
Learning Signed Distance Functions from Noisy 3D Point Clouds
via Noise to Noise Mapping

Baorui Ma 1 Yu-Shen Liu 1 Zhizhong Han 2

(a) Noisy Points (b) Denoised Points (c) Surface Reconstruction

Figure 1. We introduce to learn signed distance functions (SDFs) for single noisy point clouds. Our method does not require ground
truth signed distances, point normals or clean points as supervision for training. We achieve this via learning a mapping from one noisy
observation to another or even on a single observation. Our novel learning manner is supported by modern Lidar systems which capture
10 to 30 noisy observations per second. We show the SDF learned from (a) a single real scan containing 10M points, (b) the denoised
point cloud and (c) the reconstructed surface. Fig. 12 demonstrates our superiority over the latest surface reconstructions in this case.

Abstract
Learning signed distance functions (SDFs) from
3D point clouds is an important task in 3D com-
puter vision. However, without ground truth
signed distances, point normals or clean point
clouds, current methods still struggle from learn-
ing SDFs from noisy point clouds. To overcome
this challenge, we propose to learn SDFs via a
noise to noise mapping, which does not require
any clean point cloud or ground truth supervi-
sion for training. Our novelty lies in the noise to
noise mapping which can infer a highly accurate
SDF of a single object or scene from its multi-
ple or even single noisy point cloud observations.
Our novel learning manner is supported by mod-
ern Lidar systems which capture multiple noisy
observations per second. We achieve this by a
novel loss which enables statistical reasoning on
point clouds and maintains geometric consisten-
cy although point clouds are irregular, unordered
and have no point correspondence among noisy
observations. Our evaluation under the widely
used benchmarks demonstrates our superiority
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over the state-of-the-art methods in surface recon-
struction, point cloud denoising and upsampling.
Our code, data, and pre-trained models are avail-
able at https://github.com/mabaorui/
Noise2NoiseMapping/ .

1. Introduction
3D point clouds have been a popular 3D representation. We
can capture 3D point clouds not only on unmanned vehicles,
such as self-driving cars, but also from consumer level digi-
tal devices in our daily life, such as the iPhone. However,
the raw point clouds are discretized and noisy, which is not
friendly to downstream applications like virtual reality and
augmented reality requiring clean surfaces. This results in a
large demand of learning signed distance functions (SDFs)
from 3D point clouds, since SDFs are continuous and also
capable of representing arbitrary 3D topology.

Deep learning based methods have shown various solutions
of learning SDFs from point clouds (Gropp et al., 2020; Atz-
mon & Lipman, 2020; Ma et al., 2021; Jiang et al., 2020a;
Peng et al., 2021). Different from classic methods (Kazhdan
& Hoppe, 2013; Ohtake et al., 2003), they mainly leverage
data-driven strategy to learn various priors from large scale
dataset using deep neural networks. They usually require
the signed distance ground truth (Liu et al., 2021), point
normals (Jiang et al., 2020a; Chabra et al., 2020; Peng et al.,
2021), additional constraints (Gropp et al., 2020; Atzmon
& Lipman, 2020) or no noise assumption (Ma et al., 2021).
These requirements significantly affect the accuracy of S-
DFs learned for noisy point clouds, either caused by poor
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generalization or the incapability of denoising. Therefore, it
is still challenging to learn SDFs from noisy point clouds
without clean or ground truth supervision.

To overcome this challenge, we introduce to learn SDFs
from noisy point clouds via noise to noise mapping. Our
method does not require ground truth signed distances and
point normals or clean point clouds to learn priors. As
demonstrated in Fig. 1, our novelty lies in the way of learn-
ing a highly accurate SDF for a single object or scene from
its several corrupted observations, i.e., noisy point clouds.
Our learning manner is supported by modern Lidar systems
which produce about 10 to 30 corrupted observations per
second. By introducing a novel loss function containing
a geometric consistency regularization, we are enabled to
learn a SDF via a task of learning a mapping from one cor-
rupted observation to another corrupted observation or even
a mapping from one corrupted observation to the observa-
tion itself. The key idea of this noise to noise mapping is
to leverage the statistical reasoning to reveal the uncorrupt-
ed structures upon its several corrupted observations. One
of our contribution is the finding that we can still conduct
statistical reasoning even there is no spatial correspondence
among points on different corrupted observations. Our re-
sults achieve the state-of-the-art in different applications
including surface reconstruction, point cloud denoising and
upsampling under widely used benchmarks. Our contribu-
tions are listed below.

i) We introduce a method to learn SDFs from noisy point
clouds without requiring ground truth signed distances,
point normals or clean point clouds.

ii) We prove that we can leverage Earth Mover’s Distance
(EMD) to perform the statistical reasoning via noise
to noise mapping and justify this idea using our novel
loss function, even if 3D point clouds are irregular,
unordered and have no point correspondence among
different observations.

iii) We achieved the state-of-the-art results in surface re-
construction, point cloud denoising and upsampling for
shapes or scenes under the widely used benchmarks.

2. Related Work
Learning implicit functions for 3D shapes and scenes has
made great progress (Mildenhall et al., 2020; Oechsle et al.,
2021; Han et al., 2020b; Chen et al., 2021; Xiang et al.,
2021; Takikawa et al., 2021; Martel et al., 2021; Rematas
et al., 2021; Feng et al., 2022; Han et al., 2020a; Wen et al.,
2022; Li et al., 2023b; Han et al., 2020c; Wen et al., 2020;
2021; Zhang et al., 2023b; Li et al., 2023a; 2022a; LP-;
Sayed et al., 2022; Stier et al., 2023; Shue et al., 2023;
Zhang et al., 2023a; Gupta et al., 2023; Rosu & Behnke,
2023; Zhou et al., 2022b). We briefly review methods with
different supervision below.

Learning from 3D Supervision. It was explored on

how to learn implicit functions, i.e., SDFs or occupan-
cy fields, using 3D supervision including signed dis-
tances (Michalkiewicz et al., 2019; Park et al., 2019; Ouasfi
& Boukhayma, 2022; Li et al., 2022c) and binary occupancy
labels (Mescheder et al., 2019; Chen & Zhang, 2019). With
a condition, such as a single image (Wang et al., 2019; Saito
et al., 2019; Chibane et al., 2020a; Littwin & Wolf, 2019;
Genova et al., 2019; Han et al., 2020d) or a learnable latent
code (Park et al., 2019), neural networks can be trained as
an implicit function to model various shapes. We can also
leverage point clouds as conditions (Williams et al., 2019;
Liu et al., 2020a; Mi et al., 2020; Genova et al., 2019) to
learn implicit functions, and then leverage the marching
cubes algorithm (Lorensen & Cline, 1987) to reconstruct
surfaces (Jia & Kyan, 2020; Erler et al., 2020). To capture
more detailed geometry, implicit functions are defined in
local regions which are covered by voxel grids (Jiang et al.,
2020a; Chabra et al., 2020; Songyou Peng, 2020; Martel
et al., 2021; Takikawa et al., 2021; Liu et al., 2021; Tang
et al., 2021), patches (Tretschk et al., 2020), 3D Gaussian
functions (Genova et al., 2020), learnable codes (Li et al.,
2022b; Boulch & Marlet, 2022).

Learning from 2D Supervision. We can also learn implic-
it functions from 2D supervision, such as multiple images.
The basic idea is to leverage various differentiable render-
ers (Sitzmann et al., 2019; Liu et al., 2020b; Jiang et al.,
2020b; Zakharov et al., 2020; Liu et al., 2019; Wu & Sun,
2020; Niemeyer et al., 2020; Lin et al., 2020) to render the
learned implicit functions into images, so that we can obtain
the error between rendered images and ground truth images.
Neural volume rendering was introduced to capture the ge-
ometry and color simultaneously (Mildenhall et al., 2020;
Yariv et al., 2020; 2021; Fu et al., 2022; Wang et al., 2021;
Yu et al., 2022; Wang et al., 2022b; Vicini et al., 2022; Wang
et al., 2022a; Guo et al., 2022).

Learning from 3D Point Clouds. Some methods were pro-
posed to learn implicit functions from point clouds without
3D ground truth. These methods leverage additional con-
straints (Gropp et al., 2020; Atzmon & Lipman, 2020; Zhao
et al., 2020; Atzmon & Lipman, 2021; Ben-Shabat et al.,
2021; Yifan et al., 2020; Ben-Shabat et al., 2022), gradi-
ents (Ma et al., 2021; Chibane et al., 2020b), differentiable
poisson solver (Peng et al., 2021) or specially designed pri-
ors (Ma et al., 2022a;b) to learn signed (Ma et al., 2021;
Gropp et al., 2020; Atzmon & Lipman, 2020; Zhao et al.,
2020; Atzmon & Lipman, 2021; Chen et al., 2022; Pumarola
et al., 2022; Chen et al., 2023; Ma et al., 2023) or unsigned
distance fields (Chibane et al., 2020b; Zhou et al., 2022a).
One issue here is that they usually assume the point clouds
are clean, which limits their performance in real application-
s due to the noise. Our method falls into this category, but
we can resolve this problem using statistical reasoning via
noise to noise mapping.
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Figure 2. Given corrupted observations captured by a Lidar system
per second, we learn a SDF without supervision or normals.

Deep Learning based Point Cloud Denoising. Point-
CleanNet (Rakotosaona et al., 2020) was introduced to re-
move outliers and reduce noise from point clouds using a
data-driven strategy. Graph convolution was also leveraged
to reduce the noise based on dynamically constructed neigh-
borhood graphs (Pistilli et al., 2020). Without supervision,
TotalDenoising (Casajus et al., 2019) inherits the same idea
as Noise2Noise (Lehtinen et al., 2018a). It leveraged a s-
patial prior term that can work for unordered point clouds.
More recently, downsample-upsample architecture (Luo &
Hu, 2020) and gradient fields (Luo & Hu, 2021; Cai et al.,
2020) were leveraged to reduce noise. We were inspired
by the idea of Noise2Noise (Lehtinen et al., 2018a), our
contribution lies in our finding that we can still leverage
statistical reasoning among multiple noisy point clouds with
specially designed losses even there is no spatial correspon-
dence among points on different observations like the one
among pixels, which is totally different from TotalDenois-
ing (Casajus et al., 2019).

3. Method
Overview. Given N corrupted observations S = {Ni|i ∈
[1, N ], N ≥ 1} of an uncorrupted 3D shape or scene S,
we aim to learn SDFs f of S from S without ground truth
signed distances, point normals, or clean point clouds. Here,
Ni is a noisy point cloud. SDFs f predicts a signed distance
d for an arbitrary query location q ∈ R1×3 around S, such
that d = f(q, c), where c is a condition denoting S. We
train a neural network parameterized by θ to learn f , which
we denote as fθ . After training, we can further leverage the
learned fθ for surface reconstruction, point cloud denoising,
and point cloud upsampling.

Our key idea of statistical reasoning is demonstrated in
Fig. 2. Using a noisy point cloudNi as input, our network
aims to learn SDFs fθ via learning a noise to noise mapping
from Ni to another noisy point cloud Nj , where Nj is
also randomly selected from the corrupted observation set
S and j ∈ [1, N ]. Our loss not only minimizes the distance
between the denoised point cloudN ′i andNj using a metric
L but also constrains the learned SDFs fθ to be correct
using a geometric consistency regularizationR. A denoising
function F conducts point cloud denoising using signed

distances d and gradients∇fθ from fθ.

Reducing Noise. A common strategy for estimating the
uncorrupted data from its noise corrupted observations is
to find a target that has the smallest average deviation from
measurements according to some loss function L. The data
could be a scalar, a 2D image or a 3D point cloud etc..
Here, to reduce noise on point clouds, we aim to find the
uncorrupted point cloudN ′ from its corrupted observations
N ∈ S below,

argmin
N ′

EN{L(N ′,N)}. (1)

As a conclusion of Noise2Noise (Lehtinen et al., 2018a) for
2D image denoising, we can learn a denoising function F
by pushing a denoised image F (x) to be similar to as many
corrupted observations y as possible, where both x and y
are corrupted observations. This is an appealing conclusion
since we do not need the expensive pairs of the corrupted
inputs and clean targets to learn the denoising function F .

We want to leverage this conclusion to learn to reduce noise
without requiring clean point clouds. So we transform E-
q. (1) into an equation with a denoising function F ,

argmin
F

∑
Ni∈S

∑
Nj∈S

L(F (Ni),Nj). (2)

One issue we are facing is that the conclusion of
Noise2Noise may not work for 3D point clouds, due to
the irregular and unordered characteristics of point clouds.
For 2D images, multiple corrupted observations have the
pixel correspondence. This results in an assumption that
all noisy observations at the same pixel location are ran-
dom realizations of a distribution around a clean pixel value.
However, this assumption is invalid for point clouds. This
is also the reason why TotalDenoising (Casajus et al., 2019)
does not think Eq. (1) can work for point cloud denoising,
since the noise in 3D point clouds is total. Differently, our
finding is in opposite direction. We think we can still lever-
age Eq. (1) to reduce noise in 3D point clouds, and the key
is how to define the distance metric L, which is regarded as
one of our contributions.

Another issue that we are facing is how we can learn SDFs
fθ via point cloud denoising in Eq. (2). Our solution is to
leverage fθ to define the denoising function F . This enables
to conduct the learning of SDFs and point cloud denoising
at the same time. Next, we will elaborate on our solutions
to the aforementioned two issues.

Denoising Function F . The denoising function F aims to
produce a denoised point cloudN ′ from a noisy point cloud
N , soN ′ = F (N).

To learn SDFs fθ ofN , we want the denoising procedure
can also perceive the signed distance fields aroundN . The
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Figure 3. (a) Multiple paths (arrows) to pull a noise (green point)
onto surface (dashed curve) but only one is the shortest (green
arrows). (b) The incorrect paths (black arrows) to pull noises
onto surface. (c) The expected paths (green arrows) to pull noises
to points (blue square) on surface. (d) The effect of Geometric
Consistency (GC).

essence of denoising is to move points floating off the sur-
face of an object onto the surface. As shown in Fig. 3 (a),
there are many potential paths to achieve this, but only one
path is the shortest to the surface. If we leverage this short-
est path to denoise point cloud N , we could involve the
SDFs fθ to define the denoising function F , since fθ can
determine the shortest path.

Here, inspired by the idea of NeuralPull (Ma et al., 2021),
we also leverage the signed distance d = fθ(n, c) and the
gradient∇fθ(n, c) to pull an arbitrary point n on the noisy
point cloudN onto the surface. So we define the denoising
function F below,

F (n, fθ) = n− d×∇fθ(n, c)/||∇fθ(n, c)||2. (3)

With Eq. (3), we can pull all points on the noisy point cloud
N onto the surface, which results in a point cloud N ′ =
F (N , fθ). But one issue remaining is how to constrainN ′

to converge to the uncorrupted surface.

Distance Metric L. We investigate the distance metric L so
that we can constrainN ′ to reveal the uncorrupted surface
by a statistical reasoning among the corrupted observations
S = {Ni} using Eq. (2). Our investigation conclusion is
summarized in the following Theorem.

Theorem 1. Assume there was a clean point cloudG which
is corrupted into observations S = {Ni} by sampling a
noise around each point of G. If we leverage EMD as
the distance metric L defined in Eq. (4), and learn a point
cloud G′ by minimizing the EMD between G′ and each
observation in S, i.e., minG′

∑
Ni∈S L(G′,Ni), then G′

converges to the clean point cloudG, i.e., L(G,G′) = 0.

L(G,G′) = min
φ:G→G′

∑
g∈G

||g − φ(g)‖2. (4)

We prove Theorem 1 in the following appendix. We believe

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. The comparison with CD and EMD as the distance metric
L from in (b) to (e). The effect of geometric regularization in (f)
and (g). (a) is noisy point cloud, (h) is the ground truth.
the one-to-one correspondence φ found in the calculation of
EMD in Eq. (4) plays a big role in the statistical reasoning
for denoising. This is very similar to the pixel correspon-
dence among noisy images in Noise2Noise although point
clouds are irregular, unordered and have no spatial corre-
spondence among points on different observations. We
highlight this by comparing the point cloud G′ optimized
with EMD and Chamfer Distance (CD) as L based on the
same observation set S in Fig. 4. Given noisy point clouds
Ni like in Fig. 4 (a), Fig. 4 (b) demonstrates that the point
cloud G′ optimized with CD is still noisy, while the one
optimized with EMD in Fig. 4 (c) is very clean.

According to this theorem, we can learn the denoising func-
tion F using Eq. (2). F produces the denoised point cloud
N ′i = F (Ni, fθ) using EMD as the distance metric L. This
also leads to one term in our loss function below,

min
θ

∑
Ni∈S

∑
Nj∈S

L(F (Ni, fθ),Nj). (5)

Geometric Consistency. Although the term in Eq. (5) can
work for point cloud denoising well, as shown in Fig. 4
(c), we found that the SDFs fθ may not describe a correct
signed distance field. With fθ either learned with CD or
EMD, the surfaces reconstructed using marching cubes al-
gorithms (Lorensen & Cline, 1987) in Fig. 4 (d) and (e) are
poor. This is because Eq. (5) only constrains that points
on the noisy point cloud should arrive onto the surface but
there are no constraints on the paths to be the shortest. This
is caused by the unawareness of the true surface which how-
ever is required as the ground truth by NeuralPull (Ma et al.,
2021). The issue is further demonstrated in Fig. 3, one situa-
tion that may happen is shown in Fig. 3 (b). With the wrong
signed distances fθ and gradient ∇fθ, noises can also get
pulled onto the surface, which results in a denoised point
cloud with zero EMD distance to the clean point clouds.
This is much different from the correct signed distance field
that we expected in Fig. 3 (c).

To resolve this issue, we introduce a geometric consistency
to constrain fθ to be correct. Our insight here is that, for an
arbitrary queryn around a noisy point cloudNi, the shortest
distance between n and the surface can be either predicted
by the SDFs fθ or calculated based on the denoised point
cloudN ′i = F (Ni, fθ), both of which should be consistent
to each other. Therefore, the absolute value |fθ(n, c)| of the
signed distance predicted at n should equal to the minimum
distance between n and the denoised point cloud N ′i =

4



Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping

F (Ni, fθ). Since the point density of N ′i may slightly
affect the consistency, we leverage an inequality to describe
the geometric consistency,

|fθ(n, c)| ≤ min
n′∈F (Ni,fθ)

||n− n′||2. (6)

The geometric consistency is further illustrated in Fig. 3
(d). Noisy points above/below the wing can be correctly
pulled onto the upper/lower surface without crossing the
wing using the geometric consistency. It achieves the same
denoising performance, and leads to a much more accurate
SDF for surface reconstruction than the one without the
geometric consistency.

Loss Function. With the geometric consistency, we can
penalize the incorrect signed distance field shown in Fig. 3
(b) while encouraging the correct one in Fig. 3 (c). So,
we leverage the geometric consistency as a regularization
term R, which leads to our objective function below by
combining Eq. (5) and Eq. (6),

min
θ

∑
Ni∈S

(
∑
Nj∈S

L(F (Ni, fθ),Nj) +
λ

|Ni|
∑
n∈Ni

R(E),

(7)
where |Ni| is the number of n on Ni, E is the difference
defined as (|fθ(n, c)|−minn′∈F (Ni,fθ) ||n−n′||2), λ is a
balance weight, and R(E) = max(0, E). The effect of the
geometric consistency is demonstrated in Fig. 4 (f) and (g).
The denoised point cloud in Fig. 4 (f) shows points that are
more uniformly distributed, compared with the one obtained
without the geometric consistency in Fig. 4 (c). More impor-
tantly, we can learn correct SDFs fθ to reconstruct plausible
surface in Fig. 4 (g), compared to the one obtained without
the geometric consistency in Fig. 4 (e) and the ground truth
in Fig. 4 (h).

More Details. We sample more queries around the input
noisy point cloudNi using the method introduced in Neu-
ralPull (Ma et al., 2021). We randomly sample a batch of B
queries as input, and also randomly sample the same num-
ber of points from another noisy point cloud Nj as target.
Using batches enables us to process large scale point clouds,
makes it possible to leverage noisy point clouds with differ-
ent point numbers even we use EMD as the distance metric
L, and more importantly, does not affect the performance.
We train fθ to overfit to a single shape or scene or overfit
to multiple shapes or scenes using conditions c to indicate
different shapes or scenes.

We visualize the optimization process in 4 epochs in Fig. 5
(a). We show how the 3 queries (black cubes) get pulled
progressively onto the surface (Cyan). For each query, we
also show its corresponding target in each one of 100 batch-
es in the same color (red, green, blue), and each target is
established by the mapping φ in the metric L. The essence
of statical reasoning in each epoch is that each query will

Points 5K 10K
PU-Net SBP Ours PU-Net SBP Ours

CD 3.445 1.696 0.592 2.862 1.454 0.418
P2M 1.669 0.295 0.156 1.166 0.181 0.155

Table 2. Upsampling comparison. L2CD×104 and P2M ×104.

be pulled to the average point of all targets from all batches
since the distance between the query and each target should
be minimized. Although the targets are found all over the
shape in the first epoch, the targets surround the query more
tightly as the query gets pulled to the surface in the follow-
ing epochs. This makes queries get pulled onto the surface
which results in an accurate SDF visualized in the surface
reconstruction and level-sets in Fig. 5 (b).

One Noisy Point Cloud. Although we prove Theorem 1
based on multiple noisy point clouds (N > 1), we surpris-
ingly found that our method can also work well when only
one noisy point cloud (N = 1) is available. Specifically, we
regard the queries sampled around the noisy point cloudNi

as input and regardNi as target. We believe the reason why
N = 1 works is that the knowledge learned via statistical
reasoning in the batch based training can be well general-
ized to various regions. We will report our results learned
from multiple or one noisy point clouds in experiments.

Noise Types. We work well with different types of noises
in Fig. 6. We use zero-mean noises in our proof of Theorem
1, but we find we work well with unknown noises in real
scans in experiments. In evaluations, we also use the same
type of noises in benchmarks for fair comparisons.

Discrete Noise Laplace Noise Normal Noise Uniform Noise

Figure 6. Reconstruction with different kinds of noises.

4. Experiments and Analysis
We evaluate our method in two steps. We first evaluate our
method in applications that only care about points, such as
point cloud denoising and upsampling. So, we only leverage
Eq. (5) to produce the denoised or upsampled point clouds.
Then, we evaluate our method trained with the loss in Eq. (7)
in surface reconstruction, where λ = 0.1.

4.1. Point Cloud Denoising

Dataset and Metric. For the fair comparison with the state-
of-the-art results, we follow SBP (Luo & Hu, 2021) to
evaluate our method under two benchmarks named as PU
and PC that were released by PUNet (Yu et al., 2018) and
PointCleanNet (Rakotosaona et al., 2020). We report our
results under 20 shapes in the test set of PU and 10 shapes
in the test set of PC. We use Poisson disk to sample 10K
and 50K points from each shape respectively as the ground
truth clean point clouds in two different resolutions. The
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Point Number 10K(Sparse) 50K(Dense)
Noise 1% 2% 3% 1% 2% 3%

Model CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

PU

Bilateral 3.646 1.342 5.007 2.018 6.998 3.557 0.877 0.234 2.376 1.389 6.304 4.730
Jet 2.712 0.613 4.155 1.347 6.262 2.921 0.851 0.207 2.432 1.403 5.788 4.267
MRPCA 2.972 0.922 3.728 1.117 5.009 1.963 0.669 0.099 2.008 1.003 5.775 4.081
GLR 2.959 1.052 3.773 1.306 4.909 2.114 0.696 0.161 1.587 0.830 3.839 2.707
PCNet 3.515 1.148 7.469 3.965 13.067 8.737 1.049 0.346 1.447 0.608 2.289 1.285
GPDNet 3.780 1.337 8.007 4.426 13.482 9.114 1.913 1.037 5.021 3.736 9.705 7.998
DMR 4.482 1.722 4.982 2.115 5.892 2.846 1.162 0.469 1.566 0.800 2.632 1.528
SBP 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041
TTD-Un 3.390 0.826 7.251 3.485 13.385 8.740 1.024 0.314 2.722 1.567 7.474 5.729
SBP-Un 3.107 0.888 4.675 1.829 7.225 3.726 0.918 0.265 2.439 1.411 5.303 3.841
Ours 1.060 0.241 2.925 1.010 4.221 1.847 0.377 0.155 1.029 0.484 1.654 0.972

PC

Bilaterall 4.320 1.351 6.171 1.646 8.295 2.392 1.172 0.198 2.478 0.634 6.077 2.189
Jet 3.032 0.830 5.298 1.372 7.650 2.227 1.091 0.180 2.582 0.700 5.787 2.144
MRPCA 3.323 0.931 4.874 1.178 6.502 1.676 0.966 0.140 2.153 0.478 5.570 1.976
GLR 3.399 0.956 5.274 1.146 7.249 1.674 0.964 0.134 2.015 0.417 4.488 1.306
PCNet 3.849 1.221 8.752 3.043 14.525 5.873 1.293 0.289 1.913 0.505 3.249 1.076
GPDNet 5.470 1.973 10.006 3.650 15.521 6.353 5.310 1.716 7.709 2.859 11.941 5.130
DMR 6.602 2.152 7.145 2.237 8.087 2.487 1.566 0.350 2.009 0.485 2.993 0.859
SBP 3.369 0.830 5.132 1.195 6.776 1.941 1.066 0.177 1.659 0.354 2.494 0.657
Ours 2.047 0.518 2.056 0.519 5.331 1.935 0.426 0.129 1.043 0.316 2.22 1.096

Table 1. Denoising comparison. L2CD×104 and P2M ×104.
(a) (b)

Figure 5. (a) Visualization of optimization in 4 epochs via noise to noise mapping. 3 queries (black cubes) sampled from one noisy point
cloud get pulled onto the surface. For each query, we minimize its distance to all targets (in the same color) matched from another noisy
point cloud by the mapping φ in metric L. More details can be found in our video. (b) Surface reconstruction and multiple level-sets.

clean point cloud is normalized into the unit sphere. In each
resolution, we add Gaussian noise with three standard devi-
ations including 1%, 2%, 3% to the clean point clouds. We
leverage L2 Chamfer Distance (L2CD) and point to mesh
distance (P2M) to evaluate the denoising performance. For
each test shape, we generate N = 200 noisy point clouds to
train our method. We sample B = 250 points in each batch.
We report our results and numerical comparison in Tab. 1.
The compared methods include Bilateral (Fleishman et al.,
2003), Jet (Cazals & Pouget, 2005), MRPCA (Mattei &
Castrodad, 2017), GLR (Zeng et al., 2020), PCNet (Rakoto-
saona et al., 2020), GPDNet (Pistilli et al., 2020), DMR (Luo
& Hu, 2020), TTD (Casajus et al., 2019), and SBP (Luo &
Hu, 2021). These methods require learned priors and can
not directly use multiple observations. The comparison with
different conditions indicates that our method significant-
ly outperforms traditional point cloud denoising methods
and deep learning based point cloud denoising methods in
both supervised and unsupervised (“-Un”) settings. Error
map comparison with TTD (Casajus et al., 2019) and S-
BP (Luo & Hu, 2021) in Fig. 7 further demonstrates our

state-of-the-art denoising performance.

4.2. Point Cloud Upsampling

Dataset and Metric. We use the PU dataset mentioned
before to evaluate the fθ learned in our denoising experi-
ments in point cloud upsampling. Following SBP (Luo &
Hu, 2021), we produce an upsampled point cloud with an
upsampling rate of 4 from a sparse point cloud by denoising
the sparse point cloud with noise. We compare the denoised
point cloud and the ground truth, and report L2CD and P2M
comparison in Tab. 2. We compared with PU-Net (Yu et al.,
2018) and SBP (Luo & Hu, 2021). The comparison demon-
strates that our method can perform the statistical reasoning
to reveal points on the surface more accurately.

4.3. Surface Reconstruction for Shapes

ShapeNet. We first report our surface reconstruction perfor-
mance under the test set of 13 classes in ShapeNet (Chang
et al., 2015). The train and test splits follow COcc (Peng
et al., 2020). Following IMLS (Liu et al., 2021), we lever-
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Noise TTD SBP Ours GT

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Visual comparison in point cloud denoising. Error at
each point is shown in color. (a) and (b) 10K points with 3%
noise. (c) 10K points with 2% noise. (d) and (e) 50K points with
3% noise. (f) 50K points with with 2% noise.

PSR PSG R2N2 Atlas COcc SAP OCNN IMLS POCO Ours
L1CD×10 0.299 0.147 0.173 0.093 0.044 0.034 0.067 0.031 0.030 0.026

NC 0.772 - 0.715 0.855 0.938 0.944 0.932 0.944 0.950 0.962
F-Score 0.612 0.259 0.400 0.708 0.942 0.975 0.800 0.983 0.984 0.991

Table 3. L1CD, NC and F-Score comparison under ShapeNet.

age point clouds with 3000 points as clean truth, and add
Gaussian noise with a standard deviation of 0.005. For each
clean point cloud, we generate N = 200 noisy point clouds
with a batch size of B = 3000. We leverage L1 Chamfer
Distance (L1CD), Normal Consistency (NC) (Mescheder
et al., 2019), and F-score (Tatarchenko et al., 2019) with a
threshold of 1% as metrics.

We compare our methods with methods including P-
SR (Kazhdan & Hoppe, 2013), PSG (Fan et al., 2017),
R2N2 (Choy et al., 2016), Atlas (Groueix et al., 2018), COc-
c (Peng et al., 2020), SAP (Peng et al., 2021), OCNN (Wang
et al., 2020), IMLS (Liu et al., 2021) and POCO (Boulch &
Marlet, 2022). The numerical comparison in Tab. 3 demon-
strates our state-of-the-art surface reconstruction accuracy
over 13 classes. Although we do not require the ground
truth supervision, our method outperforms the supervised
methods such as SAP (Peng et al., 2021), COcc (Peng et al.,
2020) and IMLS (Liu et al., 2021). We further demonstrate
our superiority in the reconstruction of complex geometry in
the visual comparison in Fig. 8. More numerical and visual
comparisons can be found in the following appendix.

FAMOUS and ABC. We further evaluate our method us-
ing the test set in FAMOUS and ABC dataset provided by
P2S (Erler et al., 2020). The clean point cloud is corrupted
with noise at different levels. We follow NeuralPull (Ma

Noisy input IMLS GTOursCOcc

Figure 8. Comparison in surface reconstruction under ShapeNet.
Dataset DSDF Atlas PSR P2S NP IMLS PCP POCO OnSF Ours

ABC var 12.51 4.04 3.29 2.14 0.72 0.57 0.49 2.01 3.52 0.113
ABC max 11.34 4.47 3.89 2.76 1.24 0.68 0.57 2.50 4.30 0.139

F-med 9.89 4.54 1.80 1.51 0.28 0.80 0.07 1.50 0.59 0.033
F-max 13.17 4.14 3.41 2.52 0.31 0.39 0.30 2.75 3.64 0.117

Table 4. L2CD×100 comparison under ABC and Famous.

et al., 2021) to report L2 Chamfer Distance (L2CD). Dif-
ferent from previous experiments, we only leverage single
N = 1 noisy point clouds to train our method with a batch
size of B = 1000.

We compare our methods with methods including DS-
DF (Park et al., 2019), Atlas (Groueix et al., 2018), P-
SR (Kazhdan & Hoppe, 2013), P2S (Erler et al., 2020),
NP (Ma et al., 2021), IMLS (Liu et al., 2021), PCP (Ma
et al., 2022b), POCO (Boulch & Marlet, 2022), and OnS-
F (Ma et al., 2022a). The comparison in Tab. 4 demonstrates
that our method can reveal more accurate surfaces from
noisy point clouds even we do not have training set, ground
truth supervision or even multiple noisy point clouds. The
statistical reasoning on point clouds and geometric regular-
ization produce more accurate surfaces as demonstrated by
the error map comparison under FAMOUS in Fig. 9.

D-FAUST and SRB. Finally, we evaluate our method under
the real scanning dataset D-FAUST (Bogo et al., 2017) and

Noisy input IGR P2S NP Ours GT

Figure 9. Visual comparison in surface reconstruction under FA-
MOUS. Point to surface error at each vertex is shown in color.
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Metrics IGR Point2Mesh PSR SAP Ours
L1CD×10 0.235 0.071 0.044 0.043 0.037

F-Score 0.805 0.855 0.966 0.966 0.996
NC 0.911 0.905 0.965 0.959 0.970

Table 5. Comparison in surface reconstruction under D-FAUST.
Input IGR Point2Mesh Ours GTPSR SAP

Figure 10. Comparison in surface reconstruction under DFAUST.
SRB (Williams et al., 2019). We follow SAP (Peng et al.,
2021) to evaluate our result using L1CD, NC (Mescheder
et al., 2019), and F-score (Tatarchenko et al., 2019) with a
threshold of 1% using the same set of shapes. We use single
N = 1 noisy point clouds to train our method with a batch
size of B = 5000.

We compare our methods with the methods including I-
GR (Gropp et al., 2020), Point2Mesh (Hanocka et al., 2020),
PSR (Kazhdan & Hoppe, 2013), SAP (Peng et al., 2021).
We report numerical comparison in Tab. 5 and Tab. 6. Al-
though we only do statistical reasoning on a single noisy
point cloud and do not require point normals as SAP (Peng
et al., 2021), our method still handles the noise in real s-
canning well, which achieves much smoother and more
accurate structure. The comparison in Fig. 10 and Fig. 14
shows that our method can produce more accurate surfaces
without missing parts on both rigid and non-rigid shapes.

4.4. Surface Reconstruction for Scenes

3D Scene. We evaluate our method under real scene scan
dataset (Zhou & Koltun, 2013). We sample 1000 points per
m2 from Lounge and Copyroom, and only leverage N = 1
noisy point cloud to train our method with a batch size of
B = 5000. We leverage the pretrained models of COcc and

Metrics IGR Point2Mesh PSR SAP Ours
L1CD×10 0.178 0.116 0.232 0.076 0.067

F-Score 0.755 0.648 0.735 0.830 0.835

Table 6. Comparison in surface reconstruction under SRB.

Lounge Copyroom
L2CD L1CD NC L2CD L1CD NC

COcc (Peng et al., 2020) 9.540 0.046 0.894 10.97 0.045 0.892
LIG (Jiang et al., 2020a) 9.672 0.056 0.833 3.61 0.036 0.810

DeepLS (Chabra et al., 2020) 6.103 0.053 0.848 0.609 0.021 0.901
NP (Ma et al., 2021) 1.079 0.019 0.910 5.795 0.036 0.862

Ours 0.602 0.016 0.923 0.442 0.016 0.903

Table 7. Surface reconstruction under 3D Scene dataset. L2-
CD×103. The unit of error is mm.

LIG and retrain NP and DeepLS to produce their results
with the same input. We also provide LIG and DeepLS
with the ground truth point normals. Numerical comparison
in Tab. 7 demonstrates that our method significantly out-
performs the state-of-the-art. Fig. 11 further demonstrates
that we can produce much smoother surfaces with more
geometry details.

Paris-rue-Madame. We further evaluate our method under
another real scene scan dataset (Serna et al., 2014). We
only use N = 1 noisy point cloud with a batch size of
B = 5000. We split the 10M points into 50 chunks each
of which is used to learn a SDF. Similarly, we use each
chunk to evaluate IMLS (Liu et al., 2021) and LIG (Jiang
et al., 2020a) with their pretrained models. Our superior
performance over the latest methods in large scale surface
reconstruction is demonstrated in Fig. 12. Our denoised
point clouds in a smaller scene are detailed in Fig. 13.

B 100 250 1000 2000 5000 10000
L2CD×104 12.398 4.221 4.578 5.628 5.998 6.217
P2M×104 5.482 1.847 1.901 2.112 2.221 2.342

Table 8. Effect of batch size B under PU.

4.5. Ablation Studies

We conduct ablation studies under the test set of PU. We
first explore the effect of batch size B, training iterations,
and the number N of noisy point clouds in point cloud
denoising. Tab. 16 indicates that more points in each batch
will slow down the convergence. Tab. 9 demonstrates that
more training iterations help perform statistical reasoning
better to remove noise. Tab. 10 indicates that more corrupted
observations are the key to increase the performance of
statistical reasoning although one corrupted observation is
also fine to perform statistical reasoning well.

We further highlight the effect of EMD as the distance met-
ric L and geometric consistency regularization R in denois-
ing and surface reconstruction in Tab. 17. The comparison
shows that we can not perform statistical reasoning on point
clouds using CD, and EMD can only reveal the surface in
statistical reasoning for denoising but not learn meaning-
ful signed distance fields without R. Moreover, we found
the λ weighting R slightly affects our performance. More
additional studies are in the following appendix.
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COcc LIG NP OursDeepLS GT

Figure 11. Visual comparison in surface reconstruction under 3D Scene dataset.
Input IGR Point2Mesh Ours GTPSR SAP

Figure 14. Comparison in surface reconstruction under SRB.

PSR IMLS LIG Ours

Figure 12. Comparison in surface reconstruction from real scans.
Noisy Scene Denoised Scene

Figure 13. Demonstration of denoising on real scans.

Iterations ×104 40 60 80 100
L2CD×104 4.887 4.364 4.221 4.224
P2M×104 2.032 1.885 1.847 1.849
Table 9. Number of training iterations under PU.

N 1 2 10 20 50 100 200
L2CD×104 4.976 4.898 4.665 4.558 4.432 4.224 4.221
P2M×104 2.132 2.079 1.997 1.996 1.899 1.847 1.847

Table 10. Effect of N under PU.

CD EMD,λ = 0 EMD,λ = 0.05 EMD,λ = 0.1 EMD,λ = 0.2
Denoise 73.786 4.221 4.245 4.252 4.832

Reconstruction 81.573 80.917 5.721 4.277 4.993

Table 11. Effect of CD and EMD as the distance metric L and
geometry consistency regularization R under PU. L2CD×104.

5. Conclusion
We introduce to learn SDFs from noisy point clouds via
noise to noise mapping. We explore the feasibility of learn-
ing SDFs from multiple noisy point clouds or even one
noisy point cloud without the ground truth signed distances,
point normals or clean point clouds. Our noise to noise
mapping enables the statistical reasoning on point clouds
although there is no spatial correspondence among points
on different noisy point clouds. Our key insight in noise to
noise mapping is to use EMD as the metric in the statistical
reasoning. With the capability of the statistical reasoning,
we successfully reveal surfaces from noisy point clouds by
learning highly accurate SDFs. We evaluate our method un-
der synthetic dataset or real scanning dataset for both shapes
or scenes. The effectiveness of our method is justified by
our state-of-the-art performance in different applications.
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A. Network Architectures
We employ a network that is modified based on Occ-
Net (Mescheder et al., 2019). Since the output of OccNet
is a value with a range of [0,1], we replace the sigmoid
function that produces this output with the tanh function,
which can output a signed distance value with a range of
[-1,1], where the sign indicates the inside or outside of the
3D shape. In addition, we also replace the Resblock used
in OccNet by simple fully connected layers to simplify the
OccNet, which highlights the advantage of our method.

B. Query Sampling
We sample more queries around a noisy point cloud if there
is only one noisy point cloud available. We leverage a
method introduced by NeuralPull (Ma et al., 2021) to sample
queries around each point on the noisy point cloud.

C. Surface Reconstruction
Numerical Comparison. We report more detailed com-
parison under ShapeNet (Chang et al., 2015). Due to the
text limit in the main body, we only report the mean met-
ric over all 13 classes under ShapeNet. We compare our
methods with methods including PSR (Kazhdan & Hoppe,
2013), PSG (Fan et al., 2017), R2N2 (Choy et al., 2016),
Atlas (Groueix et al., 2018), COcc (Peng et al., 2020), S-
AP (Peng et al., 2021), OCNN (Wang et al., 2020), and
IMLS (Liu et al., 2021). We report the numerical compari-
son in terms of L1CD, NC, and F-score in Tab. 12, Tab. 13,
and Tab. 14, respectively.

Visual Comparison. We report more surface reconstruc-
tion results under ShapeNet (Chang et al., 2015) in Fig. 15,
Fig. 16 and Fig. 17. This comparison demonstrates that
our method can reconstruct more geometry details than the
state-of-the-art methods.

We also highlight our performance on point denoising and
surface reconstructions on a large scale real scan in our
video.

D. Point Cloud Denoising
Additionally, we visualize our results with larger noises
which we use to learn an SDF in point cloud denoising in
Fig. 19. We tried noises with different variances includ-
ing {2%, 4%, 6%, 8%, 10%}. We can see that our method
can reveal accurate geometry with large noises. While our
method may fail if the noises are too large to observe the
structures, such as the variance of 10 percent. Note that
variances larger than 3 percent are not widely used in evalu-
ations in previous studies.

Noisy input IMLS GTOursCOcc

Figure 15. Visual comparison with COcc (Peng et al., 2020) and
IMLS (Liu et al., 2021) in surface reconstruction under ShapeNet.

E. Results on KITTI
Additionally, we report our reconstruction on a road from
KITTI in Fig. 18. Our method can also reconstruct plausible
and smooth surfaces from a single real scan containing
sparse and noisy points, please see our reconstruction

F. Computational Complexity
We report our computational complexity in the follow-
ing table. We report numerical comparisons with the lat-
est overfitting based methods including NeuralPull (N-
P) and PCP using different point numbers including
{20K, 40K, 80K, 160K} in Tab. 15, where all methods
search the nearest neighbors for queries online. NerualPull
does not use learned priors while PCP uses learned priors
parameterized by a neural network, both of which require
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PSR PSG R2N2 Atlas COcc SAP OCNN IMLS POCO Ours
airplane 0.437 0.102 0.151 0.064 0.034 0.027 0.063 0.025 0.023 0.022
bench 0.544 0.128 0.153 0.073 0.035 0.032 0.065 0.030 0.028 0.025
cabinet 0.154 0.164 0.167 0.112 0.047 0.037 0.071 0.035 0.037 0.034

car 0.180 0.132 0.197 0.099 0.075 0.045 0.077 0.040 0.041 0.037
chair 0.369 0.168 0.181 0.114 0.046 0.036 0.066 0.035 0.033 0.026

display 0.280 0.160 0.170 0.089 0.036 0.030 0.066 0.029 0.028 0.022
lamp 0.278 0.207 0.243 0.137 0.059 0.047 0.067 0.031 0.033 0.027

speaker 0.148 0.205 0.199 0.142 0.063 0.041 0.073 0.040 0.041 0.033
rifle 0.409 0.091 0.167 0.051 0.028 0.023 0.062 0.021 0.019 0.019
sofa 0.227 0.144 0.160 0.091 0.041 0.032 0.066 0.031 0.030 0.027
table 0.393 0.166 0.177 0.102 0.038 0.033 0.066 0.032 0.031 0.028

telephone 0.281 0.110 0.130 0.054 0.027 0.023 0.061 0.023 0.022 0.017
vessele 0.181 0.130 0.169 0.078 0.043 0.030 0.064 0.027 0.025 0.024
mean 0.299 0.147 0.173 0.093 0.044 0.034 0.067 0.031 0.030 0.026

Table 12. L1CD×10 comparison under ShapeNet.

Figure 19. Point clouds denoising with large noises.

the nearest neighbor search as ours. We report the time used
to train these methods in 50K iterations. The comparisons
indicate that our method uses less storage and less time than
its counterparts.

Table 15. Comparison of Computational Complexity.
Time/GPU Memory 20K 40K 80K 160K
NP 12min/1.5G 15min/2.3G 19min/4.1G 33min/8.0G
PCP 14min/1.9G 18min/2.7G 22min/4.6G 35min/8.4G
Ours 10min/1.5G 12min/2.2G 15min/4.0G 21min/8.0G

Since NP and PCP can not handle noises well, their recon-
structions contain severe artifacts on the surface. While our
method can handle that well. Please see more numerical
comparisons with these methods in our paper. In addition,
our results may get more improvements if we train our
method more iterations.

G. Ablation Studies
Number of Noisy Point Clouds. We report additional ab-
lation studies to explore the effect of the number of noisy
point clouds in all the three tasks including point cloud de-
noising, point cloud upsampling, and surface reconstruction
under the PU test set below. We can see we achieve the best
performance with 200 noisy point clouds in all tasks, and
the improvement over 100 point clouds is small. So we used
200 to report our results with multiple noisy point clouds in
our paper.

Point Density. We report the effect of point density in
all the three tasks including point cloud denoising, point
cloud upsampling, and surface reconstruction under the PU
test set below. We learn an SDF from a single noisy point
cloud. With more noises, our method can achieve better
performance in all the three tasks.

One Observation vs. Multiple Observations. Since our
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PSR PSG R2N2 Atlas COcc SAP OCNN IMLS POCO Ours
airplane 0.747 - 0.669 0.854 0.931 0.931 0.918 0.937 0.944 0.960
bench 0.649 - 0.691 0.820 0.921 0.920 0.914 0.922 0.928 0.935
cabinet 0.835 - 0.786 0.875 0.956 0.957 0.941 0.955 0.961 0.975

car 0.783 - 0.719 0.827 0.893 0.897 0.867 0.882 0.894 0.937
chair 0.715 - 0.673 0.829 0.943 0.952 0.941 0.950 0.956 0.965

display 0.749 - 0.747 0.905 0.968 0.972 0.960 0.973 0.975 0.981
lamp 0.765 - 0.598 0.759 0.900 0.921 0.911 0.922 0.929 0.957

speaker 0.843 - 0.735 0.867 0.938 0.950 0.936 0.947 0.952 0.977
rifle 0.788 - 0.700 0.837 0.929 0.937 0.932 0.943 0.949 0.938
sofa 0.826 - 0.754 0.888 0.958 0.963 0.949 0.963 0.967 0.978
table 0.706 - 0.734 0.867 0.959 0.962 0.946 0.962 0.966 0.970

telephone 0.805 - 0.847 0.957 0.983 0.984 0.974 0.984 0.985 0.987
vessele 0.820 - 0.641 0.837 0.918 0.930 0.922 0.932 0.940 0.951
mean 0.772 - 0.715 0.855 0.938 0.944 0.932 0.944 0.950 0.962

Table 13. NC comparison under ShapeNet.

Table 18. Effect of mixing multiple noise point clouds under PU.
Strategy Metric Mixing W/O Mixing

Denoise L2CD×104 4.244 4.221
P2M×104 1.851 1.847

Reconstruction L2CD×104 4.315 4.355
P2M×104 1.831 1.877

UpSampling L2CD×104 4.299 4.272
P2M×104 1.897 1.897

method can learn from multiple observations and single ob-
servation, we investigate the effect of learning from these
two training settings. Here, we combine multiple noisy
observations into one noisy observation by concatenation,
where we keep the total number of points the same. Ta-
ble. 18 indicates that there is almost no performance differ-
ence with these two training settings. The reason i

H. Optimization Visualization
We visualize the optimization process in our video. We
visualize the noisy points matched by EMD for each query
in each epoch. In addition, we also visualize the denoised
points using the gradient in the learned SDF in different
epochs.

I. Proof
We proof Theorem 1 in our submission in the following.

Theorem 1. Assume there was a clean point cloudG which

is corrupted into observations S = {Ni} by sampling a
noise around each point of G. If we leverage EMD as
the distance metric L defined in Eq. (8), and learn a point
cloud G′ by minimizing the EMD between G′ and each
observation in S, i.e., minG′

∑
Ni∈S L(G′,Ni), then G′

converges to the clean point cloudG, i.e., L(G,G′) = 0.

L(G,G′) = min
φ:G→G′

∑
g∈G

||g − φ(g)‖2, (8)

where φ is a one-to-one mapping.

Proof: Suppose each corrupted observation Ni in the
set S = {Ni|i ∈ [1, N ]} is formed by m points, and
Ni = {nki |k ∈ [1,m],m ≥ 1}. With the same assump-
tion, either G or G′ is also formed by m points, G =
{gk|k ∈ [1,m],m ≥ 1}, G′ = {g′k|k ∈ [1,m],m ≥ 1}.
Assuming each noise nki is corrupted from the clean gk, we
leverage this assumption to justify the correctness of our
proof. L(G′, S) =

∑
Ni∈S L(G′,Ni).

(a) When m = 1, this is similar to Noise2Noise (Lehtinen
et al., 2018b),

L(G′, S) =
N∑
i=1

(g′1 − n1i )2.

∂L(G′, S)

∂G′ = 2
N∑
i=1

(g′1 − n1i ).

∂L(G′, S)

∂G′ = 0→g′1 = 1/N
N∑
i=1

n1i .

(9)
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PSR PSG R2N2 Atlas COcc SAP OCNN IMLS POCO Ours
airplane 0.551 0.476 0.382 0.827 0.965 0.981 0.810 0.992 0.994 0.995
bench 0.430 0.266 0.431 0.786 0.965 0.979 0.800 0.986 0.988 0.993
cabinet 0.728 0.137 0.412 0.603 0.955 0.975 0.789 0.981 0.979 0.996

car 0.729 0.211 0.348 0.642 0.849 0.928 0.747 0.952 0.946 0.964
chair 0.473 0.152 0.393 0.629 0.939 0.979 0.799 0.982 0.985 0.993

display 0.544 0.175 0.401 0.727 0.971 0.990 0.811 0.994 0.994 0.998
lamp 0.586 0.204 0.333 0.562 0.892 0.959 0.800 0.979 0.975 0.990

speaker 0.731 0.107 0.405 0.516 0.892 0.957 0.779 0.963 0.964 0.977
rifle 0.590 0.615 0.381 0.877 0.980 0.990 0.826 0.996 0.998 0.998
sofa 0.712 0.184 0.427 0.717 0.953 0.982 0.801 0.987 0.989 0.992
table 0.442 0.158 0.404 0.692 0.967 0.986 0.801 0.987 0.991 0.992

telephone 0.674 0.317 0.484 0.867 0.989 0.997 0.825 0.998 0.998 0.999
vessele 0.771 0.363 0.394 0.7757 0.931 0.974 0.809 0.987 0.989 0.997
mean 0.612 0.259 0.400 0.708 0.942 0.975 0.800 0.983 0.984 0.991

Table 14. F-Score comparison under ShapeNet.

Table 16. Effect of batch size B under PU.
B Metric 1 2 10 20 50 100 200

Denoise L2CD×104 4.976 4.898 4.665 4.558 4.432 4.224 4.221
P2M×104 2.132 2.079 1.997 1.996 1.899 1.847 1.847

Reconstruction L2CD×104 5.102 4.995 4.795 4.599 4.456 4.369 4.355
P2M×104 2.423 2.217 2.007 2.001 1.978 1.886 1.877

UpSampling L2CD×104 4.988 4.886 4.687 4.574 4.461 4.328 4.272
P2M×104 2.152 2.082 2.001 1.997 1.977 1.919 1.897

Since S = {Ni} is a set corrupted from the clean point
cloud G, g1 = 1/N

∑N
i=1 n

1
i . Furthermore, we also get

g′1 = g1.

From Eq. (9), we can also get the following conclusion,

min
G′

L(G′, S)↔ G′ = E(φ(G′)), (10)

where φ = {φi|i ∈ [1, N ]} is a set of one-to-one mapping
φi which mapsG′ to each corrupted observationNi in S.

(b) When m ≥ 2, assuming that we know which noisy
point nki on each point cloud Ni is corrupted from the
clean point gk. We regard the correspondence ci between
{nki |i ∈ [1, N ]} and gk as the ground truth, so that we can
verify the correctness of our following proof. Note that we
did not use this assumption in the proof process. So, we can
represent the correspondence using the following equation,

E(n(k)) = 1/N
N∑
i=1

nki = gk, (11)

where n(k) = {nki |i ∈ [1, N ]}.

As defined before, φi is the one-to-one mapping established
in the calculation of EMD betweenG′ andNi. Therefore,
the distance between G′ and noisy point cloud set S is,
L(G′, S) =

∑m
k=1(

∑N
i=1((g′k − φi(g′k))2)),

There are two cases. One is that the one-to-one mapping φi
is exactly the correspondence ground truth ci. The other is
that φi is not the correspondence ground truth.

Case (1): When φi(g′k) = nki , i ∈ [1, N ], this is consistent
with (a), so the Theorem 1 gets proved.

Case (2): When φi(g′k) 6= nki , assuming φi(g′k) = n
ak,i
i ,

Ak = {nak,ii |i ∈ [1, N ]}, Ak is a set corresponding to
g′k. When minimizing L(G′, S) =

∑m
k=1

∑N
i=1(g′k −

φi(g
′k))2, according to Eq. (10), g′k = E(φi(g

′k)), so
V ar(Ak) = 1/N

∑N
i=1((g′k − E(φi(g

′k)))2). When
m = 2, min

G′
L(G′, S) = min(V ar(A1) + V ar(A2)). We

assumeA1 = n1s+n2cs to simply the following proof, where
s is a subset of set [1, N ], cs is the complement of set s,
so A2 = n2s + n1cs. Assuming E(A1) = g1 + ∆, ∆ is the
point offset of g1, because of E(A1) + E(A2) = g1 + g2,
so E(A2) = g2 −∆,
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Table 17. Effect of Density D of point Cloud under PU.
D Metric 1K 2K 5K 10K 20K 50K 100K

Denoise L2CD×104 5.168 5.098 4.850 4.221 2.312 1.654 1.543
P2M×104 2.223 2.179 2.097 1.847 1.229 0.972 0.959

Reconstruction L2CD×104 5.445 5.283 4.981 4.355 2.388 1.691 1.579
P2M×104 2.330 2.212 2.159 1.877 1.292 0.998 0.982

UpSampling L2CD×104 5.281 5.187 4.984 4.272 2.392 1.682 1.561
P2M×104 2.398 2.212 2.167 1.897 1.289 0.997 0.973

Noise input IMLSNet GTOursConvOccNet

Figure 16. Visual comparison with COcc (Peng et al., 2020) and
IMLS (Liu et al., 2021) in surface reconstruction under ShapeNet.

Noise input IMLSNet GTOursConvOccNet

Figure 17. Visual comparison with COcc (Peng et al., 2020) and
IMLS (Liu et al., 2021) in surface reconstruction under ShapeNet.
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Figure 18. Reconstruction on a real scan from KITTI.

L(G′, S)

=(V ar(A1) + V ar(A2))

=E(A1 − (g1 + ∆))2 + E(A2 − (g2 −∆))2

=1/N(
N∑
i=1

(n
a1,i
i )2 +

N∑
i=1

(n
a2,i
i )2 +N(g1 + ∆)2

+N(g2 −∆)2 − 2
N∑
i=1

n
a1,i
i (g1 + ∆)

− 2
N∑
i=1

n
a2,i
i (g2 −∆))

=E((n(1))2) + E((n(2))2) + E2(n(1))+

E2(n(2)) + 2∆2 + 2g1∆− 2g2∆−

2/N(g1
N∑
i=1

n
a1,i
i + g2

N∑
i=1

n
a2,i
i +

∆
N∑
i=1

n
a1,i
i −∆

N∑
i=1

n
a2,i
i )

=E((n(1))2) + E((n(2))2) + E2(n(1))+

E2(n(2)) + 2/N(∆(n1s + n1cs)−∆(n2s + n2cs)

−∆(ns1 + n2cs) + ∆(n1
cs + n2s)−

g1
N∑
i=1

n
a1,i
i − g2

N∑
i=1

n
a2,i
i )

=E((n(1))2) + E((n(2))2) + E2(n(1))+

E2(n(2)) + 2∆2 + 2∆/N(2n1cs−
2n2cs)− 2/N(g1N(g1 + ∆) + g2N(g2 −∆))

=E((n(1))2) + E((n(2))2)− E2(n(1))−
E2(n(2)) + 2∆2+

2∆/N(2n1cs − 2n2cs − n1cs − n1s + n2cs + n2s)

=E((n(1))2) + E((n(2))2)− E2(n(1))−
E2(n(2)) + 2∆(g2 − g1)− 2∆2

=V ar(n(1)) + V ar(n(2)) + 2∆(g2 − g1)− 2∆2

(12)

Because the first two terms of the formula are constants, the
entire formula becomes a quadratic formula, so when ∆ = 0
or ∆ = g2−g1, the value of L(G′, S) is minimized. ∆ = 0
is consistent with Case (1). ∆ = g2 − g1, φi(g1) = n2i ,
φi(g

2) = n1i , this is also the same correspondence as the
ground truth, so Theorem 1 gets proved. When m>2. We
can extend the proof from the two setsA1 andA2 to multiple
sets A1, A2, · · · , Am, and the proof process is similar to the
above.
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