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Abstract

Estimating normals for noisy point clouds is a persistent001
challenge in 3D geometry processing, particularly for end-002
to-end oriented normal estimation. Existing methods gen-003
erally address relatively clean data and rely on supervised004
priors to fit local surfaces within specific neighborhoods. In005
this paper, we propose a novel approach for learning nor-006
mals from noisy point clouds through local gradient-aware007
surface filtering. Our method projects noisy points onto the008
underlying surface by utilizing normals and distances de-009
rived from an implicit function constrained by local gradi-010
ents. We start by introducing a distance measurement op-011
erator for global surface fitting on noisy data, which inte-012
grates projected distances along normals. Following this,013
we develop an implicit field-based filtering approach for014
surface point construction, adding projection constraints015
on these points during filtering. To address issues of over-016
smoothing and gradient degradation, we further incorpo-017
rate local gradient consistency constraints, as well as lo-018
cal gradient orientation and aggregation. Comprehensive019
experiments on normal estimation, surface reconstruction,020
and point cloud denoising demonstrate the state-of-the-art021
performance of our method. The source code and trained022
models will be made publicly available.023

1. Introduction024

Point clouds are indispensable in 3D computer vision and025
play a foundational role in applications such as virtual re-026
ality, autonomous driving, and robotic perception. Sur-027
face normal estimation, as a fundamental task in 3D point028
cloud analysis, is critical for understanding object geometry029
and supporting downstream tasks like surface reconstruc-030
tion [22, 23] and segmentation [24]. However, real-world031
point clouds are often contaminated with noise, leading to032
distorted representations that hinder accurate normal esti-033
mation. Traditional methods [2, 29, 30, 32, 33, 62] that rely034
on supervised learning require extensive labeled data and035
struggle with noisy, unstructured data, making it challeng-036
ing to obtain reliable normals from corrupted point clouds.037

To address these limitations, we propose a novel ap- 038
proach that leverages local gradient-aware surface filtering 039
for estimating oriented normals in noisy point clouds. In- 040
spired by recent advancements in neural implicit represen- 041
tations, we adopt techniques from implicit function learn- 042
ing to bridge the gap between raw point clouds captured 043
by 3D sensors and the smooth, continuous surfaces re- 044
quired for inferring accurate normals. Unlike existing meth- 045
ods [1, 35, 38, 60] that focus solely on individual point 046
constraints, often resulting in over-smoothing or gradient 047
degradation, our method can recover high-quality 3D ge- 048
ometry from noisy observations by introducing specialized 049
loss functions with local gradient constraints. 050

To learn the surface representations, we introduce a dis- 051
tance measurement operator that enables global surface fit- 052
ting from noisy data by incorporating projected distances 053
along normals. We propose implicit field-based filtering to 054
project points onto the underlying surface based on normals 055
and distances derived from an implicit function, which is 056
defined through signed distance fields and local gradient 057
constraints. To properly guide the projection during the 058
filtering, we incorporate the constraints of local gradient 059
consistency, orientation and aggregation to preserve high- 060
frequency geometric details in noisy data. The surface filter- 061
ing effectively reduces noise while maintaining the shape’s 062
intricate details, allowing us to achieve a refined and noise- 063
resilient surface representation. To demonstrate the effec- 064
tiveness of our method, we evaluate it on three key tasks in 065
point cloud processing: normal estimation, surface recon- 066
struction, and point cloud denoising. Experimental results 067
show that our approach significantly improves performance 068
on noisy data, highlighting its robustness and suitability for 069
practical 3D vision applications. In summary, our main con- 070
tributions include: 071

• We propose a new paradigm for surface fitting from noisy 072
point clouds by conducting filtering using normals and 073
distances derived from an implicit function. 074

• We introduce the local gradient consistency constraints, 075
local gradient orientation and aggregation to enhance the 076
surface filtering for learning normals. 077

• We report the state-of-the-art performance of our method 078
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across three tasks in point cloud processing.079

2. Related Work080

Normal Estimation. The classical approaches for nor-081
mal estimation include Principal Component Analysis082
(PCA) [18] and its refinements [20, 42], which remain083
popular in many geometric processing tasks. Other meth-084
ods [7, 15, 27], by introducing new representations of com-085
plex surfaces, estimate normals over larger neighborhoods.086
However, these techniques often struggle with noisy data087
and tend to oversmooth geometry when more neighboring088
points are incorporated. More recent methods [3, 13, 16,089
29, 34, 48, 50, 56, 57] leverage neural networks trained on090
large, labeled datasets to regress normals for point clouds.091
Additionally, other approaches [2, 6, 26, 28, 55, 59, 62]092
focus on predicting pointwise weights through neural net-093
works, with normals subsequently calculated using tradi-094
tional surface fitting techniques. However, these methods095
typically produce unoriented normals and require super-096
vised training with ground truth data for accurate normal097
predictions.098
Normal Orientation. For normal orientation, classical099
methods like Minimum Spanning Tree (MST) [18] and its100
improved variants [21, 25, 41, 45, 51] rely on propagat-101
ing orientations through measuring the similarity between102
neighboring points. Later, some approaches [10, 49, 52]103
employ volumetric representation techniques to enhance ro-104
bustness across diverse data, though they often require man-105
ual tuning of hyperparameters for different data types. More106
recently, researchers have developed deep learning meth-107
ods [17, 30, 32, 33, 46] that directly regress oriented nor-108
mals from point clouds in a data-driven manner. While109
these learning-based methods generally outperform tradi-110
tional data-independent approaches, they often rely heavily111
on costly labeled training data and struggle with accurately112
orienting normals in noisy point clouds. In contrast, our113
proposed method can learn oriented normals directly from114
a single noisy point cloud without any labeled data.115
Learning Implicit Function from Raw Point Clouds. Un-116
like traditional approaches that train neural networks using117
supervised signals such as signed distances or occupancy118
labels, recent works [1, 8, 35, 38–40, 43, 58, 60] have pro-119
posed methods to directly learn implicit functions from raw120
point clouds in an unsupervised manner. These methods121
train neural networks to overfit individual point clouds to122
infer implicit functions without relying on learned priors.123
Leveraging gradient constraints [1, 8, 38], designed pri-124
ors [39, 40], implicit geometric regularization [14], or dif-125
ferentiable Poisson solvers [43], these techniques can gen-126
eralize across varying point cloud sizes and accommodate127
limited input data. In this work, we build on the neural128
network’s approximation ability and incorporate new tech-129
niques for learning signed distance fields. By applying sur-130

face filtering, we aim to recover geometric details based on 131
implicit field information and accurately infer normals from 132
noisy point clouds. 133

3. Method 134

Preliminary. Implicit representation approaches usually 135
denote surfaces as the level sets of implicit function, i.e., 136
Sd =

{
x ∈ R3 | fθ(x)=d

}
, where fθ : R3 → R is imple- 137

mented as a neural network with parameter θ. The implicit 138
function can be learned by overfitting the neural network 139
on individual point clouds. If the function fθ is correctly 140
defined by a signed distance field inferred from points, the 141
normal of a point p in this implicit field can be obtained by 142
np =∇fθ(p)/ ∥∇fθ(p)∥, where ∥·∥ means the Euclidean 143
L2-norm and ∇fθ(p) denotes the gradient at p. Specifi- 144
cally, the zero level set fθ(x) = 0 is usually extracted as 145
the object or scene surface S. Random points on a level set 146
have specific signed distances, such as fθ(x) < 0 for out- 147
side and fθ(x)> 0 for inside. The gradients on a specific 148
iso-surface should have uniform orientations. In this work, 149
we aim to apply surface filtering to project noisy points onto 150
the underlying surface defined by the zero level set without 151
supervision of ground truth labels or clean points. We use 152
the signed distances and normals of noisy points to define 153
the projection path and incorporate rules of the local field. 154

3.1. Surface Fitting and Filtering 155

We perform surface fitting and point filtering by learning an 156
implicit field from a given noisy point cloud P = {pi|pi ∈ 157
R3}Ni=1. From the perspective of implicit function learning, 158
we aim to construct a signed distance field that minimizes 159
the signed distance of all points to a zero level set, defined 160
as follows: 161

argmin
fθ

1

N

N∑
i=1

|fθ(pi)|2. (1) 162

The underlying surface can be fitted by finding the zero 163
level set of the implicit function fθ. However, directly fit- 164
ting this surface would force it to pass through all noisy 165
points, resulting in a zero signed distance for each point and 166
thus obtaining a solution to the above equation that fails to 167
accurately represent the desired surface. 168

From the perspective of data fitting, we typically solve 169
an optimization problem to obtain a surface whose distance 170
to all data points is minimized. The surface S to be solved 171
is continuous, and we use its discretization to approximate 172
it. Let P̂ = {p̂i|p̂i ∈ R3}N ′

i=1, N ′ > N denote the dis- 173
cretization of the clean surface, i.e., the point set P̂ lies on 174
the surface. In the implicit field space, points p̂i should be 175
located on the zero level set, while noisy points pi may be 176
on a non-zero level set. By conducting surface fitting using 177
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Figure 1. We minimize the distances from noisy points p to dis-
crete points p̂ of the underlying surface for implicit surface fit-
ting and filtering. To this end, (a-c) we adopt three distance mea-
sures d, d1 and d2, and use their sum to handle various cases. (d)
Meanwhile, we enforce local gradient consistency between adja-
cent level sets where the noisy points are located. Red arrows
indicate normals (i.e., gradients).

the points in P , we can solve for the surface points by178

argmin
P̂

1

N

N∑
i=1

∥p̂i − pi∥, (2)179

where each point p̂i is selected for a corresponding point pi180
based on certain criteria, such as nearest neighbor search-181
ing. However, this distance measure is inadequate because182
p̂i and pi do not always have a one-to-one correspondence183
due to the discretization of these points and the interference184
of noise. As a result, this approach cannot accurately mea-185
sure the distance and often yields an over-smoothed geom-186
etry or even fails.187

To comprehensively measure the distance error between188
two points from multiple perspectives, we employ two pro-189
jection distance measurements using the normals np̂i

and190
npi

at points p̂i and pi, respectively. Specifically, these two191
projection distances are calculated as d1 = |(p̂i − pi)n

⊤
pi
|192

and d2= |(p̂i−pi)n
⊤
p̂i
|, as illustrated in Fig. 1(a-c). The key193

insight behind these distance measurements is that if p̂i is194
the true corresponding surface point of pi, then all three dis-195
tance errors should be minimized. Taking these projection196
distances into account, our distance measurement operator197
for surface fitting from noisy points is defined as198

D(p̂i,pi) =
1

N

N∑
i=1

∥p̂i−pi∥+|(p̂i−pi)n
⊤
pi
|+|(p̂i−pi)n

⊤
p̂i
|.

(3)199
An ideal distance measure is shown in Fig. 1(d), where200

the level surface is parallel, and the points are correctly201
matched, resulting in the three distance errors being equal.202

Next, we introduce the process to obtain the surface203
points p̂ and the corresponding point normals n. To deter-204

S

'

'

Figure 2. Left: computation of fθ(q) · n̄q and n̄q = (nq +
nq′)/||nq + nq′ ||. Gradients point to the positive side of the
signed distance field. Right: computation of H(q) for specific
noise and density using different neighborhood scales K.

Figure 3. Normal estimation through local gradient aggregation.

mine the point p̂, we first define a new point set Q, which is 205
generated from the raw point set P . This set, Q={qi | qi∈ 206
R3}Ni=1, is also randomly distributed around the underlying 207
surface. Since the gradient indicates the direction in which 208
the signed distance from the surface increases most rapidly, 209
moving a point along or against the gradient (depending on 210
the sign of fθ) will allow it to reach its nearest position 211
on the surface. We thus adopt a point translation opera- 212
tion [31, 38] to project a query point q to a new position q′, 213
where q′=q − fθ(q) · nq . If the implicit function is prop- 214
erly learned, it should provide the correct signed distance 215
fθ and gradient ∇fθ to move the point q to its nearest loca- 216
tion on the underlying surface. We then obtain the surface 217
points set Q′ = {q′

i | q′
i = qi − fθ(qi) · nqi

, qi ∈ Q}Ni=1. 218
Using the raw points in P and their nearest points in Q′, 219
we fit a surface by applying the distance measure operator 220
in Eq. (3), and the loss function is formulated as 221

Ld =
1

N

N∑
i=1

∥q′
i − pi∥+ |(q′

i − pi)n
⊤
pi
|+ |(q′

i − pi)n
⊤
q′
i
|.

(4) 222
For constructing the noisy point set Q, we employ a Gaus- 223
sian based sampling strategy [1, 5]. Specifically, we first 224
obtain uniformly sampled points p from P , then add Gaus- 225
sian noise N (p, σ2) to each p, where the standard deviation 226
parameter σ is adaptively set based on the distance from p 227
to its ξ-th nearest neighbor. In our surface fitting and filter- 228
ing, we include P , which together with Q, to provide more 229
useful information from the raw data. 230

Based on the surface points q′
i∈Q′ and their correspond- 231

ing noisy observations qi∈Q and pi∈P , we can define the 232
implicit function learning process using Eq. (1) as follows: 233

Lsd =
1

N

N∑
i=1

|fθ(q′
i)|

2
+ |fθ(qi)|2 + |fθ(pi)|2 . (5) 234

Since the surface points in Q′ are located on the zero level 235
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set, their signed distances should ideally approach zero.236
To enforce this, we empirically assign a larger weight to237
their signed distance (e.g., ten times greater) compared to238
the noisy observations in Q and P , which are normally239
distributed near the underlying surface and their average240
signed distances should be zero.241

Although Ld and Lsd can guide global surface fitting and242
filtering, our ablation studies reveal that using these terms243
alone fails to capture accurate implicit surfaces and point244
normals in noisy point clouds. One issue with this approach245
is that it neglects local geometric details, leading to over-246
smoothed and noise-sensitive surfaces. Another significant247
issue is gradient degradation, which disrupts surface fitting248
and often accompanies noisy data and complex geometries.249
For Eq. (4), we observe that ∇fθ=0 can be an optimal so-250
lution, minimizing the function. This degradation reduces251
the objective to the original formulation in Eq. (2), which252
implies no valid level set learned by the network, result-253
ing in an inaccurate local distance field and disordered iso-254
surfaces. The solution we propose next incorporates local255
gradient consistency constraints, gradient aggregation be-256
tween level sets, and local gradient orientation within a level257
set, effectively addressing these issues.258

3.2. Local Gradient Consistency of Inter-Level259

Inspired by the strategy employed in [31], which constrains260
directional consistency in a multi-step moving process. We261
hope to make the projection Q → Q′ bridge the geomet-262
ric relationship between noisy points and their correspond-263
ing surface points, enhancing the surface filtering accuracy.264
We constrain the local gradients of neighboring level sets to265
have similar directions, as illustrated in Fig. 1(d). Specif-266
ically, we enforce similarity in gradient direction between267
the initial noisy point qi and its projected point q′

i. Rec-268
ognizing that local gradients between distant level sets may269
vary, we account for the signed distance in the constraint.270
Thus, the confidence-weighted direction distance, used to271
evaluate gradient consistency between points on neighbor-272
ing level sets, is formulated as273

Ln =
1

N

N∑
i=1

(
1− nq′

i
n⊤

qi

)
· wi , (6)274

where wi = exp(−ρ · |fθ(qi)|) is an adaptive weight that275
emphasizes points near the underlying surface based on the276
predicted distance. Ablation experiments show that this loss277
can not only reduce noise impact but also guide the network278
to generate valid gradients and surface points on level sets.279

3.3. Local Gradient Orientation of Intra-Level280

We also focus on the orientation of local gradients at each281
level set and examine the generation of surface points Q′282
from the raw data. From the previous equation q′ = q −283

fθ(q)·nq , we see that the term fθ(q)·nq mainly determines 284
the position of the generated surface points. If the surface 285
point q′ is known, this term should be as close as possible 286
to H(q)=q − q′, which we measure by 287

Lv = ∥fθ(q) · nq −H(q)∥ . (7) 288

Since we only have noisy inputs, we need a robust strat- 289
egy to approximate H(q). Traditional least squares meth- 290
ods typically use plane fitting within a local neighborhood: 291

H(q) =
1

K

K∑
k=1

(q − pk), pk ∈ KK(q,P ) , (8) 292

where KK(q,P ) denotes the set of K nearest points to q 293
in P . Here, H(q) is the oriented vector from the averaged 294

position p̄ = 1
K

∑K
k=1 pk to the query point q. However, 295

this fixed neighborhood approach is not robust against vary- 296
ing noise levels, density variations and different geometric 297
structures. In this work, we allow the network model to 298
learn an adaptive neighborhood size to better approximate 299
the surface point by considering multiple scales instead of 300
relying on a fixed neighborhood. The multi-scale approxi- 301
mation of the surface point q′ is formulated as 302

Lv =

NK∑
j=1

∥fθ(q) · nq −Hj(q)∥ , (9) 303

where Hj(q) is computed using a specific size selected 304

from a scale set {Kj}NK
j=1, as shown in Fig. 2 for specific 305

noise and density. This formulation reduces the impact of 306
inaccuracies in P by utilizing multi-scale local neighbors, 307
thereby inferring the possible correct position of q′ from 308
multiple corrupted observations of the same local region. 309

Learning from multiple corrupt observations enhances 310
performance on noisy data, but there remains room for im- 311
provement often overlooked by previous works [31, 58]. 312
These approaches directly use nq as the normal of q, ne- 313
glecting the inaccuracies in gradients introduced by the lo- 314
cal approximation in Eq. (8). We take this a step further 315
by rethinking the generation of q′ from q and examining 316
the geometric relationship of their gradients in the implicit 317
field. For each query point qi ∈Q, we solve its normal as 318
the sum of the normals at the two endpoints of the projection 319
path, i.e., n̄qi

=(nqi
+nq′

i
)/||nqi

+nq′
i
||, as illustrated in 320

Fig. 2. The objective function then becomes the aggregation 321
of errors at each neighborhood size scale: 322

Lv =

NK∑
j=1

1

N

N∑
i=1

∥∥∥∥∥fθ(qi) · nqi
+ nq′

i

||nqi + nq′
i
||
− Hj(qi)

∥∥∥∥∥ .
(10) 323

Our method learns to identify underlying surface points by 324
using local plane fitting of multi-scale neighbors and replac- 325
ing nq with the averaged normal n̄q . In this way, we can 326
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Figure 4. Visual comparison of oriented normals on two point clouds with complex geometry. Colors indicate normal errors.
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Figure 5. Comparison with implicit function methods. As the noise increases (from low to high), our method becomes more advantageous.

effectively reduce noise-induced errors and avoid potential327
zero values in nq due to gradient degradation.328
Final Loss. Our final loss function of learning normals329
from noisy points is defined as330

L = Lsd + λ1Ld + λ2Ln + Lv , (11)331

where the weight factors λ1 and λ2 are first set empirically332
and then fine-tuned based on experimental results.333

3.4. Local Gradient Aggregation of Inter-Level334

We train the network model to overfit on a given single point335
cloud P . To infer the normal of a point p ∈ P using the336
learned model, we first use the combination of P and Q as337
the input and derive the gradients of all points. The addi-338
tional set Q is used to fully explore the possible true spatial339
positions of noisy points P corresponding to the underlying340
surface. We then search for the κ nearest neighbors of p in341
the point set {P ,Q}, as shown in Fig. 3, and the final nor-342
mal of p is calculated as the weighted average of the normal343
at p and its neighboring point normals n̄′

i, as follows:344

np =
1

κ+ 1

(
n̄p +

κ∑
i=1

n̄′
i · µi

)
, (12)345

where µi = exp (−δi − ϕ(n̄′
i, n̄p)), and δi is the Eu-346

clidean distance between point p and its neighboring points.347

ϕ(n̄′
i, n̄p) =

(
(1− n̄′

i n̄
⊤
p )/(1− cos ϑ)

)2
, where ϑ is a 348

given angle. Given the nearest neighbors, the term µ adap- 349
tively assigns higher weight to neighboring points that are 350
closer to point p or have a small normal angle with it. Ab- 351
lation experiments show that this strategy is effective in im- 352
proving the robustness of the algorithm in various cases. 353

4. Experiments 354

Implementation. We employ a simple neural network sim- 355
ilar to that used in [1, 31, 38]. It consists of eight linear lay- 356
ers and includes a skip connection. We also use the geomet- 357
ric network initialization from [1]. In all evaluation experi- 358
ments, the network structure and loss function components 359
remain consistent. The neighborhood scale set {Kj}NK

j=1 is 360
chosen as {1,K/2,K}, with NK = 3, K = 8, and we set 361
the parameters λ2 = 0.01, ρ = 60, κ = 8, and ϑ = π/12. 362
The hyperparameters ξ and λ1 are adjusted based on spe- 363
cific datasets. The number of points N used in each train- 364
ing iteration is set to 5000. As in [16, 29, 32], we evaluate 365
the normal estimation results using Root Mean Squared Er- 366
ror (RMSE) and Percentage of Good Points (PGP). More 367
results are provided in the supplementary material. 368

4.1. Normal Estimation 369

Comparison of Oriented Normal. Our approach requires 370
no training labels and learns solely from raw data. We com- 371
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Table 1. Oriented RMSE on PCPNet and FamousShape datasets. We achieve better performance even compared with supervised methods.

Methods
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None Low Medium High Stripe Gradient Average None Low Medium High Stripe Gradient Average

Supervised
AdaFit [62]+MST [18] 27.67 43.69 48.83 54.39 36.18 40.46 41.87 43.12 39.33 62.28 60.27 45.57 42.00 48.76
AdaFit [62]+SNO [45] 26.41 24.17 40.31 48.76 27.74 31.56 33.16 27.55 37.60 69.56 62.77 27.86 29.19 42.42
AdaFit [62]+ODP [41] 26.37 24.86 35.44 51.88 26.45 20.57 30.93 41.75 39.19 44.31 72.91 45.09 42.37 47.60
HSurf-Net [29]+MST [18] 29.82 44.49 50.47 55.47 40.54 43.15 43.99 54.02 42.67 68.37 65.91 52.52 53.96 56.24
HSurf-Net [29]+SNO [45] 30.34 32.34 44.08 51.71 33.46 40.49 38.74 41.62 41.06 67.41 62.04 45.59 43.83 50.26
HSurf-Net [29]+ODP [41] 26.91 24.85 35.87 51.75 26.91 20.16 31.07 43.77 43.74 46.91 72.70 45.09 43.98 49.37
PCPNet [16] 33.34 34.22 40.54 44.46 37.95 35.44 37.66 40.51 41.09 46.67 54.36 40.54 44.26 44.57
DPGO [46] 23.79 25.19 35.66 43.89 28.99 29.33 31.14 - - - - - - -
SHS-Net [32, 33] 10.28 13.23 25.40 35.51 16.40 17.92 19.79 21.63 25.96 41.14 52.67 26.39 28.97 32.79
NGLO [30] 12.52 12.97 25.94 33.25 16.81 9.47 18.49 13.22 18.66 39.70 51.96 31.32 11.30 27.69

Unsupervised
PCA [18]+MST [18] 19.05 30.20 31.76 39.64 27.11 23.38 28.52 35.88 41.67 38.09 60.16 31.69 35.40 40.48
PCA [18]+SNO [45] 18.55 21.61 30.94 39.54 23.00 25.46 26.52 32.25 39.39 41.80 61.91 36.69 35.82 41.31
PCA [18]+ODP [41] 28.96 25.86 34.91 51.52 28.70 23.00 32.16 30.47 31.29 41.65 84.00 39.41 30.72 42.92
LRR [53]+MST [18] 43.48 47.58 38.58 44.08 48.45 46.77 44.82 56.24 57.38 45.73 64.63 66.35 56.65 57.83
LRR [53]+SNO [45] 44.87 43.45 33.46 45.40 46.96 37.73 41.98 59.78 60.18 45.02 71.37 62.78 59.90 59.84
LRR [53]+ODP [41] 28.65 25.83 36.11 53.89 26.41 23.72 32.44 39.97 42.17 48.29 88.68 44.92 47.56 51.93
IsoConstraints [49] 24.42 26.52 87.30 94.99 28.69 32.02 48.99 38.23 41.59 83.11 93.07 42.47 49.68 58.03
NeuralGF [31] 10.60 18.30 24.76 33.45 12.27 12.85 18.70 16.57 19.28 36.22 50.27 17.23 17.38 26.16
Ours 9.71 11.99 24.39 32.74 11.30 11.84 17.00 13.71 18.40 34.97 49.25 14.35 13.76 24.07

Table 2. Comparison of oriented PGP-70◦ (%) on the PCPNet and
FamousShape datasets under medium noise.

Dataset
HSurf-Net

+ODP
Iso-

Cons. PCPNet NGLO SHS-Net NeuralGF Ours

PCPNet 90.28 58.54 89.47 94.59 94.59 94.67 94.96
Famous. 87.57 57.83 87.19 91.10 90.90 92.87 93.14

Table 3. Oriented normal RMSE on sparse point clouds. IsoCon-
straints [49] and GCNO [52] are traditional methods.

HSurf-Net
+ODP

Iso-
Cons. GCNO PCPNet NGLO SHS-Net NeuralGF Ours

3K 63.88 40.01 33.40 53.13 32.65 37.31 25.54 24.03
5K 62.51 37.45 41.24 48.48 28.34 32.64 24.35 21.80

Table 4. Oriented RMSE on the SceneNN and ScanNet datasets.

Dataset
HSurf-Net

+ODP PCPNet NGLO SHS-Net NeuralGF Ours

SceneNN
Clean 51.85 70.70 48.52 78.71 47.80 44.82
Noisy 50.24 70.82 45.42 77.60 48.69 40.66
Average 51.05 70.76 46.97 78.16 48.24 42.74

ScanNet 49.34 68.10 39.40 74.36 39.10 37.09

pare our method with both supervised and unsupervised372
methods, including end-to-end and two-stage pipeline ap-373
proaches. In Table 1, we report quantitative evaluation re-374
sults on the PCPNet [16] and FamousShape [32] datasets.375
Our method achieves superior performance across most376
data categories (in terms of noise levels and density vari-377

ations) and delivers the best average results, even compared 378
to supervised approaches. Quantitative comparisons of PGP 379
at a threshold of 70◦ are reported in Table 2, indicating that 380
our method provides more accurate normals for a higher 381
proportion of points. 382

In Table 3, we present evaluation results on sparse point 383
cloud data. These point sets are sparse versions of the Fa- 384
mousShape dataset [32], each containing only 3000 and 385
5000 points. The quantitative comparison results demon- 386
strate that our method achieves the lowest error on these 387
sparse point sets. We further evaluate our approach on 388
real-world scanned datasets to assess its generalization ca- 389
pability. Table 4 provides quantitative results on the Sce- 390
neNN [19] and ScanNet [11] datasets, where our method 391
outperforms baselines, demonstrating a stronger ability to 392
handle real-world data. 393

Comparison of Unoriented Normal. In this evaluation, 394
we use our oriented normals to compare with baselines but 395
ignore normal orientations, which are often challenging to 396
determine. In Table 5, we report quantitative results on the 397
PCPNet and FamousShape datasets. Most existing methods 398
for unoriented normal estimation rely on supervised train- 399
ing with ground truth normals. We evaluate both super- 400
vised and unsupervised methods, and our approach outper- 401
forms in most data categories across both datasets, achiev- 402
ing the highest average results among unsupervised meth- 403
ods. Notably, CAP-UDF [58, 60] performs well on noise- 404
free point clouds but struggles with noisy data. In contrast, 405
our method demonstrates a significant advantage on noisy 406
data. The quantitative comparisons of PGP at a threshold of 407
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Table 5. Unoriented RMSE on PCPNet and FamousShape datasets. We achieve better performance compared with unsupervised methods.

Methods
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None Low Medium High Stripe Gradient Average None Low Medium High Stripe Gradient Average

Supervised
DeepFit [2] 6.51 9.21 16.73 23.12 7.92 7.31 11.80 11.21 16.39 29.84 39.95 11.84 10.54 19.96
Zhang et al. [55] 5.65 9.19 16.78 22.93 6.68 6.29 11.25 9.83 16.13 29.81 39.81 9.72 9.19 19.08
AdaFit [62] 5.19 9.05 16.45 21.94 6.01 5.90 10.76 9.09 15.78 29.78 38.74 8.52 8.57 18.41
GraphFit [28] 5.21 8.96 16.12 21.71 6.30 5.86 10.69 8.91 15.73 29.37 38.67 9.10 8.62 18.40
NeAF [34] 4.20 9.25 16.35 21.74 4.89 4.88 10.22 7.67 15.67 29.75 38.76 7.22 7.47 17.76
HSurf-Net [29] 4.17 8.78 16.25 21.61 4.98 4.86 10.11 7.59 15.64 29.43 38.54 7.63 7.40 17.70
NGLO [30] 4.06 8.70 16.12 21.65 4.80 4.56 9.98 7.25 15.60 29.35 38.74 7.60 7.20 17.62
SHS-Net [32, 33] 3.95 8.55 16.13 21.53 4.91 4.67 9.96 7.41 15.34 29.33 38.56 7.74 7.28 17.61
Du et al. [13] 3.85 8.67 16.11 21.75 4.78 4.63 9.96 6.92 15.05 29.49 38.73 7.19 6.92 17.38
CMG-Net [48] 3.87 8.45 16.08 21.89 4.85 4.45 9.93 7.07 14.83 29.04 38.93 7.43 7.03 17.39
MSECNet [50] 3.84 8.74 16.10 21.05 4.34 4.51 9.76 6.85 15.60 29.22 38.13 6.64 6.65 17.18

Unsupervised
CAP-UDF [60] 7.59 11.99 37.69 47.64 8.26 7.36 20.09 14.34 21.62 50.43 55.33 13.31 13.45 28.08
Boulch et al. [4] 11.80 11.68 22.42 35.15 13.71 12.38 17.86 19.00 19.60 36.71 50.41 20.20 17.84 27.29
PCV [54] 12.50 13.99 18.90 28.51 13.08 13.59 16.76 21.82 22.20 31.61 46.13 20.49 19.88 27.02
Jet [7] 12.35 12.84 18.33 27.68 13.39 13.13 16.29 20.11 20.57 31.34 45.19 18.82 18.69 25.79
PCA [18] 12.29 12.87 18.38 27.52 13.66 12.81 16.25 19.90 20.60 31.33 45.00 19.84 18.54 25.87
LRR [53] 9.63 11.31 20.53 32.53 10.42 10.02 15.74 17.68 19.32 33.89 49.84 16.73 16.33 25.63
NeuralGF [31] 7.89 9.85 18.62 24.89 9.21 9.29 13.29 13.74 16.51 31.05 40.68 13.95 13.17 21.52
Ours 7.60 9.45 16.87 22.49 8.52 8.55 12.25 11.90 15.84 29.90 39.08 11.82 11.36 19.98

Table 6. Comparison of unoriented PGP-20◦ (%) on the PCPNet
and FamousShape datasets under the highest noise.

Dataset Jet PCA PCV LRR Boulch et al. CAP-UDF NeuralGF Ours

PCPNet 64.60 65.06 62.79 52.33 44.03 24.84 70.02 74.65
Famous. 27.46 28.05 25.55 19.29 17.52 12.23 37.32 42.62

Table 7. Surface reconstruction on the SRB dataset.

SAP Neural-Pull NeuralGF CAP-UDF IF Ours

CDL1 0.4787 0.2845 0.2623 0.2766 0.2519 0.2518
F-Score 0.9383 0.9689 0.9758 0.9760 0.9782 0.9786

Table 8. Surface reconstruction on the 3D Scene dataset.

Stonewall Lounge
Metric CDL2 CDL1 NC CDL2 CDL1 NC

Neural-Pull [38] 27.2995 3.0477 0.8222 0.3172 0.2350 0.8949
OSP [39] 0.7241 0.5226 0.8878 7.3628 1.6020 0.6828
SAP [43] 0.5499 0.2988 0.8599 0.1372 0.2221 0.8480
NeuralGF [31] 0.0534 0.0934 0.9469 0.1428 0.1658 0.9059
CAP-UDF [60] 0.0107 0.0795 0.9403 0.0221 0.1086 0.8903
IF [35] 0.1222 0.1998 0.9238 0.1046 0.1519 0.8979
Ours 0.0093 0.0777 0.9527 0.1158 0.1531 0.9093

20◦ are reported in Table 6, showing that our method deliv-408
ers more accurate normals for a larger proportion of points.409

4.2. Surface Reconstruction410

The zero level set of our learned implicit function can be ex-411
tracted as the object surface using the marching cubes algo-412
rithm [36]. We compare our surface reconstruction perfor-413
mance with other implicit representation methods, includ-414

ing SAL [1], SAP [43], Neural-Pull [38], CAP-UDF [60], 415
OSP [39], PCP [40], IF [35], and NeuralGF [31]. As shown 416
in Fig. 5, we present a visual comparison of reconstructed 417
surfaces from point clouds at varying noise levels. Our 418
method shows a clear advantage in handling noisy data, pro- 419
ducing cleaner and more complete structures than baseline 420
methods. For surface reconstruction from real-world data, 421
we follow previous works [35, 40, 60] and evaluate on the 422
SRB dataset [47] and 3D Scene dataset [61], using Chamfer 423
distance (CD), Normal Consistency (NC), and F-Score met- 424
rics. The quantitative results reported in Table 7 and Table 8 425
show that our method achieves the highest accuracy on the 426
SRB dataset and in most cases of the 3D Scene dataset. 427

4.3. Point Cloud Denoising 428

In Sec. 3.1, we use the raw point cloud P to construct a 429
new sample set Q, and obtain the corresponding surface 430
point set Q′ through filtering. For point cloud denoising, 431
we take all points in the raw data P as input to the trained 432
model. By applying the transformation P ′ = {p′

i | p′
i = 433

pi−fθ(pi)·npi , pi ∈ P }Ni=1, the new generated points P ′ 434
should ideally lie on the underlying clean surface. Follow- 435
ing prior works [9, 37], we evaluate our denoising perfor- 436
mance on the PointCleanNet dataset [44], a standard bench- 437
mark that includes two resolution levels (10K and 50K 438
points) and three noise levels (scales of 1%, 2%, and 3% of 439
the shape bounding sphere’s radius). We also use Chamfer 440
distance (CD) and point-to-mesh distance (P2M) as metrics 441
to evaluate the denoised point clouds. The quantitative com- 442
parison results are reported in the Table 1 of supplementary 443
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Table 9. Ablations for unoriented and oriented normal estimation on the FamousShape dataset. We decompose Ld into Lld and Lpd.

Category
Unoriented Normal RMSE Oriented Normal RMSE

Noise Density Noise Density
None Low Medium High Stripe Gradient Average None Low Medium High Stripe Gradient Average

(a)

Lld 25.19 33.08 38.42 46.76 28.80 25.51 32.96 37.51 67.44 84.01 69.70 45.80 35.95 56.73
Lld + Lpd + Lsd 15.74 23.08 54.64 56.10 14.33 15.53 29.90 22.11 39.46 88.36 92.84 17.97 21.94 47.11
Lld + Lpd + Lsd + Lv 16.98 16.60 33.83 41.23 18.85 18.37 24.31 26.56 23.91 55.90 83.79 28.98 27.41 41.09
Lld + Lpd + Lsd + Ln 13.41 16.70 31.11 40.48 13.00 12.78 21.25 19.42 19.48 36.03 50.38 14.76 13.29 25.56
Lld + Lpd + Ln + Lv 12.00 15.87 30.00 39.30 11.95 13.14 20.38 14.66 18.89 34.96 55.00 15.12 16.45 25.85
Lld + Lsd + Ln + Lv 12.61 15.59 30.19 39.13 12.38 11.69 20.27 16.06 18.30 38.79 48.26 15.70 14.99 25.35
Lld + Ln + Lv 12.28 15.63 29.88 39.26 12.18 12.19 20.24 14.98 18.25 34.62 50.82 14.95 21.90 25.92
Lpd + Ln + Lv 11.88 15.72 29.97 39.05 12.24 12.14 20.17 13.32 18.34 34.87 48.44 15.08 23.17 25.54
Lsd + Ln + Lv 12.49 15.47 29.94 39.19 12.49 12.11 20.28 15.06 17.15 35.25 48.27 15.44 16.62 24.63
Lpd + Lsd + Ln + Lv 11.81 15.73 29.97 39.08 12.01 11.43 20.00 13.31 18.36 34.89 48.87 15.15 14.07 24.11

(b) w/o Aggregation 12.05 16.02 30.04 39.18 11.96 11.51 20.13 13.82 18.53 35.11 49.34 14.46 13.85 24.19

(c) K = 4 11.89 16.00 30.22 39.51 17.45 11.17 21.04 14.80 19.07 35.16 51.31 21.49 13.65 25.91
K = 16 13.71 15.77 29.86 39.32 12.11 13.49 20.71 20.41 18.44 34.90 51.19 14.14 17.87 26.16

Full 11.90 15.84 29.90 39.08 11.82 11.36 19.98 13.71 18.40 34.97 49.25 14.35 13.76 24.07

material. Unlike existing learning-based denoising meth-444
ods, which typically require clean surface data for super-445
vised training, our unsupervised method achieves compa-446
rable performance to these supervised baselines. Addition-447
ally, our network is lightweight, with approximately 461K448
parameters (14% of IterativePFN’s 3.2M parameters [12]).449
This experiment demonstrates that our method can effec-450
tively recover underlying surfaces from noisy point clouds.451

4.4. Ablation Studies452

Our goal is to achieve optimal average results for both un-453
oriented and oriented normal estimation. The ablation stud-454
ies in Table 9 are discussed as follows.455

(a) Loss Functions. We evaluate various combinations of456
the proposed loss functions from Eq. (11) to train the net-457
work model separately. For a thorough analysis, we de-458
compose the loss in Eq. (4) as Ld = Lld + Lpd, where459
Lld=d=∥p̂ − p∥ and Lpd=d1 + d2 (see Fig. 1). We ob-460
serve that using only Lld yields the poorest results, but the461
performance improves significantly when other loss terms462
are included. The introduction of Lpd and Lsd is bene-463
ficial, while the addition of Ln and Lv notably enhances464
performance. Some ablations yield better results in certain465
data categories but fail to provide consistent improvement466
across both unoriented and oriented normal estimation. Our467
method achieves the best overall performance only when all468
the loss functions are applied.469

(b) Normal Aggregation. In Sec. 3.4, we propose a neigh-470
borhood weighted aggregation strategy to infer the normals471
of the raw data P . Here, we use the raw data as input and472
infer the gradient of the implicit field at each point p ∈ P473
as its normal. The ablation results validate the effectiveness474
of this inference strategy, showing improved performance475
in both unoriented and oriented normal estimation tasks.476

(c) Neighborhood Scale. For our neighborhood scale set 477
{Kj}NK

j=1, we use the base parameter K = 8 in our imple- 478
mentation. Here, we test different values of K, including 4 479
and 16. Results indicate that while these alternative values 480
may yield slight advantages in specific data categories, our 481
chosen setting provides better results across both unoriented 482
and oriented normal estimation tasks. 483

5. Conclusion 484

In this work, we presented a novel local gradient-aware 485
surface filtering method for estimating oriented normals in 486
noisy point clouds, overcoming the limitations of traditional 487
approaches that often struggle with noise and require ex- 488
tensive labeled data. By leveraging neural implicit repre- 489
sentations and introducing specialized loss functions with 490
local gradient constraints, our method bridges the gap be- 491
tween raw, noisy data and high-quality surface representa- 492
tions. Our approach effectively preserves high-frequency 493
geometric details while minimizing surface noise, yield- 494
ing a refined, noise-resilient output. Experimental results 495
across three different tasks validate the method’s effective- 496
ness and robustness, highlighting its suitability for practical 497
3D vision applications. Future work may further refine this 498
framework to extend its utility across other point cloud pro- 499
cessing tasks. 500
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