectivity errors,438
and geometric distortions. These issues, compounded by439
dense mesh reconstructions and automated UV unwrap-440
ping, often result in severe texture artifacts. In con-441
trast, GAP bypasses UV parameterization by directly op-442
timizing Gaussian primitives in 3D space. As shown in443
Fig. 5, while existing methods generate plausible appear-444
ances, they struggle with detail preservation. By directly445
optimizing appearance in 3D space, GAP achieves superior446
visual quality across object categories. A more detailed vi-447
sual comparison with mesh-based methods is provided in448
the supplementary material.449

To assess visual appearance and text alignment, we con-450

Table 1. Quantitative comparison with baselines on the Objaverse
dataset. Best results are highlighted as 1st , 2nd and 3rd .

Method FID↓ KID↓ CLIP↑ User Study
Overall Quality↑ Text Fidelity↑

TexTure [33] 42.63 7.84 26.84 2.90 3.05
Text2Tex [7] 41.62 6.45 26.73 3.48 3.62
SyncMVD [24] 40.85 5.77 27.24 3.12 3.4
Paint3D [51] 41.08 5.81 26.73 3.07 3.33

TexTureBPA 60.69 15.98 26.62 1.46 1.62
Text2TexBPA 64.35 16.67 26.18 2.86 3.06
SyncMVDBPA 60.29 14.35 26.19 2.85 3.12
Paint3DBPA 65.36 17.37 25.14 1.45 1.45

TexTureCAP 53.55 12.43 26.68 2.23 2.60
Text2TexCAP 52.78 11.09 26.78 3.03 3.57
SyncMVDCAP 63.85 16.92 25.81 2.97 3.09
Paint3DCAP 59.49 13.56 24.99 2.38 2.40

Ours 40.39 5.28 27.26 4.21 4.47

ducted a user study with 30 participants. Each participant 451
independently evaluated results from all methods across 452
multiple viewpoints, rating them on a scale of 1 to 5. 453

4.2. Point-to-Gaussian Generation 454

Datasets and Implementations. To evaluate GAP’s effec- 455
tiveness in Point-to-Gaussian generation, we conduct exper- 456
iments on two datasets: the ShapeNet chair category [6] and 457
DeepFashion3D [60]. We uniformly sample 100K points 458
from each 3D model to generate input point clouds. GAP is 459
compared with three state-of-the-art methods DreamGaus- 460
sian [38], TriplaneGaussian [61], and DiffGS [57], all using 461
the same 100K point clouds as input. Please refer to the 462
supplementary for the adaptions of those baseline methods, 463
as well as additional results. 464
Performance. We provide visual comparisons with base- 465
line methods in Fig. 6, GAP consistently generates more 466
visually appealing and geometrically accurate results com- 467
pared to existing approaches. The baseline methods ex- 468
hibit several key limitations. DreamGaussian, despite in- 469
corporating Score Distillation Sampling (SDS) for appear- 470
ance optimization, tends to produce over-saturated appear- 471
ances with unnatural colors. Additionally, its optimization 472
process is computationally intensive and highly parameter- 473
sensitive. TriplaneGaussian and DiffGS are fundamentally 474
constrained by their limited-resolution triplane representa- 475
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Figure 7. Scene-level Gaussianization comparison on 3D-FRONT datasets.
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Figure 8. Results on real-world partial scans from SRB and Deep-
Fashion3D datasets.

tions, limiting their ability to capture appearance details.476

4.3. Gaussian Generation for Scanned Inputs477

Datasets. We evaluate GAP on real-world partial scans478
from SRB (Scan-to-Reality Benchmark) [41] and Deep-479
Fashion3D [60] datasets. Both datasets contain point clouds480
captured by depth sensors, presenting real-world challenges481
such as incomplete coverage, occlusions and scanning arti-482
facts. We directly use the raw scanned point clouds as input.483

Performance. As shown in Fig. 8, GAP successfully gaus-484
sianizes partial point clouds into complete, high-quality485
Gaussian representations. Our surface-anchoring mecha-486
nism effectively pull the split and cloned 3D Gaussians487
to fill missing regions while preserving geometric consis-488
tency. The results demonstrate that our method can robustly489
handle artifacts and occlusions in real-world scanned point490
clouds and generate visually appealing Gaussians.491

4.4. Scale to Scene-Level Gaussian Generation492

Datasets. We evaluate GAP on both synthetic and real-493
world scene datasets. For synthetic scenes, we use 3D-494
FRONT [14], which features diverse indoor environments.495
We sample 500K points from scene meshes as input. For496
real-world evaluation, we use raw point clouds from the 3D497

Scene dataset [59], which poses challenges such as complex 498
topology, varying point densities, and scanning artifacts. 499
Comparision. Compared to Paint3D [51] and Scenetex [8], 500
our method achieves superior visual quality. As shown in 501
Fig. 7, Paint3D fails on scene-level data, while SceneTex 502
requires both VSD optimization [40] and additional LoRA 503
[18] training, significantly increasing processing time. In 504
contrast, our method produces high-quality results for com- 505
plex scenes with a single optimization process. Please refer 506
to the supplementary for more results on real-world scenes. 507

4.5. Ablation Study 508

To analyze the effectiveness of key components in GAP, we 509
performed a series of controlled experiments. The perfor- 510
mance was measured using three metrics: FID, KID, and 511
CLIP Score. These metrics were computed on rendered im- 512
ages captured from multiple viewpoints. We evaluate some 513
major designs of our framework in Tab. 2. Without the Scale 514
Loss, Gaussians grow excessively large, leading to distorted 515
results in subsequent views. The Distance Loss prevents 516
Gaussians from drifting away from object surfaces, main- 517
taining geometric accuracy. The diffuse-based Gaussian In- 518
painting ensures complete coverage in hard-to-observe re- 519
gions. Each component proves essential for achieving opti- 520
mal performance. 521

Table 2. Ablation study of key components in GAP.

Method FID↓ KID↓ CLIP↑

Full Model 40.39 5.28 27.26

W/o LScale 214.63 79.04 26.25
W/o LDistance 161.04 23.29 24.30

W/o GS Inpainting 46.37 8.77 27.21

5. Conclusion 522

In this paper, we presented GAP, a novel approach that gen- 523
erates high-quality 3D Gaussians from raw point clouds 524
with text guidance. We design a multi-view optimization 525
framework which learns Gaussian attributes from text-to- 526
image diffusion models. The surface-anchoring constraint 527
and diffuse-based Gaussian inpainting scheme are proposed 528
to ensure geometric accuracy and appearance completion. 529
Extensive experiments demonstrate GAP’s effectiveness on 530
both synthetic and real-world scanned data, from objects to 531
large-scale scenes. 532
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