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Abstract— The manual annotation for large-scale point
clouds is still tedious and unavailable for many harsh real-
world tasks. Self-supervised learning, which is used on raw
and unlabeled data to pre-train deep neural networks, is
a promising approach to address this issue. Existing works
usually take the common aid from auto-encoders to establish
the self-supervision by the self-reconstruction schema. However,
the previous auto-encoders merely focus on the global shapes
and do not distinguish the local and global geometric features
apart. To address this problem, we present a novel and efficient
self-supervised point cloud representation learning framework,
named 3D Occlusion Auto-Encoder (3D-OAE), to facilitate the
detailed supervision inherited in local regions and global shapes.
We propose to randomly occlude some local patches of point
clouds and establish the supervision via inpainting the occluded
patches using the remaining ones. Specifically, we design an
asymmetrical encoder-decoder architecture based on standard
Transformer, where the encoder operates only on the visible
subset of patches to learn local patterns, and a lightweight
decoder is designed to leverage these visible patterns to infer
the missing geometries via self-attention. We find that occluding
a very high proportion of the input point cloud (e.g. 75%)
will still yield a nontrivial self-supervisory performance, which
enables us to achieve 3-4 times faster during training but
also improve accuracy. Experimental results show that our
approach outperforms the state-of-the-art on a diverse range
of downstream discriminative and generative tasks.

I. INTRODUCTION

Point clouds play a crucial role in 3D computer vision
applications [1], [2], [3], [4] due to its flexibility to represent
arbitrary geometries and memory-efficiency. In this paper, we
specifically focus on the task of learning representations of
point clouds without manually annotated supervision. As 2D
images, learning representations for 3D point clouds has been
comprehensively studied for many years, and the research
line along the 2D and 3D representation learning shares a
lot of common practices, such as the auto-encoder based
framework and the self-reconstruction based supervision.
The recent development in both NLP and 2D computer
vision fields has also driven several improvements in 3D
representation learning, such as PCT [5] and Point-BERT
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[6]. However, the different data characteristics between the
2D and 3D domains limit the direct applications of many 2D
improvements into 3D scenarios, e.g. the differences between
ordered 2D grids and unordered 3D points.

The recent improvements of mask-based 2D auto-encoders
[7] have proved that masked auto-encoders are effective in
image representation learning through the inference of the
overall image information based on the visible local patches.
It provides a new perspective to establish the self-supervision
between the local and global information. However, due to
the discrete nature of point clouds, it’s difficult to directly use
a 2D mask-based auto-encoder to learn 3D representations.
Driven by the above analysis, we present 3D-OAE, a novel
Transformer-based self-supervised learning framework with
Occlusion Auto-Encoder. As shown in Fig. 1, we separate
an unlabelled point cloud into local point patches and cen-
tralize them to their corresponding seed point. After that,
we occlude a large proportion of the patches but remain
the seed points, and learn to recover occluded patches from
seed points and the visible patches. The seed points serve as
global hints to guide the shape generation and the model will
be forced to focus on learning the local geometry details.
Specifically, we design an encoder to learn features only
on the visible subset of patches, and a decoder to leverage
the features of visible patches to predict the local features
of the occluded ones, and finally reconstruct the occluded
patches with seed points as the global hints. After self-
supervised learning without any manual annotation, we can
transfer the trained encoder to different downstream tasks.
We demonstrate our superior performances by comparing our
method under the widely used benchmarks.

Our main contributions can be summarized as follows:

o We proposed a novel self-supervised learning frame-
work named 3D Occlusion Auto-Encoder. Unlike pre-
vious 3D auto-encoders, 3D-OAE designs an asymmet-
rical encoder-decoder Transformer architecture to learn
patterns from visible local patches and leverage them
to control the local geometry generation of occluded
patches. After self-supervised learning, the trained en-
coder can be transferred to new downstream tasks.

e Our 3D-OAE can remove a large proportion (e.g. 75%)
of point cloud patches before training and only encodes
a small number of visible patches. This enable us to
accelerate training for 3-4 times and makes it possible
to do self-supervised learning in large scale unlabelled
data efficiently.

« We achieved the state-of-the-art performances in six dif-
ferent downstream applications compared with previous
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points is extracted from the original shape using FPS. Unlike other auto-encoders which takes the whole shape as input to reconstruct itself, 3D-OAE
randomly occludes a high ratio of patches, encodes only on the visible patches, and learns to recover the complete shape. After self-supervised learning,
we keep f for further fine-tuning. We demonstrate that the f learned by 3D-OAE shows powerful performances in both discriminate tasks (e.g. object
classification, part segmentation) and generative tasks (e.g. point cloud completion).

self-supervised methods.

II. RELATED WORK

The deep learning based 3D point cloud processing tech-
niques has achieved very promising results in different tasks
(81, [91, [10], [111, [12], [13], [14], [15], [16], [17], [18], [19].
We focus on learning representations from point clouds in a
self-supervised way.

1) Self-supervised Learning on Point Clouds: Self-
supervised learning (SSL) is to learn the representation from
unlabelled data, where the supervision signals are built from
the data itself. Recently, several works were proposed to use
SSL techniques for point cloud representation learning[20],
[21], [22], [23], [24], [25]. PointContrast [26] designs a
SSL scheme by contrastive learning on different views of
point clouds. CrossPoint [27] introduces a cross-modality
contrastive learning strategy by exploring self-supervised
signals from the semantic differences between point clouds
and their rendering images. Some recently works try to apply
Transformers in 3D point cloud representation learning [28],
[5]. However, previous Transformer-based methods on point
cloud representation learning bring in inevitable inductive
biases and manual assumptions, the standard Transformer
with no inductive bias is proved to perform poorly [6]
due to the limited scale of point cloud data. Point-BERT
[6] achieves great performance by pre-training a standard
Transformer in a BERT-style SSL scheme. A concurrent
work Point-MAE [29] explores the masking strategy for
Transformers. However, all the previous methods do not
perform well in generative tasks due to the limited ability
of learning shape details.

2) Auto-encoder: A number of approaches [30], [20] ap-
ply auto-encoder architecture to learn meaningful representa-
tions from unlabelled point clouds. FoldingNet [20] designs
a point cloud anto-encoding with a folding-based decoder.
OcCo [30] proposes to complete view-occluded point cloud
with a standard point cloud completion network. However,
these methods only focus on the generation ability of the
whole shape, thus mixing the local and global geometry
features together, makes it hard to transfer the knowledge

to downstream tasks. Recently, in 2D vision, He et al.
[7] propose a new form of auto-encoders named MAE by
masking regular patches of images and learning to recover
the masked parts. Partly inspired by MAE, we design a new
self-supervised learning framework to recover the complete
shapes from the highly occluded shapes.

III. OCCLUSION AUTO-ENCODER

The overall architecture of 3D-OAE is shown in Fig.
2. Like other point cloud auto-encoders, 3D-OAE consists
of an encoder which learns the representation from the
input shape and a decoder to reconstruct the original shape
from the learned representation. Unlike other point cloud
auto-encoders which operates on the whole shape, 3D-OAE
divides the complete shape into groups of patches, highly
occludes them, and learns to recover the missing patches
of shapes. To achieve this, an asymmetrical encoder-decoder
architecture is designed with an encoder only operates on
the visible subset of patches, and a decoder to predict local
features of occluded patches from the visible ones. After
that, we combine the predicted local features of occluded
patches and their corresponding seed points which serve as
global hints to infer the missing geometries that semantically
match the input shape. After self-supervised learning, we
can leverage the encoder in different downstream tasks as
illustrated in Fig. 1. Specifically, we first operate average
pooling to aggregate all local features extracted from the
trained encoder into a global feature for representing the
whole shape, and then fed it into the special decoders of
different downstream tasks.

A. Grouping and Occluding

Previous Transformer-based methods treat each single
point in the original shape as a minimum operation unit like
words in sentences. However, it brings huge computational
complexity and large demand for memory due to the large
scale of point cloud data. Inspired by previous works [31],
we choose to use patches of point clouds as the minimum
unit. To achieve this, we first use Furthest Point Sampling
(FPS) to sample seed points s € RE*3 on a given input point
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Overview of 3D-OAE. The f and g indicate the standard Transformer-based encoder and decoder. We first extract seed points from the input

point cloud using FPS, and then separate the input into point patches by grouping local points around each seed point using KNN. After that, we randomly
occlude a high ratio of patches and subtract each visible patch to its corresponding seed point for detaching the patch from its spatial location. The encoder
f operates only on the embeddings of visible patches and the learnable occlusion tokens are combined to the latent feature before decoder g. Finally, we
operate addition to the output patches and their corresponding seed points to regain spatial locations and further merge local patches into a complete shape,

where we compute a loss function with the ground truth.

cloud p € RV*3, and then use K Nearest-Neighbour (KNN)
to sample sets of point patches {g;|g; € R¥*3} around each
seed point {s;}5 |, as shown in Fig. 2. But it doesn’t work to
put these patches directly into a neural network because the
structure information and spatial coordinates are entangled
in point clouds. We solve this problem by centralizing each
patch to its corresponding seed point, thus each patch only
contains its local geometry details while seed points provide
the global hints.

We apply a straightforward occluding strategy: we ran-
domly select a subset of seed points {s;}/*,, and then
remove their corresponding patches {g;}Z . After that, we
project each of the remain visible patches {gi}ZG:_lR into an
embedding as shown in Fig. 2 with a simple PointNet as:

E; = Maz(x;) € R*™Y where x; = ¢(g:|0) € RE*C,
(D
where ¢ and 6 denotes the MLP layers and the weights,
C is the channel of patch embeddings and Max denotes
Max-Pooling operation. The patch embeddings {F;}5 "
will serve as the inputs to the encoder f.

We choose to occlude a very large regions (75%) of the
original shape. More numerical comparison of occlusion
ratios can be found in Table VIII. Removing a high ratio
of patches largely increases the difficulty of auto-encoding
reconstruction, thus forces the model to learn a powerful
representation to generate more detailed local geometries.
More importantly, the design of highly occlusion strategy
makes it possible for efficient self-supervised learning on
large scale unlabelled point cloud data.

B. Auto-encoder Architecture

1) 3D-OAE Encoder: We adopt the 3D point cloud stan-
dard Transformers with multi-headed self-attention layers
and FFN blocks as detailed above as the unified backbone
of our architecture. Specifically, our encoder is a standard
Transformer but applies only on visible patches. For the
input visible patches, we first extract their patch embeddings
as described in Eq. (1). To distinguish centralized patches
apart, we use a simple MLP v to extract the position

embeddings of visible seed points {s;}&7" and add them
to their corresponding patch embeddings as:

E; < v(s|0) + E;, )

After that, a series of Transformer blocks is applied to these
patch embeddings to learn representations.

E = Linear(f,(E, H.)), 3)

where fy indicates the Transformer encoder, H. repre-
sents the number of Transformer blocks in fy, and E =
[E1,Eo,...,Eg_g] is the set of patch embeddings. A linear
projection layer is further applied for dimension mapping.

Since we use a very high occlusion ratio, the encoder
operates only on a small subset (e.g. 25%) of patches, which
makes it possible to do self-supervised learning in very large
scale unlabelled data with a relatively huge encoder.

2) 3D-OAE Decoder: The input of 3D-OAE decoder is
a full set of patch embeddings consisting of the encoded
visible patch embeddings and the occlusion tokens {7;}£ ,,
fomulated as:

U = Concat(E',T), 4)
where E € R(G-RXKEXC 7 o REXKXC anq U ¢
RGXExC .

Each occlusion token is a shared, learnable vector which
aim to learn to reconstruct one occluded patch. We further
add the position embeddings {v(s;|0)}%, to the full set
of patch embeddings for providing the location information
to the occlusion tokens. Then a series of light-weighted
Transformer blocks are further applied to learn the occlusion
tokens from features of visible patches via self-attention
mechanism:

Ul :fw(U—i_{’Y(S'e)}’Hd)a (5)

where f, and H,; are the Transformer decoder and the
number of blocks of it.

Since we calculate the attention map of each patch embed-
ding to all of the others, the model will have no sensitivity
about the ordering of patches, which indicates that 3D-OAE
is suitable for the unordered point cloud data.



TABLE I
Linear evaluation for shape classification on ModelNet40. A LINEAR
CLASSIFIER IS TRAINED ON THE REPRESENTATION LEARNED FROM THE
SHAPENET DATASET BY DIFFERENT SELF-SUPERVISION METHODS. ST
MEANS 3D STANDARD TRANSFORMER.

Method Input Accuracy
VIP-GAN[32] views 90.2%
SO-Net[33] points 87.3%
FoldingNet[20] points 88.4%
DGCNN + Jiasaw[34] points 90.6%
DGCNN + Orientation[35] points 90.7%
DGCNN + STRL[36] points 90.9%
DGCNN + CrossPoint[27] points 91.2%
ST + OcCo[30] points 89.6%
ST + Point-BERT([6] points 87.4%
ST + Point-MAE [29] points 91.0%
3D-OAE (Ours) points 92.3%

The decoder ¢ is only used during self-supervised learning
to recover the occluded parts of the original shape, only the
learned encoder f is used when transferring to downstream
tasks, which means we don’t care much about the learning
ability of the decoder. Therefore, we design a light-weighted
decoder with only about 20% computation of the encoder.
And the training process is largely accelerated since the full
set of patch embeddings is only processed by the light-
weighted decoder.

C. Optimization Objective

During training, the goal of 3D-OAE is to reconstruct the
complete shape from seed points and visible point patches.
After encoding and decoding, 3D-OAE outputs patch-wise
vectors where each vector contains the local geometry in-
formation of a single patch. The feature channel of the
Transformer decoder f,, is set to be the product of point
dimensions and patch point numbers, thus each vector can
be directly reshaped to the size of a local patch. Finally,
the seed points are added to their corresponding patches to
reconstruct the complete shape. We choose Chamfer Distance

described by Eq. (6) as our loss function.
1
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IV. EXPERIMENTS
A. Self-supervised Learning

Dataset. We learn the self-supervised representation
model from the ShapeNet[37] dataset which contains 57,448
synthetic models from 55 categories. We sample 1024 points
from each 3D model and divide them into 64 point cloud
patches using Furthest Point Sample (FPS) and K-Nearest
Neighbor (KNN), where each patch contains 32 points.
During training, we apply the same data augmentations as
PointNet++ [38].

Training setups. In the self-supervised learning stage, we
set the Transformer depth of both encoder and decoder to 12

TABLE II
Shape classification results fine-tuned on ModelNet40

Category | Method Accuracy
PointNet[40] 89.2%
PointNet++[38] 90.5%
Supervised DGCNN[41] 92.2%
Hpervise PCT[5] 93.2%
ST 91.4%
ST + OcCo[30] 92.1%
Self-supervised ST + Point-BERT[6] 93.2%
3D-OAE (Ours) 93.4%

and the number of Transformer heads both to 6. The feature
channel dimension of encoder and decoder Transformers are
set to 384 and 96, and the occlusion ratio is set to 75%.

B. Shape Understanding

Linear SVM In this experiment, we train a linear Support
Vector Machine (SVM) classifier on ModelNet [39] using
the representation from our trained encoder Transformer. The
number of point clouds is down-sampled to 2048 for both
training and testing. The comparison of classification results
is shown in Table I. Our proposed 3D-OAE achieves state-of-
the-art performance of 92.3% accuracy on test sets, while the
runner-up method only achieves 91.2% accuracy. It’s worth
noting that this result has reached the accuracy of train-
ing a classification network from scratch (e.g. PointNet++
(90.5%), DGCNN (92.2%)). Since our model is learned on
ShapeNet dataset, we believe that this result also shows the
strong transfer ability of 3D-OAE.

Supervised Fine-tuning In this experiment, we explore the
ability of our model to transfer to downstream classification
tasks. The supervised models are trained from scratch and
the self-supervised models use the trained weights from self-
supervised learning as the initial weights for fine-tuning. All
the self-supervised methods use the standard Transformer
(ST) as backbone architecture. In comparison, our 3D-
OAE brings 2.0% accuracy improvement over training from
scratch. And our method also outperforms PCT [5], which
is a variety of standard Transformer. The result proves that
using our self-supervised learning scheme, a standard Trans-
former with no inductive bias could also learn a powerful
representation.

Embedding Visualizations We visualize the feature distribu-
tions using t-SNE [42]. Fig. 3 (b) shows the features learned
by 3D-OAE after self-supervised training on ShapeNet. It’s
clear that the feature space of different categories which
are mixed together in random initialization (Fig. 3 (a)) can
be separated into different regions by 3D-OAE. We achieve
comparable performance with Point-BERT(Fig. 3 (c)). As
shown in Fig. 3 (e), the feature space are almost separated
completely independent after fine-funing on ModelNet40
train sets, and are more clearly disentangled than training
from scratch (Fig. 3 (d)).

C. Few-shot Learning

We further evaluate our model by conducting few-shot
learning experiments on ModelNet40. Following previous
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Visualization of feature distributions. We visualize the features of test sets in ModelNet40 using t-SNE. (a) random initialization, (b) 3D-OAE

pre-trained on ShapeNet, (c) Point-BERT pre-trained on ShapeNet, (d) train an randomly initialized encoder on ModelNet40, (e) fine-funing learned encoder

of 3D-OAE on ModelNet40.
TABLE III

Few-shot classification results on ModelNet40

5 way 10 way
10-shot 20-shot 10-shot 20-shot
DGCNN 91.8 +£ 3.7 934 +£ 3.2 86.3 £6.2 909 £ 5.1
DGCNN-OcCo 919 + 3.3 939 £ 3.1 864 £5491.3+46
ST 87.8 252933 +43 846 +£55 894 +63
ST-OcCo [30] 94.0 + 3.6 959 + 23 894 £ 5.1 924 +£4.6
ST-PBERT (6] 946 + 3.1 963 £ 2.7 91.0 £54 92.7 £ 5.1

ST-MaskPoint [43] 95.0 & 3.7
3D-OAE 96.3 £+ 2.5

972 £ 1.7
98.2 £ 1.5

91.4 £ 4.0 934 £ 35
92.0 £ 5.3 94.6 + 3.6

work [44], [6], we choose 4 different few-shot learning
settings: “5 way, 10 shot”, “5 way, 20 shot”, “10 way, 10
shot” and “10 way, 20 shot”. For fair comparison, we use
the data processed by Point-BERT [6] to conduct 10 separate
experiments on each few-shot setting. Table III reports the
mean accuracy and standard deviation of these 10 runs.

We compare our model with currently state-of-the-art
methods OcCo [30], Point-BERT [6] and MaskPoint [43]. As
shown in Table III, using standard Transformer as backbone,
our proposed 3D-OAE achieves a significant improvement
of 8.5%, 4.9%, 7.4%, 5.2% over baseline in 4 different sets.
The outstanding performance on few-shot learning proves
the strong ability of 3D-OAE to transfer to downstream tasks
using very limited data.

D. Object Part Segmentation

Object part segmentation is a challenging task which aims
to predict the part label for each point of the model. The
ShapeNetPart [45] dataset consists of 16,800 models from
16 categories and is split into 14006/2874 for training and
testing. The number of parts for each category is between 2
and 6, and there are 50 different parts in total. We sample
2048 points from each model follow PointNet [40], and
apply a segmentation head achieved by Point-BERT [6] to
propagates the group features to each point hierarchically. As
shown in Table IV, our model achieves 0.6% improvement
over training a standard Transformer from scratch. 3D-OAE
also outperforms PointNet, PointNet++ and DGCNN.

E. Transfer to Generative Tasks

Since most of the previous self-supervised learning meth-
ods only focus on the discriminant ability of the representa-
tion learned by their model and verify it by transferring the
model to classification tasks. They fail to transfer their model

TABLE IV
PART SEGMENTATION RESULTS ON THE SHAPENETPART DATASET.
WE REPORT THE MEAN IO0U ACROSS ALL INSTANCE.

Methods \ mloU;
PointNet[40] 83.7
PointNet++[38] 85.1
DGCNNI[41] 85.2
ST-Scratch 85.1
ST-OcCo [30] 85.1
ST-Point-Bert [6] 85.6
3D-OAE 85.7

TABLE V
POINT CLOUD COMPLETION ON PCN DATASET. THE RESULTS IS
REPORTED IN TERMS OF PER-POINT L1 CHAMFER DISTANCE x103.

Methods \ Chamfer-L1
FoldingNet [20] 14.31
PCN [46] 9.64
GRNet [48] 8.83
PMP-Net [49] 8.73
PoinTr [47] 8.38
SnowflakeNet [50] 7.21
ST-Scratch 7.37
ST-OcCol[30] 7.11
3D-OAE 6.97

to downstream generative tasks (e.g. point cloud completion,
point cloud up-sampling). In this section, we show the trans-
fer learning ability of 3D-OAE to downstream generative
tasks by conducting point cloud completion experiments.

Dataset briefs and evaluation metric. The PCN [46] dataset
is a widely used benchmark datasets in point cloud comple-
tion task. We use the same train/test split settings of PCN[46]
and follow previous works to adopt the L1 Chamfer distance
for evaluation. We use a standard Transformer encoder and
a Transformer-based decoder proposed in PoinTr [47] as our
backbone, and OcCo is trained using the same architecture.
Quantitative comparison. The results of our proposed 3D-
OAE and other completion methods are shown on Table
V, where 3D-OAE achieves the state-of-the-art performance
over all counterparts compared with both supervised and
self-supervised methods. Especially, 3D-OAE with only
a standard Transformer-based model reduces the average
CD by 0.24 compared with the SoTA supervised method
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Fig. 4. Visual comparison of point cloud completion on PCN dataset.

The input and ground truth have 2048 and 16384 points.
TABLE VI

* %
PMP-Net SnowflakeNet

PCN

Input TopNet

CLASSIFICATION RESULTS ON THE SCANOBJECTNN DATASET.

Methods | OBI-BG OBJ-ONLY PB-T50-RS
PointNet[40] 73.3 79.2 68.0
PointNet++[38] 82.3 84.3 719
PointCNN[51] 86.1 85.5 78.5
DGCNNI41] 82.8 86.2 78.1
ST 79.86 80.55 77.24
ST-OcCo[30] 84.85 85.54 78.79
ST-PBERTI[6] 87.43 88.12 83.07
3D-OAE 89.16 88.64 83.17

SnowflakeNet [50] which proposed a carefully designed
model to improve the performance on point cloud completion
task. These results prove that our generative self-supervised
learning framework is able to learn a powerful representation
which can bring significant improvement in downstream
generative tasks. The visual comparisons of point cloud
completion on PCN is shown in Fig. 4.

FE. Transfer to Real-World Data

We further use the encoder of 3D-OAE pre-trained on
the synthetic ShapeNet dataset to fine-tune on a real-world
dataset ScanObjectNN. Due to the existence of background,
occlusions and noise, this benchmark poses significant chal-
lenges to existing methods. We follow previous works to
conduct experiments on three main variants: OBJ-BG, OBJ-
ONLY and PB-T50-RS. As shown in Table VI, our proposed
3D-OAE brings significant improvement of 9.03%, 8.09% ,
5.93% over training a standard Transformer from scratch.
The results show that 3D-OAE can learn meaningful infor-
mation from artifical synthetic data and transfer it to real-
world data, which could partly solve the domain gap between
synthetic and scanned 3D data.

G. Ablation study

We analyze the effectiveness of each design in 3D-
OAE. For convenience, we conduct all experiments on the
ShapeNet dataset, and report the classification accuracy of
both Linear SVM and supervised fine-tuning in ModelNet40.
Effect of each design in 3D-OAE We make comparisons
between four different experimental solutions shown in Table

TABLE VII
ABLATION STUDY ON FRAMEWORK DESIGN.

Methods ‘ Centralize Loss  Occlusion ‘ Linear Acc. Fine-t. Acc.
Solution A X CD Rand 20.8 -
Solution B v EMD Rand 88.4 92.4
Solution C v CD Block 91.5 92.7
Solution D 4 CD Rand 923 93.4

TABLE VIII
ABLATION STUDY ON OCCLUSION RATIOS.
Occlusion ratio ‘ 0 0.5 0.65 0.75 0.85
Linear Acc. ‘ 59.2 90.9 91.1 92.3 90.7
Fine-t. Acc. 92.1 93.1 92.7 93.4 93.0
TABLE IX
EFFICIENCY COMPARISON RESULTS.
Methods | OcCo Point-BERT 3D-OAE
FLOPs(G) ‘ 8.7 9.79 0.65
EpochTime(s) 1438 688 231

VII. Solution A is trained without centralizing point patches
to seed points. Solution B is trained using Earth Mover’s
Distance as the loss function. Solution C is trained with
a block occlusion strategy. And Solution D is our default
setting. It’s clear that all the proposed designs in 3D-OAE
can improve the performance of our method. And we find
that using patch mix strategy [52] fails to enhance the
representation learning ability of 3D-OAE.

Occluding ratio Table VIII shows the numerical comparison
of different occlusion ratios. With an occlusion ratio of O, the
auto-encoder fails to learn a powerful representation from
the self-reconstruction task, which proves the effectiveness
of our proposed occlusion strategy. We find that the oc-
clusion ratio of 75% performs the best on both the linear
accuracy and supervised fine-tuning accuracy. This is very
different from BERT-style self-supervised learning works,
where BERT masks only 15% of words and Point-BERT
choose to occlude 25% to 45% of the point patches.

H. Efficiency Analysis

In Table IX, we show the efficiency of our 3D-OAE
compared with other point cloud self-supervised learning
methods. All the methods are trained using a single 2080Ti
GPU. The results show that the FLOPs of 3D-OAE is more
than 10 times lower than OcCo and Point-BERT, and 3D-
OAE also achieves about 6 times faster than OcCo and 3
times faster than Point-BERT. Using our 3D-OAE, it takes
only less than one day to train on the full set of ShapeNet
dataset for 300 epochs using a single 2080Ti. We can see
the possibility of efficient pre-training on large-scale real
scanned point cloud data using our framework.

V. CONCLUSION

In this paper, we present a novel point cloud self-
supervised learning method, named 3D Occlusion Auto-
Encoder. Our method learns a powerful representation to
transfer to various downstream tasks, even in generative tasks
and on real-world data. These results show that predicting
complete shapes from highly occluded ones is an effective
way of self-supervised learning for point clouds.
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