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Abstract

Surface reconstruction from sparse views aims to recon-001
struct a 3D shape or scene from few RGB images. How-002
ever, existing generalization-based methods do not gen-003
eralize well on views that were unseen during training,004
while the reconstruction quality of overfitting-based meth-005
ods is still limited by the limited geometry clues. To ad-006
dress this issue, we propose SparseRecon, a novel neural007
implicit reconstruction method for sparse views with vol-008
ume rendering-based feature consistency and uncertainty-009
guided depth constraint. Firstly, we introduce a feature con-010
sistency loss across views to constrain the neural implicit011
field. This design alleviates the ambiguity caused by insuf-012
ficient consistency information of views and ensures com-013
pleteness and smoothness in the reconstruction results. Sec-014
ondly, we employ an uncertainty-guided depth constraint015
to back up the feature consistency loss in areas with oc-016
clusion and insignificant features, which recovers geometry017
details for better reconstruction quality. Experimental re-018
sults demonstrate that our method outperforms the state-of-019
the-art methods, which can produce high-quality geometry020
with sparse-view input, especially in the scenarios on small021
overlapping views.022

1. Introduction023

As one of the important tasks in computer vision, 3D re-024
construction has attracted lots of research attentions in re-025
cent years. With the advancement of deep learning, 3D re-026
construction using neural implicit representations based on027
point clouds [25, 32, 54, 55] or images [22, 35, 44, 56] be-028
comes a popular research topic. Although existing methods029
[5, 35, 37, 40, 44, 52] that directly use images have made030
great progress in terms of the reconstruction quality and re-031
construction speed, they require a large number of dense032
views as supervision. When the number of available views033
is limited, current reconstruction methods usually struggle034
to reconstruct high-quality surfaces.035

Ours

S-VolSDFUFORecon

NeuSurfInput views

Figure 1. Given only 3 input images with large view angle change,
our method can reconstruct a smoother surface compared to the
state-of-the-art methods, such as UFORecon [27], S-VolSDF [39]
and NeuSurf [13]. The details of each surface are shown in the
colored boxes.

Existing methods for sparse view reconstruction can 036
be mainly classified into two categories: generalization- 037
based methods and overfitting-based methods. The 038
generalization-based methods [21, 23, 27, 29, 30] empha- 039
size the generalization of sparse-view reconstruction, but 040
they are mainly effective in scenarios with large view over- 041
laps. In cases with views that were unseen during training, 042
the quality of the reconstructed surface degenerates signif- 043
icantly, as shown in Figure 1. Meanwhile, it takes a long 044
time to pre-train these methods on large-scale data. Instead, 045
overfitting-based methods [13, 14, 39, 45, 46] typically fit 046
the 3D geometry directly from the sparse views by leverag- 047
ing geometry clues. They show promising capability in re- 048
constructing higher-quality geometric surfaces with small- 049
overlapping views. However, the reconstruction quality of 050
the existing methods is still unsatisfactory. 051

In this paper, we introduce a multi-view feature consis- 052
tency loss based on volume rendering and an uncertainty- 053
guided depth constraint to learn neural signed distance func- 054
tions. This approach allows us to achieve high-quality mesh 055
reconstruction on more challenging sparse views with small 056
overlap. 057
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For the feature consistency loss, we first employ the pre-058
trained Vis-MVSNet [49] to obtain depth features from the059
input images. Then, within a neural implicit rendering060
framework, the sampled 3D points along the rays emitted061
from the reference image are projected to the source image062
and the reference image. This allows us to acquire source063
features and reference features of each 3D point and mea-064
sure the similarity between these two kinds of features. Fi-065
nally, the feature similarity for each 3D point along the rays066
is accumulated through volume rendering, thus yielding the067
feature similarity associated with the rays. During opti-068
mization, we pursue higher feature similarity along the rays.069
Since the depth information is implicitly encoded with im-070
age features, feature consistency constraint can significantly071
alleviate the ambiguity issues arising from insufficient con-072
sistency of sparse views and low-texture during reconstruc-073
tion.074

For the uncertainty-guided depth prior constraint, we075
follow MonoSDF [46], utilizing a pre-trained network to076
acquire depth priors for each image, and then use it to con-077
strain the regions with uncertain depth. However, monocu-078
lar depth priors do not have consistent scales to the ground079
truth depth, which are hard to get calibrated to ground truth080
either due to the distortion. To effectively leverage the081
depth priors and provide proper supervision for occluded082
or under-constrained regions, we propose an uncertainty-083
guided depth prior constraint. First, we calibrate the depth084
priors using sparse point clouds obtained from COLMAP085
[31]. Then, during training, we compute the depth confi-086
dence from the rendered depth and impose the depth prior087
constraint only in regions with low confidence. This con-088
straint helps infer more accurate geometry in occluded or089
under-constrained regions, minimizing the negative impact090
of depth prior errors on well-constrained regions.091

We evaluate our methods on several widely used bench-092
marks and report the state-of-the-art results. In summary,093
our main contributions are as follows.094

• We propose a novel feature consistency loss based on vol-095
ume rendering. It can effectively constrains the neural096
radiance field by leveraging feature consistency among097
multiple views, improving the performance in sparse-098
view reconstruction tasks.099

• By incorporating depth confidence, we utilize the cali-100
brated depth prior more effectively to enhance geometric101
constraints, further improving the reconstruction quality.102

• Extensive experiments on the well-known datasets, such103
as DTU [16] and BlendedMVS[43], demonstrate that our104
method outperforms existing sparse-view reconstruction105
methods and achieve the state-of-the-art results.106

2. Related Work 107

2.1. Neural Implicit Reconstruction 108

Neural implicit reconstruction methods [5, 7, 20, 35–37, 40, 109
44, 46], have been rapidly developed based on neural vol- 110
ume rendering [26]. These methods introduce the Signed 111
Distance Function (SDF) as the implicit representation of 112
3D surfaces in volume rendering, achieving multi-view 3D 113
reconstruction. While these methods have made significant 114
improvements in both reconstruction quality and speed, it 115
is important to note that they heavily rely on multiple view- 116
points during the optimization. 117

Generalization-based surface reconstruction with 118
sparse views. In order to directly generalize the reconstruc- 119
tion results on sparse views, methods [21, 23, 27, 29, 30, 41] 120
adopt the strategy of aggregating features from multiple 121
view images to construct a feature volume, which is then 122
used to predict the SDF for reconstructing the surface. Vol- 123
Recon [30] uses transformers [17] to aggregate multi-view 124
features, C2F2NeUS [41] employs cascade architecture to 125
construct a volume pyramid, while ReTR [21] and UFORe- 126
con [27] aggregates multi-level features. These methods 127
require pretraining on large-scale datasets, which typically 128
takes several days. Moreover, when there is a significant 129
domain gap between the testing and training data, they all 130
fail to reconstruct shapes effectively. 131

Overfitting-based surface reconstruction with sparse 132
views. In contrast, overfitting-based methods directly fit 133
the 3D geometry from the sparse images by geometric prior 134
constraints. MonoSDF [46] employs depth and normal pri- 135
ors to achieve sparse reconstruction with small-overlapping 136
views. However, such priors come with errors, and it does 137
not fully leverage inter-view consistency, resulting in lower 138
reconstruction quality. S-VolSDF [39] employs probability 139
volumes obtained from MVS [9] models to guide the ren- 140
dering weight estimated by VolSDF [44]. This improves the 141
reconstruction results in sparse views with small overlap. 142
However, the uncertainties in volumes make negative im- 143
pact on the reconstruction surface, leading to surface rough- 144
ness or significant defects. More recently, NeuSurf [13] 145
leverages sparse point clouds and employs CAP-UDF [54] 146
to construct an implicit geometric prior to improve the re- 147
construction quality of sparse views. However, when the 148
sparse point cloud fails to cover the majority of positions on 149
the object surface, effective implicit geometric prior infor- 150
mation cannot be obtained, which does not improve the re- 151
construction quality. In contrast, our method employs more 152
robust feature priors, calculates feature consistency based 153
on volume rendering, and simultaneously utilizes depth pri- 154
ors to optimize the occluded regions, ultimately resulting in 155
high-quality geometric surface. 156
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Figure 2. SparseRecon consists of two main parts. (a) Volume rendering-based feature consistency constraint. We extract features from
the reference image and source images. For a ray emitted from the reference image, we project each sampled point on the ray onto the
source images to obtain the corresponding features. Then, the volume rendering-based feature consistency loss is calculated using the
corresponding features on the reference image. (b) Uncertainty-guided depth prior constraint. We use another pre-trained network to
obtain the depth prior of the reference image and calibrate it with the sparse point cloud obtained by COLMAP. Then, we calculate the
confidence of the rendered depth, so that the calibrated depth prior only constrains areas with low confidence.

2.2. Gaussian Splatting.157

Gaussian Splatting [18] has achieved unprecedented opti-158
mization speed and rendering quality in the task of novel159
view synthesis. However, since the Gaussians are unorga-160
nized, the discrete and unstructured points make it difficult161
to extract 3D surfaces through post-processing. To address162
this issue, some methods introduce regularization terms163
[10], convert 3D Gaussians to 2D surfels [4, 12], acquire164
opacity fields through rays [47], improve the depth render-165
ing algorithm [1] of 3DGS, or jointly optimize 3DGS with166
neural radiance fields [2, 24, 53]. However, these meth-167
ods are only applicable to dense views. Recently, FatesGS168
[14] achieves fast sparse-view reconstruction by leveraging169
depth priors and on-surface feature consistency constraints.170
However, due to the poor convergence of the on-surface fea-171
ture consistency constraint and the inaccuracy of the depth172
priors, the reconstruction results still exhibit roughness or173
noticeable defects.174

2.3. Sparse View Synthesis.175

In addition, the novel view synthesis from sparse views176
is another category of work closely related to sparse view177
reconstruction. Depending on the technical framework,178
these works can be categorized into NeRF-based methods179
[6, 15, 28, 33, 34, 42, 48] and Gaussian Splatting-based180
methods [3, 11, 19, 51, 57]. This line of research also em-181
ploys a limited number of views as input. However, they182
solely focus on the rendering quality of novel views rather183
than surface reconstruction, which are not designed specifi-184

cally for the accurate geometric surface reconstruction. Due 185
to the discernible bias (i.e. inherent geometric errors) [35] 186
caused by the conventional volume rendering method or in- 187
consistencies in depth that appear in Gaussian rendering, 188
current sparse view synthesis methods still fail to correctly 189
reconstruct high-fidelity geometric surfaces. 190

3. Method 191

The overview of our method is depicted in Figure 2. We in- 192
troduce a novel feature consistency loss and an uncertainty- 193
guided depth constraint based on the NeuS [35] framework. 194
In this section, we first explain how to compute feature con- 195
sistency for sampled points along rays. Then we explain 196
how to enhance geometric constraints using depth priors 197
and depth uncertainty. Thirdly, we introduce the color con- 198
sistency loss. Finally, we present the overall loss function 199
for optimization. 200

3.1. Volume Rendering-based Feature Consistency 201

First, we use a pre-trained MVS network [49] to extract the 202
features from both the reference image and the source im- 203
age. Given a ray emitted from the reference image, let pr(0) 204
denote the point where a ray intersects the reference image. 205
And for each point xi along the ray, we denote its projection 206
on the source image as ps(i). Then, we bilinearly interpo- 207
late Fr(0) and Fs(i) at points pr(0) and ps(i) on image 208
features, respectively. Formally, we define the feature con- 209
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Figure 3. The illustration of (a) on-surface feature consistency and
(b) feature consistency with volume rendering.

sistency loss function as follows,210

Lfeat = Mocc(1− 1

N

N∑
i=1

wifcos(Fr(pr(0)), Fs(ps(i))),

(1)211
where fcos is the cosine similarity, and wi corresponds to212
the weight for each point along the ray. ps(i) = K(Rxi+t)213
is the projection of xi in source view, and [K;R; t] is the214
camera parameters of source view. Mocc is the occlusion215
mask.216

Although MVSDF [50], NeuSurf [13] and FatesGS [14]217
also employ feature consistency constraints, they just lever-218
age the intersection point between a camera ray and the ob-219
ject’s surface. Then, this intersection point gets projected220
onto adjacent views to obtain the corresponding image fea-221
tures for the purpose of comparing features at this point222
across multiple views. In sparse view scenarios, the esti-223
mated positions of surface points can easily deviate signifi-224
cantly, making the on-surface feature consistency loss not225
converge. NeuSurf [13] and FatesGS [14] utilize sparse226
point clouds generated by COLMAP [31] as priors, en-227
abling it to obtain partially accurate positions of surface228
points, thereby allowing the on-surface feature consistency229
loss to be more effectively leveraged. However, in regions230
of lacking surface points, the on-surface feature consistency231
loss cannot ensure the attainment of high-quality geometric232
surfaces.233

Figure 3 illustrates the difference between on-surface234
feature consistency and volume rendering-based feature235
consistency. Due to the uncertainty of gradient direction,236
the constraint solely relying on surface point features is237
challenging to be optimized. In contrast, our method does238
not require the prior estimation of surface points, it calcu-239
lates feature consistency on all sampling points along the240
ray, and provides more reasonable and comprehensive su-241
pervision to the implicit field, thereby addressing the con-242
vergence issue that may arise in sparse reconstruction for243
MVSDF [50] and NeuSurf [13].244

3.2. Uncertainty-Guided Depth Constraint245

Although multi-view features offer more robust constraint246
than image colors, they are ineffective for occluded regions.247

GT Image Prior-depth
Error Map

Pred-depth
Error Map

Prior-depth
Error map

Pred-depth
Error Map

GT Depth Prior Depth Pred Depth Prior Depth Pred Depth

(a) Depth calibration with pred-depth (b) Depth calibration with
COLMAP sparse points

Low

High

Figure 4. The illustration of predicted depth produced by differ-
ent depth prior utilization methods, along with the corresponding
error maps. (a) Calibrate the depth prior using the predicted depth
during training. (b) Calibrate the depth prior using the COLMAP
sparse point cloud.

Due to the limited number of views, some regions may only 248
be visible from a single viewpoint. To enhance geometric 249
constraints, we employ depth priors to supervise the radi- 250
ance field. However, monocular depth priors are not perfect 251
and accurate. Although MonoSDF [46] has already takes 252
the inaccuracy of depth priors into account, i.e., it aligns 253
depth priors using rendered depth during training. How- 254
ever, the rendered depth during training is inaccurate, result- 255
ing in significant errors in the calibrated depth priors. This 256
ultimately leads to the accumulation of errors during train- 257
ing, which results in inaccurate reconstructions. Figure 4 258
(a) shows the calibrated depth prior and rendered depth ob- 259
tained by MonoSDF [46], as well as their error maps com- 260
pared to the ground truth depth. It can be seen that both the 261
calibrated depth prior and the rendered depth are with large 262
errors. Therefore, MonoSDF [46] uses a weight annealing 263
stategy to anneal the weight of depth loss to 0 during the 264
first 200 training epochs. 265

Another trivial approach is to calibrate the depth priors 266
using the sparse point cloud obtained from COLMAP [31]. 267
Since the sparse points are generally located on the geo- 268
metric surface of the object, their depth is relatively accu- 269
rate. Therefore, calibrating the depth priors using the sparse 270
point cloud can lead to more accurate depth priors. Figure 271
4 (b) shows the depth priors calibrated with the sparse point 272
cloud, and the depth rendered with the depth priors as a con- 273
straint, as well as their error maps compared to the ground 274
truth depth. It indicates that the depth priors calibrated to 275
the point cloud from the COLMAP [31] are more accurate. 276
Therefore, we can use them as an constraint leads to more 277
precise rendered depth. 278

However, due to the distortions in monocular depth pri- 279
ors, it is impossible to perfectly align them with the ground 280
truth depth. Even after calibration, the depth priors still ex- 281
hibit noticeable errors when compared to the ground truth 282
depth. In sparse view scenarios, occlusions and insufficient 283

4



ICCV
#2711

ICCV
#2711

ICCV 2025 Submission #2711. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Source  image Reference  image
Depth  rendered Depth  confidence

projection  error

Figure 5. Left: the method of obtaining the confidence of rendered
depth. Right: the rendered depth and the depth confidence.

constraints are more common, leading to significant dis-284
crepancies between the geometry of occluded regions and285
the real surface. Therefore, to achieve more accurate geom-286
etry in these under-constrained regions while avoiding the287
negative impact of depth prior errors on well-constrained288
regions, we propose an uncertainty-guided depth prior con-289
straint method to more effectively utilize the depth priors.290
Specifically, we apply depth prior constraints in regions291
with depth uncertainty, while refraining from using them292
in regions with high depth confidence.293

To obtain the confidence of the rendered depth, we em-294
ploy a method to evaluate the multi-view depth projection295
consistency. As shown in Figure 5, for a specific pixel ruv296
in the reference image with depth dr, it can be mapped to297
a neighboring image through the homography matrix Hrs,298
leading to a pixel suv ,299

suv = Hrsruv, (2)300
301

Hrs = MsM
−1
r , (3)302

where Mr and Ms are the projection matrices correspond-303
ing to the reference and source views, respectively. Simi-304
larly, we can map the pixel suv in the source view to the ref-305
erence view using the projection matrix Hsr and its corre-306
sponding depth ds, resulting in r̂uv . The forward and back-307
ward projection distance error reflect the accuracy of depth308
predictions, so we take it as the depth confidence, which is309
defined as310

Cd =

{
1

e∥ruv−r̂uv∥ , if ∥ruv − r̂uv∥ ⩽ 1

0, if ∥ruv − r̂uv∥ > 1
(4)311

The right side of Figure 5 shows the rendered depth and312
the corresponding depth confidence.313

Correspondingly, the depth uncertainty is defined as314
Ud = 1 − Cd. Meanwhile, we can set a threshold τ for315
depth confidence Cd to obtain the occlusion mask Mocc =316
{Cd > τ}.317

For depth calibration, we leverage COLMAP [31] to ob-318
tain a sparse point cloud {X : x1, x2 . . . xi ∈ R} and visi-319
bility flags indicating which keypoints are visible from view320
I . Given the camera parameters P of view I , we estimate321

the depth D̄i of keypoints by computing the distance from 322
the visible keypoints xi to the camera center o. Then, we 323
calibrate the monocular depth prior D̂ with D̄i, it can be 324
defined as D̄ ≈ aD̂ + b, where a is the scale factor and b is 325
the shift factor, obtained through the least squares method. 326
Formally, the depth constraint loss is defined as, 327

Ldepth =
∑
r∈R

Ud

∥∥∥(aD̂ + b)−Dpred

∥∥∥2 . (5) 328

3.3. Color Consistency Constraint 329

Although feature consistency constraint can ensure that the 330
reconstruction does not suffer from severe artifacts, it does 331
not provide sufficient supervision to reconstruct fine geo- 332
metric details. Conversely, in cases with rich textures, im- 333
age color constraint can refine the geometric details. There- 334
fore, following the NeuralWarp [5], pixel warping loss and 335
patch warping loss are used in our method as multi-view 336
color consistency loss functions, 337

Lcolor =
∑
r∈R

Moccdpixel(C(r), Cs(r))

+
∑
r∈R

Moccdpatch(P (r), Ps(r)),
(6) 338

where C(r) and Cs(r) are the ground truth color of the 339
pixel from which the ray emits and the rendered color, re- 340
spectively, P (r) and Ps(r) are the ground truth color of the 341
patch corresponding to the ray and the rendered patch color, 342
respectively. dpixel is the loss metric for pixel color, where 343
we use L1 loss as dpixel. dpatch is the loss metric for patch 344
color, where we use the Structural Similarity Index Measure 345
(SSIM [38]) as dpatch. 346

3.4. Training Loss 347

In addition to the above-mentioned three loss functions, we 348
also use the Eikonal loss [8] used in NeuS [35]. We define 349
the overall loss function as follows: 350

L = Lfeat + αLdepth + Lcolor + βLeik, (7) 351

Leki is the Eikonal loss [8], used to regularize the SDF 352
values of sampled points, defined as 353

Leki. =
1

mn

∑
i,k

(∥∇f(xi,k)∥2 − 1)2. (8) 354

4. Experiments 355

4.1. Dataset 356

We evaluate our method on DTU [16] and BlendedMVS 357
[43] dataset. For the DTU [16] dataset, to avoid using the 358
scenes that have already been used as training data on the 359
pretrained Vis-MVSNet [49] model, we select the same 11 360
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Methods 21 24 34 37 38 40 82 106 110 114 118 Mean CD ↓
VolSDF [44] 5.47 4.38 3.15 7.38 1.88 6.70 5.19 4.67 2.79 1.32 1.83 4.07
NeuS [35] 5.63 3.58 6.00 4.60 2.57 4.53 1.91 4.18 5.46 1.19 4.16 3.98
NeuralWarp [5] 2.53 1.88 0.74 1.80 0.84 11.50 2.64 2.10 4.37 1.19 2.63 2.93
MonoSDF [46] 4.14 5.92 1.39 4.55 2.19 2.14 2.36 5.62 4.58 1.63 3.02 3.41
Vis-MVSNet [49] 3.39 4.44 0.85 3.36 1.69 3.35 3.35 2.34 2.16 0.74 1.83 2.50
MVSDF [50] 4.31 4.71 1.65 6.37 1.77 4.47 3.61 1.87 1.67 1.25 1.69 3.03
2DGS [12] 4.47 3.54 3.48 4.13 4.25 3.61 4.83 2.40 2.97 1.35 2.17 3.38
PGSR [1] 5.58 4.01 3.15 5.19 4.55 3.65 5.57 2.35 1.91 0.57 1.55 3.46
SparseNeuSft [23] 3.48 4.37 2.92 4.76 2.79 3.73 2.80 1.86 3.10 1.15 2.29 3.02
VolRecon [30] 2.72 3.07 1.82 4.32 2.14 3.04 3.00 2.56 2.81 1.49 3.22 2.75
GenSft [29] 5.86 7.67 3.62 8.57 5.37 5.41 5.48 6.04 5.29 4.69 4.35 5.67
ReTR [21] 2.67 3.37 1.62 3.68 1.87 3.40 3.67 2.84 2.85 1.56 2.35 2.72
UFORecon [27] 1.84 1.52 0.79 2.58 1.00 1.82 1.72 1.20 0.93 0.66 1.26 1.39
S-VolSDF [39] 2.45 3.08 1.33 3.09 1.22 3.21 1.91 1.51 1.23 0.74 1.2 1.91
SparseCraft [45] 2.88 2.42 0.92 2.97 1.58 2.78 2.51 1.10 5.24 0.65 0.88 2.16
NeuSurf [13] 7.60 1.43 2.93 3.18 1.53 2.86 1.86 1.09 1.41 0.37 0.62 2.26
FatesGS [14] 3.98 1.32 2.53 2.85 3.36 2.71 3.76 1.49 0.85 0.47 1.06 2.22
Ours 2.14 1.26 0.72 1.46 0.86 1.39 1.37 0.94 0.77 0.44 0.83 1.11

Table 1. Quantitative results of Chamfer Distance (CD↓) on DTU dataset with 3 small-overlapping images. The methods are divided
into three categories, from top to bottom: (1) dense-view reconstruction methods related to ours, (2) generalization-based sparse-view
reconstruction methods, and (3) overfitting-based sparse-view reconstruction methods. the best results are in bold, the second best are
underlined.

scenes as in S-VolSDF [39]. The image resolution is set361
to 1600×1200. Similar to the S-VolSDF [39] and NeuSurf362
[13] methods, we select the views 22, 25, and 28 for the363
more challenging reconstruction of small overlaps.364

For the BlendedMVS [43] dataset, we follow the S-365
VolSDF [39] to use the same 9 challenging scenes, with 3366
small-overlapping views for each scene. The image resolu-367
tion is set to 768×576.368

4.2. Implementation Details369

We use the same network architecture and initialization370
strategy as NeuS [35] and incorporated our volume ren-371
dering feature consistency loss, uncertainty-guided depth372
constraint loss, and color consistency loss. For the weight373
factors in the loss functions Eq. 7, we set the α for the374
uncertainty-guided depth prior constraint loss Ldepth to 0.5375
and the β for the Eikonal loss Leik to 0.1. Each scene376
is trained 100K iterations on a RTX3090 GPU. The patch377
warping term in the color consistency loss requires the sur-378
face point normals to calculate homographies, but the initial379
normals are too noisy [5], therefore, the patch warping loss380
is applied after 20k training steps. The threshold τ of the381
occlusion mask is set to 0.382

4.3. Baseline383

We compare our approach with three categories of meth-384
ods. Dense-view methods: NeuS [35], VolSDF [39], Neu-385

ralWarp [5], Vis-MVSNet [49], MVSDF [50], 2DGS [12] 386
and PGSR [1]. Generalization-based methods: SparseNeuS 387
[23], VolRecon [30], GenS [29], ReTR [21] and UFORe- 388
con [27]. Overfitting-based methods: S-VolSDF [39], Spar- 389
seCraft [45], NeuSurf [13] and FatesGS [14]. The recon- 390
struction results for SparseNeuS [23] and GenS [29] are 391
fine-tuned using 3 views for each scene. 392

4.4. Comparisons 393

Reconstruction on DTU. For a comprehensive compar- 394
ison, we evaluate the baselines and our method on both 395
small-overlapping and large-overlapping views. Following 396
baselines [13, 14, 23], we report the Chamfer Distance (CD) 397
between the reconstruction surfaces and the ground truth 398
point clouds. The CD results with small overlapping views 399
are shown in Table 1. The meshes reconstructed by several 400
methods using 3 views with small overlapping are shown 401
in Fig. 6. For the generalization-based sparse reconstruc- 402
tion methods, we only show the reconstruction results of 403
the latest UFORecon [27], as the reconstruction quality of 404
other methods is lower than that of UFORecon [27]. The 405
experimental results show that our method significantly im- 406
proves the mesh quality with small overlap views, compared 407
to the state-of-the-art sparse-view reconstruction methods. 408
The results of large overlapping views are presented in the 409
supplementary materials. 410

As shown in Figure 6, when input sparse views with 411
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GT  Images MonoSDF UFORecon S-VolSDF SparseCraft NeuSurf FatesGS Ours

Figure 6. Visual comparison on DTU dataset with 3 small-overlapping images.

small overlap, both MonoSDF [46] and SparseCraft [45]412
suffer from reconstruction ambiguity and failures, high-413
lighting that relying solely on simplistic geometric prior414
constraints is insufficient to obtain complete and accurate415
meshes. UFORecon [27] shows significant roughness in its416
reconstruction results. S-VolSDF [39], NeuSurf [13] and417
FatesGS [14] exhibit noticeable reconstruction defects. Ex-418
perimental results demonstrate that our method is effective419
in alleviating geometric and appearance ambiguities during420
the optimization process. This significantly enhances the421
quality of mesh reconstruction, especially in scenarios with422
small overlapping views and low texture.423

MonoSDF OursS-VolSDFGT Images NeuSurf FatesGS

Figure 7. Visual comparison on BlendedMVS dataset. ’×’ indi-
cates reconstruction failure.

Reconstruction on BlendedMVS. Figure 7 presents the424
visual comparison of reconstructed mesh for overfitting-425
based methods. With only 3 small-overlapping views pro-426
vided, all of the generalization-based methods completely427
fail to reconstruct in the sparse setting of BlendedMVS[43]428
dataset, even if SparseNeuS [23] is fine-tuned. Therefore,429

the reconstruction results of these methods are not included 430
in Figure 7. Compared to other methods, our approach can 431
generate more complete and detailed meshes. Similarly, 432
MonoSDF [46] fails to reconstruct either. The meshes gen- 433
erated by S-VolSDF [39], NeuSurf [13] and FatesGS [14] 434
exhibit significant defects. Both NeurSurf [13] and FatesGS 435
[14] use on-surface feature consistency constraints, but the 436
reconstruction results are still not good enough. In con- 437
trast, our method achieves more comprehensive geometry 438
and finer details by employing volume rendering-based fea- 439
ture consistency constraints. This highlights the advantages 440
of our approach in geometric consistency. More visualiza- 441
tions are presented in the supplementary materials. 442

Mesh w/

by MVSDF

Mesh w/
by ours

Error map w/

by MVSDF

Error map w/
by ours

S
ca
n
40

S
ca
n
11
0

Figure 8. Reconstructed meshes and error maps on DTU dataset
with different feature consistency losses.

4.5. Ablation Study 443

We evaluate the components of our method with 3 small- 444
overlapping views by an ablation study on the DTU [16] 445
dataset. To compare the depth loss Lmono

depth calibrated 446
by rendered depth in MonoSDF [46] with our depth loss 447
Ldepth, we replace Ldepth with Lmono

depth to evaluate it in 448
our method. We also compare the volume rendering-based 449
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Method Lcolor Lfeat Ldepth Lmono
depth LL1

feat LL2
feat Lsurf

feat CD↓
Baseline 3.35

✓ 1.76
✓ ✓ 1.47
✓ ✓ 1.62
✓ ✓ ✓ 1.11
✓ ✓ ✓ 1.59
✓ ✓ ✓ 2.36
✓ ✓ ✓ 1.81
✓ ✓ ✓ 2.93

Table 2. Ablation studies on DTU dataset with 3 small-
overlapping images.

Step  10k Step  20k Step  40k Step  60k

Figure 9. The variation of weighted feature similarity during train-
ing, brighter colors indicate higher feature similarity.

M
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h

E
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m
ap

w/o w/o w/ all losses w/

M
es
h

E
rr
or
m
ap

Figure 10. Visualization of reconstruction and error maps for
scene scan24 and scan37 in DTU dataset with different losses. The
differences of error maps are highlighted.

feature consistency loss calculated using L1 distance (de-450
noted as LL1

feat) and L2 distance (denoted as LL2
feat) with451

our method using feature similarity distance. We found that452
feature similarity distance is better than both L1 and L2 dis-453
tance, as shown in Table 2.454

In addition, we replace our volume rendering-based fea-455
ture consistency loss Lfeat with the on-surface feature con-456

sistency loss Lsurf
feat used in MVSDF [50] to compare the ef-457

fects of two different loss functions. Figure 8 illustrates the458

GT  Images S-VolSDF NeuSurf FatesGS Ours

Figure 11. Failure case. For specular objects, the ambiguity in the
color consistency constraint may lead to a rough surface.

reconstruction results and error maps on the DTU dataset 459
when using different feature consistency losses, under the 460
on-surface feature consistency loss Lsurf

feat , the meshes show 461
large artifacts. 462

Table 2 shows the average Chamfer Distance over all 11 463
scenes on DTU dataset using different losses. The exper- 464
imental results indicate that both feature consistency loss 465
and uncertainty-guided depth constraint improve the surface 466
reconstruction. 467

Figure 9 illustrates the variation of the weighted feature 468
similarity map during the training process. Brighter col- 469
ors indicate higher feature similarity, demonstrating that our 470
volume rendering-based feature consistency loss can pro- 471
vide effective constraints. 472

Figure 10 shows the reconstructed meshes and error 473
maps for scene scan24 and scan37 on the DTU [16] dataset 474
when using different losses. It can be observed that the 475
mesh deteriorates with out the volume rendering-based fea- 476
ture consistency loss or the uncertainty-guided depth con- 477
straint loss, and the reconstruction quality drops when using 478
the depth loss Lmono

depth in MonoSDF [46]. 479

5. Conclusions 480

We propose a novel method for learning implicit represen- 481
tations from sparse views with small overlaps. Our novelty 482
lies in a novel volume rendering-based feature consistency 483
loss and an uncertainty-guided depth constraint. Exten- 484
sive experiments on the DTU [16] and BlendedMVS [43] 485
datasets show that our method surpasses existing state-of- 486
the-art sparse-view reconstruction methods in terms of re- 487
construction quality. 488

Limitations. Although our method shows significant 489
improvement over other sparse view reconstruction meth- 490
ods, there are still some limitations. Firstly, for specular 491
objects, the ambiguity in the color consistency constraint 492
may lead to a rough surface, as shown in Figure 11. 493
Secondly, Following previous studies [13, 23, 39], the 494
camera poses of sparse views are obtained from the training 495
dataset. However, in some cases, it may not be possible 496
to obtain accurate camera poses using SfM methods like 497
COLMAP [31] due to the lack of texture in the images or 498
excessive viewing angles. Additionally, the feature consis- 499
tency constraint method requires a pre-trained network to 500
extract image features. The accuracy of the features deter- 501
mines the performance of the feature consistency constraint. 502

503
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