
MVDLite: A Light-weight Representation of Model
View Definition with Fast Validation for BIM

Applications

Han Liua, Ge Gaoa, Hehua Zhanga, Yu-Shen Liua, Yan Songb, Ming Gua

aSchool of Software, Tsinghua University, Beijing, China
Beijing National Research Center for Information Science and Technology (BNRist)

Key Laboratory for Information System Security, Ministry of Education (KLISS), China
bWanda Commercial Planning and Research Institute CO., LTD. Beijing, China

Abstract

Model View Definition (MVD) is the standard methodology to define
the partial models and data exchange requirements for Building Informa-
tion Model (BIM). However, the current commonly used mvdXML format
is complicated and difficult to develop. In addition, the efficiency of MVD
validation on large-scale models and complex rulesets is problematic. In this
paper, MVDLite is proposed as a novel light-weight representation for MVD
rules. By replacing data structure definitions with natural language con-
cepts, MVDLite decouples the rules with specific IFC Schema version and is
easy to use for non-IFC-experts. Based on a simplified “rule chain” structure,
a fast MVD validation algorithm which performs node set mapping calcu-
lations instead of traversing the subgraphs of each root entity is proposed.
A case study is provided to show the workflow for developing an enterprise-
level MVD based on MVDLite, and its applications in validation and partial
model extraction. The outperforming experimental results show that our
method is much faster than the state-of-the-art methods on large real-world
models.
Keywords:
Model View Definition (MVD); Industry Fundamental Classes (IFC);
Building Information Modeling (BIM)

Preprint submitted to Automation In Construction September 17, 2019

ar
X

iv
:1

90
9.

06
99

7v
1

 [
cs

.C
E

]
 1

6
Se

p
20

19

1. Introduction

Industry Foundation Classes (IFC) is a standard open data schema for
Building Information Models (BIM). IFC is widely used as an information
exchange format in the architectural, engineering and construction (AEC)
field. For supporting the exchange of various building information from var-
ious software platforms, IFC defines a general purpose data schema with
coarse-grained entity types (such as “IfcWindow” and “IfcDoor”), various
geometry representations (such as “IfcExtrudedAreaSolid” and “IfcFaceted-
Brep”), relationships (such as “ConnectedTo” and “IsDecomposedBy”), and
the data structure for properties (such as “IfcPropertySet” and “IfcProper-
tySingleValue”). However, since IFC has strong compatibility for various
contents, different software platforms may have various implementations in
the importing and exporting of data. Without sufficient constraints for the
entities, geometry representations, relationships and property definitions, the
data exchange process between different software platforms will suffer from
information loss or inapplicability.

In order to ensure the interoperability of IFC in specific data exchange
use cases, the Information Delivery Manual (IDM) - Model View Definition
(MVD) method [1, 2, 3] is proposed as a recommended standard methodology
to support specific data exchange requirements. IDM describes the working
process and exchange requirements in the use cases. MVD defines the subsets
of a specific IFC Schema, with constraints on entities, attributes, geometry
representations and so on.

The mvdXML [4] is the formal representation format for MVDs rec-
ommended by buildingSMART. There are two major parts of contents in
mvdXML: the natural language descriptions of domain concepts and ex-
change requirements, and the rules for data templates, attributes and values.
The mvdXML rules can be parsed by computers, which can be used for
supporting software implementation in IFC-based data exchange, and for
supporting automatic MVD validation on IFC models [5, 6].

Currently, the developers of MVDs are primarily research institutions
and standardization organizations, such as buildingSMART and National
Institute of Building Sciences (NIBS). The MVDs developed by these orga-
nizations are mainly focused on the use cases of a certain discipline (such
as walls, water systems, and HVAC systems), or the information exchange
requirement of a certain application (such as quantity take-off and energy
simulation).

2

However, few companies currently have the ability to customize MVDs
based on their own exchange requirements. Using mvdXML requires ex-
tensive knowledge of the data structure of IFC Schema and the mvdXML
format, as well as the good understanding of exchange requirements [2, 6].
On the one hand, mvdXML is not a human-readable format, which involves
complicated XML structures to represent the data template rules, attribute
value rules, and logical operations separately. On the other hand, mvdXML
highly relies on a specific version of IFC Schema (such as IFC4 or IFC2X3),
and developers need to know the IFC Schema very well to edit the rules
correctly. It is hard for the vast majority of domain engineers and project
managers to read, write, and edit MVDs using mvdXML. Although tools like
ifcDoc [7] and BIMQ [8] have provided graphical user interfaces for visualiz-
ing and editing mvdXML files, one still needs a good understanding of both
IFC Schema and mvdXML format to use the tools.

In order to lower the knowledge threshold for MVD development, and to
improve the readability of MVD rules, in this paper, MVDLite is proposed
as a novel light-weight MVD language. By using natural language rather
than data structure definitions to organize the rules, MVDLite has better
readability than mvdXML, and the rules can be unbound with a specific
IFC Schema version, i.e. the same MVDLite ruleset can be applied to both
IFC2X3 and IFC4 models.

MVDLite is compatible with mvdXML, but uses a novel “rule chain”
structure to unify the separated data template rules and attribute value rules
in mvdXML. Based on this novel rule structure, an efficient MVD validation
algorithm is proposed. By performing node set calculations on the “rule
chain” structure, the MVD validation process can be several times faster
than the mvdXML-based validation algorithm on large real-world models.

Our main contributions are listed as follows.

• MVDLite is proposed as a novel representation for MVD rules, which
uses the “rule chain” to simplify the rule structure and to increase the
readability and usability (see Section 3).

• A new MVD validation algorithm is proposed based on the “rule chain”
structure, which is much faster than mvdXML-based MVD validation
algorithm (see Section 4).

• A case study is provided to show the user-friendly workflow for cus-
tomizing an enterprise-level MVD, and the applications in MVD val-

3

idation and partial model extraction on large real-world models (see
Section 5).

2. Related Work

2.1. Methods for MVD Representation and Development
In the IDM-MVD method, IDM is mainly about the definition of data

delivery process and exchange requirements, and MVD is about the technical
solution of IDM in the IFC data format. MVD binds the domain entities in
the exchange requirements to the IFC entities and constrains the required
information for geometry, attributes and relationships. The definitions and
constraints in MVD intend to support meaningful IFC implementations for
software developers [3].

There have been several studies on MVD representation and development
from different aspects. The Extended Process to Product Modeling (xPPM)
[9] is based on the formal definition of the process and exchange requirements
in IDM. The xPPM provides a tool to edit the process and exchange require-
ments, and mapping the domain entities to IFC data types. The Semantic
Exchange Modules (SEM) [10] is based on the object-oriented definition of
domain concepts in ontologies. SEM provides a mapping between the domain
entity concepts and the data structure concepts in specific data forms. The
Generalised Model Subset Definition (GMSD) [11] is based on the speci-
fication of rules for selecting a subset of entities from the IFC model. In
summary, xPPM focuses on the exchange requirements, SEM focuses on the
definition of domain concepts, and GMSD focuses on the rule constraints for
partial models.

The mvdXML is proposed as an integrated format for the specification of
exchange requirements, domain concepts, and rule constraints [4]. It is used
in an integrated IDM-MVD process for IFC data exchange recommended
by buildingSMART [2]. According to this document about integrated IDM-
MVD process [2], the recommended process for MVD development is:

• Defining the domain concepts (entities, properties, and geometries),
relationships and rule constraints in an Exchange Requirements Model
(ERM) as forms and diagrams.

• Binding the concept definitions in the ERM into a specific IFC Release
(such as IFC4).

4

• Writing the relationships and rule constraints into a specific IFC Re-
lease as MVD Implementation Guidance forms and diagrams.

• Implement the mvdXML according to the concept bindings, forms, and
diagrams.

The mvdXML format has been widely accepted and is supported by the
newer versions of xPPM and SEM.

In addition to MVD, there are some other studies on the definition of
IFC partial models, mainly based on domain ontologies [12, 13, 14, 15] or
domain-specific query languages [16, 17, 18, 19, 20, 21, 22, 23]. MVD is
currently accepted by the mainstream because it can integrate the exchange
requirements and the data constraints required in software implementation.

2.2. The mvdXML Format
Currently, the most widely used version of mvdXML is V1.1 [4]. In this

paper, all the analyses and experimental comparisons are based on mvdXML
V1.1. An example ruleset in mvdXML format is shown in Figure 2 (b).

In mvdXML, part of contents are natural language descriptions about ex-
change requirements and domain concepts, and the other part of contents are
rules for data templates (in XML tags) and for attribute values (in mvdXML
Rule Grammar statements). The rules are used to support computer appli-
cations, but with poor readability for human.

The data template rules and attribute value rules are represented sep-
arately in mvdXML. The data template rules are represented as Concept-
Templates, in which the subgraph pattern, attributes, and entity types are
defined in a nested XML structure. A RuleId is assigned to each attribute,
so it can be used to form the statements for attribute value rules. In the rule
statements, the RuleIds are combined with five types of metrics ([Type],
[Value], [Size], [Exists], [Unique]).

Since the data template rules and attribute value rules are separated in
mvdXML, there are also two different types of logical operators. Usually,
for one single root entity, there can be multiple subgraphs that can match a
ConceptTemplate. For example, the same “IfcElement” node can link with
different “IfcProperty” nodes on different subgraphs, each with different prop-
erty names and property values. The logical operators between different
attribute inside one subgraph are represented as keywords in the rule state-
ments (AND, OR, XOR, NOT), while the logical operators between different

5

subgraphs are represented in the XML structure, such as “<TemplateRules
operator="or"> ... </TemplateRules>”

In mvdXML, a ConceptRoot corresponds to a sub-type of domain entity.
In a ConceptRoot, there are two groups of rules: the Applicability rules
and the Concept rules. Applicability rules are like “IF” conditions, which
distinguishes the elements of this sub-type from all parent type elements.
Concept rules are like “THEN” conditions, which defines the rule constraints
of data according to the exchange requirements.

2.3. The Knowledge Threshold in Developing MVDs
In the buildingSMART document about integrated IDM-MVD process

[2], the authors acknowledge that “MVD development is much more techni-
cal work that requires expertise in software, the IFC Schema, construction
industry, and data modeling ... It requires in-depth knowledge of the infor-
mation model(s) for which bindings will be defined, as well as a good under-
standing of the requirements (and industry process) described in the IDM.”
MVD experts have a lot of work, binding domain concepts, understanding
exchange requirements, drawing diagrams, editing mvdXML files, and writ-
ing rule constraints in the mvdXML Rule Grammar. However, since the
development of MVD requires both domain knowledge (about domain con-
cepts and exchange requirements) and data knowledge (IFC data structure
and mvdXML format), the high knowledge threshold leads to few competent
people. Although there are visual tools like ifcDoc [7] and BIMQ [8] for edit-
ing mvdXML rules, the workload of MVD development is still huge for MVD
experts.

Although mvdXML has been widely accepted by the academic commu-
nity, it is still hard for common domain engineers and project managers to
understand the rules and logic in mvdXML, and to customize their own
MVDs using mvdXML. The main reasons are as follow:

• Unfamiliar with IFC Schema. It’s hard for the domain engineers
to understand the data types, inheritance, and the data structure in
IFC files.

• Hard to read the XML structure. It’s hard for human readers
to understand the rules in mvdXML since in order to understand the
separated data template rules and attribute value rules, the readers
need to search the full document frequently to find the references by
UUIDs and RuleIds.

6

• Hard to write the XML structure. It is hard to ensure the correct
XML structures without the help of tools like ifcDoc, but it is also hard
for domain engineers to use such tools since they are unfamiliar with
the IFC Schema.

• Misunderstand the logical operators. The non-MVD-expert read-
ers can easily misunderstand and misuse the two different types of
logical operators in mvdXML Rule Grammar statements and in Tem-
plateRules tags.

• Bound with specific IFC Schema. The exchange requirements for
domain concepts and properties usually do not change according to
different IFC Schema versions. However, the mvdXML rules must be
bound to a specific applicable IFC Schema version. It is hard to switch
the mvdXML rules from one schema to another.

Some studies consider using ontology-based process [24, 25, 26, 27, 28] to
assist the creation of MVD. Such methods formalize the exchange require-
ments, domain concepts and constraints described in IDM-MVD as domain
ontologies, and then generates mvdXML by means of automatic conversion.
Ontology-based MVD creation is modularized and reusable. When suffi-
cient domain concepts are represented in ontology, the efficiency of building
mvdXML can be significantly improved. In addition, the rule constraints can
be formally represented using rule languages such as SPARQL and SWRL.
However, similar to mvdXML, ontology is also a diagrammatic representa-
tion of domain concepts, which also requires expertise in IFC Schema and
semantic technology. For common companies, creating the domain ontology
for the first time is still time consuming and laborious. The ontology-based
approach does not significantly lower the knowledge threshold and reduce
the workload. The knowledge threshold is transformed from mvdXML to
ontology, and the workload is transformed from ifcDoc to OWL editing tools
like Protégé.

In summary, the high knowledge threshold in both domain knowledge and
data knowledge leads to few of MVD experts, and the insufficient usability
of mvdXML format and editing tools makes it difficult for domain engineers
and project managers to understand and participate in MVD development.
Therefore, it is hard for common companies to customize MVDs based on
their own exchange requirements.

7

2.4. Automated MVD Validation
In order to realize the practical application of MVD, an important sup-

porting application is to automatically verify the conformity of the model
with MVD. Chi Zhang et al. summarized a three-step framework for auto-
mated model view checking [5], including the development of model view rule-
sets, check execution, and report generation. Currently, automatic model
view validation applications have been implemented on several software plat-
forms, including Solibri Model Checker (SMC) [29], xBIM [30], BIMserver
[5], and Simplebim [31].

In mvdXML, since the rules for data templates and for attribute values
are represented separately, the current MVD validation algorithms all have
similar implementations based on graph traversal:

1. For each rule, finding the root entity set.
2. Taking one root entity each time, and expanding the root entity to find

all the subgraphs that match a ConceptTemplate structure.
3. Checking all subgraphs to find whether there exists a subgraph that

satisfies the rule statement.

Usually, the IFC model of a real project typically exceeds millions of nodes,
with hundreds of megabytes of data. The efficiency of graph-traversal-based
MVD validation on large scale models is problematic.

Some other researches focused on modularized MVD validation methods.
The mvdXML developer team categorized the mvdXML-based automated
validation tasks [32], including the existence of attributes, the size of col-
lections, the uniqueness of values, etc. Yong-Cheol Lee et al. also similarly
categorized the rules in MVD [33, 34, 35]. Such modularized MVD validation
methods implement program modules for the commonly-used MVD valida-
tion tasks (such as the value of attributes or the existence of relationships),
but can not support the validation for arbitrary mvdXML rules.

3. The MVDLite Language

In Section 2.3 the reason why it is hard for domain engineers and project
managers to customize MVDs using mvdXML have been discussed. In this
paper, MVDLite is proposed as a human-readable MVD language to lower
the knowledge threshold of MVD development for non-IFC-experts.

8

instancePset as (IfcObject)->IsDefinedBy->RelatingPropertyDefinition:IfcPropertySet
typePset as (IfcObject)->IsTypedBy->RelatingType->HasPropertySets:IfcPropertySet
prop as (IfcPropertySet)->HasProperties:IfcPropertySingleValue
propValue as (IfcPropertySingleValue)->NominalValue

externalWall extends IfcWall

definition
externalWall->typePset('Pset_WallCommon')->prop('IsExternal')->propValue = TRUE
OR
externalWall->instancePset('Pset_WallCommon')->prop('IsExternal')->propValue = TRUE

constraint
externalWall->typePset('Pset_WallCommon')->prop('FireRating')->propValue > 0

Figure 1: An example MVDLite ruleset.

3.1. The Grammar of MVDLite
The grammar of MVDLite is designed based on three basic ideas:

• Representing the data templates, attribute values, and logical opera-
tors in a consistent and concise grammar, which makes MVDLite more
readable and editable.

• Using natural language rather than data structure definitions to or-
ganize the rules, which decouples the rules with specific IFC Schema
version and makes MVDLite easier to use for non-IFC-experts.

• Keeping MVDLite compatible with mvdXML, and supporting bidirec-
tional conversion with mvdXML rules.

There are three types of expressions in MVDLite grammar, the Rule Ex-
pression, Concept Expression, and Abbreviation Expression. The rule expres-
sion is the core of MVDLite, which represents the data templates, attribute
values, and logic operators. The other two are used for replacing data struc-
ture definitions with natural language terms, which makes MVDLite easier
to use. An example ruleset in MVDLite is shown in Figure 1. The full def-
inition of the MVDLite grammar is included in the Appendix (see Figure
A.11 and Figure A.12).

3.1.1. Rule Expression
The basic grammar structure of an MVDLite rule expression is the “rule

chain”, which starts with a root concept and followed by a chain of rule
segments. There are three types of rule segments in the rule chain:

9

Attribute Segment. The path from the root entity to a “RuleId” is
represented as a chain of attribute segments. Each attribute segment has an
attribute name after a “->” symbol, and the entity type constraint may be at-
tached after “:”. For example, “->IsTypedBy:IfcRelDefinesByType” is an
attribute segment, and the entity type constraint “:IfcRelDefinesByType”
can be omitted.

Metric Segment. The rule for metrics and values of an attribute is
represented as a metric segment. Each metric segment is with a “met-
ric” ([Type], [Value], [Size], [Exists], [Unique]), an operator (=,
>, <, >=, <=, !=), and a value (string value, boolean value, or number
value). For example, “[Value]=TRUE” is a metric segment.

Compound Segment. The compound segment is used to represent the
side branches of a rule chain. One or more rule chain branches can be en-
closed in parentheses, and combined with logical operators (AND, OR, XOR,
NOT). In this way, the combination of branches acts as a single rule seg-
ment, which can be added to another rule chain as a segment. For example,
“(->Name[Value]=’IsExternal’)” is the compound segment representing a
branch of rule.

The rule chain is composed of the above three types of rule segments.
There are special requirements for the position of the segments on the rule
chain. A metric segment must be at the end of a chain (or a branch of the
chain), while an attribute segment must be in the middle of a chain.

The MVDLite rule expression also supports some syntactic sugar to make
the rules easier to write and read:

• The metric “[Value]” can be omitted by default, so “[Value]=TRUE”
can be written as “=TRUE” for short.

• The compound segment “(->Name[Value]=’IsExternal’)” for name
constraint can also be written as “(’IsExternal’)” for short.

• “|” can be used to separate several optional values for the same at-
tribute, so “-> NominalValue = 1 | 2” means “-> NominalValue(=
1 OR = 2)”.

The rule chain is designed to be compatible with themvdXML Rule Gram-
mar. It supports the same metrics, logical operators, and value types as the
mvdXML Rule Grammar. In addition, all the ConceptTepmlate structures
in mvdXML can be represented using the rule chain structure. Based on the

10

rule chain structure, one rule expression is the combination of one or more
rule chains with “AND, OR, XOR, NOT” operators, which is equivalent with
the logical combination in XML tags in mvdXML. Before a set of rule ex-
pressions, the keyword “definition” or “constraint” is used to distinguish
the rules. The “definition” rules are equivalent with the “Applicability”
tags in mvdXML, which contains the rules for distinguishing the entities out
of all the parent type entities. The “constraint” rules are equivalent with
the “Concepts” tags in mvdXML, which contains the rule constraints of data
for the exchange requirements. In this way, every mvdXML rule can be
represented using MVDLite rule expressions.

The rule chain structure in MVDLite is able to represent the data tem-
plates, attribute values, and logical operators in a united rule structure, which
makes MVDLite readable and editable. In addition, based on the rule chain
structure, a more efficient MVD validation algorithm can be proposed, which
is introduced in Section 4.

3.1.2. Concept Expression and Abbreviation Expression
The concept expressions and abbreviation expressions are the auxiliary

structures in the MVDLite grammar. By replacing the data structure defini-
tions with natural language terms, the concept expressions and abbreviation
expressions make MVDLite ruleset easier to read and understand.

The concept expression explicitly defines the fine-grained domain entity
types, and the inheritance of entity types with the keyword “extends”. This
idea is consistent with the domain concept definition in mvdXML. Compared
with mvdXML, the concept expression supports multi-level inheritance. A
subtype satisfies all the “definition” conditions of the supertype and in-
herits all the “constraint” rules from the supertype. Any concept must
originate from an IFC entity type.

The abbreviation expression is used to define the abbreviation of some fre-
quently used patterns of rule segments on the rule chains. It not only shortens
the rule statements, but also replaces the data structure definitions (attribute
names and entity types) with natural language terms. In this way, without
a deep understanding of IFC data structure, the readers can still read the
rules, edit the rules, and check the correctness of rules. For example, the path
to reach a type property set in IFC4 is “->IsTypeBy:IfcRelDefinesByType
->RelatingType:IfcTypeObject->HasPropertySets:IfcPropertySet”. This
long rule segments can only be understood by a person with good knowledge
of IFC data structures, and it is hard to be written correctly without refer-

11

ring to the IFC Documentation. By defining an abbreviation “typePset” for
this long rule segments, the MVDLite rule become much easier to read and
write.

In addition, the abbreviation expression can make the MVDLite rules un-
bound with a specific IFC Schema version. For example, different from IFC4,
there is no “IsTypeBy” relationship in IFC2X3. However, just replacing the
definition of “typePset” with the IFC2X3 representation “->IsDefinedBy:
IfcRelDefinesByType->RelatingType:IfcTypeObject->HasPropertySets:
IfcPropertySet”, the previous rules written with “typePset” can be also
applied to IFC2X3 files. The usage of abbreviation expression improves the
compatibility of MVD rules and reduces the duplicate work in converting
MVDs between different IFC Schema versions.

3.2. The Conversion between MVDLite and mvdXML
MVDLite is designed to support bidirectional conversion with mvdXML

to make it compatible with all currently available MVDs, so that the fast
validation algorithm can also be applied to the current mvdXML rules. In
Section 3.1.1, it has been introduced that MVDLite can represent all the rules
in mvdXML V1.1, which means that all mvdXML rules can be converted to
MVDLite. To illustrate that MVDLite can also be converted to mvdXML, it
is needed to discuss another question: can mvdXML V1.1 represent all the
rules in MVDLite?

By comparing the structure of the two languages, we found that there are
some implicit constraints in mvdXML.

• Only one ConceptTemplate can be used in an mvdXML rule. There-
fore, there can be only one root entity type in a rule.

• No duplicate nodes in ConceptTemplates in mvdXML. Therefore, the
branch point of two paths leading to two RuleIds on the template must
be at the lowest common ancestor of the two RuleIds.

• The RuleIds can only be assigned to the attributes, but not the root en-
tities. Therefore, it does not support rules like “IfcDoor[Exists]=TRUE”

According to these implicit constraints, some counterexamples can be
written in MVDLite, which can not be represented in mvdXML. Therefore, in
order to support bidirectional conversion, it is needed to add these constraints
also on MVDLite.

12

typePset as (IfcObject)->IsTypedBy->RelatingType->HasPropertySets:IfcPropertySet
prop as (IfcPropertySet)->HasProperties:IfcPropertySingleValue

constraint
IfcWall->typePset('Pset_WallCommon')->prop('IsExternal')[Exists] = TRUE

(a)

<?xml version="1.0"?>
<mvdXML xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" uuid="f48c9e3c-
83b5-4644-a50b-186ae4e79e53" status="sample" xsi:schemaLocation="http://www.buildingsmart-tech.org/mvd/XML/1.1
http://www.buildingsmart-tech.org/mvd/XML/1.1/mvdXML_V1.1_add1.xsd" xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
 <Templates>

<ConceptTemplate uuid="da09a8ca-bd34-4fee-b53b-a8560b1c1978" status="sample" applicableSchema="IFC4"
applicableEntity="IfcWall">

 <Rules>
 <AttributeRule RuleID="IsTypedBy_0" AttributeName="IsTypedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelDefinesByType">
 <AttributeRules>
 <AttributeRule RuleID="RelatingType_1" AttributeName="RelatingType">
 <EntityRules>
 <EntityRule EntityName="IfcTypeObject">
 <AttributeRules>
 <AttributeRule RuleID="HasPropertySets_2" AttributeName="HasPropertySets">
 <EntityRules>
 <EntityRule EntityName="IfcPropertySet">
 <AttributeRules>
 <AttributeRule RuleID="Name_3" AttributeName="Name">
 <EntityRules>
 <EntityRule EntityName="IfcLabel" />
 </EntityRules>
 </AttributeRule>
 <AttributeRule RuleID="HasProperties_4" AttributeName="HasProperties">
 <EntityRules>
 <EntityRule EntityName="IfcPropertySingleValue">
 <AttributeRules>
 <AttributeRule RuleID="Name_5" AttributeName="Name">
 <EntityRules>
 <EntityRule EntityName="IfcIdentifier" />
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="07745b45-6a51-48ce-8988-a805e6393060" status="sample">
 <Definitions>
 <Definition>
 <Body><![CDATA[Default ModelView]]></Body>
 </Definition>
 </Definitions>
 <ExchangeRequirements>
 <ExchangeRequirement uuid="a405a17c-bd64-4bfc-b04e-9aa5e3d198d8" name="Default" status="sample" applicability="both">
 <Definitions>
 <Definition>
 <Body><![CDATA[Default ExchangeRequirement]]></Body>
 </Definition>
 </Definitions>
 </ExchangeRequirement>
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="52240670-63ab-4d98-a6ed-f99f62f4e626" name="IfcWall" status="sample" applicableRootEntity="IfcWall">
 <Definitions>
 <Definition>
 <Body><![CDATA[IfcWall]]></Body>
 </Definition>
 </Definitions>
 <Concepts>
 <Concept uuid="167ae9a6-c089-4913-a508-71b49927cd98" name="Rule 1" status="sample" override="false">
 <Definitions>
 <Definition>
 <Body><![CDATA[Rule 1]]></Body>
 </Definition>
 </Definitions>
 <Template ref="da09a8ca-bd34-4fee-b53b-a8560b1c1978" />
 <Requirements>
 <Requirement applicability="both" requirement="mandatory" exchangeRequirement="a405a17c-bd64-4bfc-b04e-

9aa5e3d198d8" />
 </Requirements>
 <TemplateRules operator="and">
 <TemplateRule Parameters="Name_3[Value]='Pset_WallCommon' AND Name_5[Value]='IsExternal' AND

HasProperties_4[Exists]=TRUE" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

(b)

Figure 2: (a) An example ruleset in MVDLite. (b) The converted mvdXML ruleset from
the MVDLite ruleset above.

13

The conversion from mvdXML to MVDLite can be performed in two
major steps. (1) For each term in the statement, expanding the RuleId
according to the ConceptTemplate to generate the rule chain. (2) For each
logical operator connecting two terms, merging the two rule chains at the
lowest common ancestor of the two RuleIds.

The conversion from MVDLite to mvdXML can also be performed in two
major steps. (1) For each root entity type, converting the tree structures
into a ConceptTemplate, and assigning RuleIds for each node. (2) Rewriting
the statements using the RuleIds.

By supporting bidirectional conversion, rulesets written in MVDLite can
be converted to mvdXML to support existing mvdXML-based applications;
the existing mvdXML rulesets can also be converted to MVDLite for easier
reading and editing, and supporting MVDLite-based efficient MVD valida-
tion and partial model extraction.

Figure 2 shows an example mvdXML ruleset and an MVDLite ruleset
that can be converted to each other. This is a simple rule for the existence
of attributes. The MVDLite rule has 4 rows, while the mvdXML rule has 94
rows. Obviously, the MVDLite rules are shorter and easier to read.

4. Efficient MVD Validation with MVDLite

In section 2.4, the current methods for mvdXML-based MVD checking
has been reviewed. In mvdXML, since the data template rules and attribute
value rules are represented separately, the validation algorithm that fits this
rule structure is "first finding subgraphs, and then checking attribute values
on the subgraphs". The current mvdXML validation tools [5, 30] are mainly
implemented according to this idea. However, this algorithm is with large
complexity, since only one root entity is processed at each time when vali-
dating a rule. For one root entity, there are usually multiple subgraphs that
can match a ConceptTemplate, and it is needed to traverse all subgraphs to
confirm whether there exists a subgraph that satisfies the rule.

MVDLite represents data template rules and attribute value rules in the
unified “rule chain” structure. Based on this unified representation of rules,
a faster algorithm for MVD validation is proposed, which is no longer per-
formed for each root entity separately but can be performed on the set of a
certain type of root entities.

14

4.1. The MVDLite Validation Algorithm
In Section 3.1.1, the three types of rule segments (attribute segment,

metric segment, and compound segment) and the rule chain structure have
been introduced. In the validation algorithm proposed in this paper, the
rule segments and the rule chain are regarded as mappings between node
sets. Instead of traversing the subgraphs of each root entity, this algorithm
performs MVD validation by calculating the mappings between node sets,
which is able to obtain the results of all root entities of a certain type at
once.

Attribute segment. An attribute segment is a mapping from one node
set to the linked node set, as shown in Figure 3. Each node set consists
of nodes of the same type or the same RuleId, and each edge between the
nodes corresponds to an attribute in the IFC data. In this mapping, one
source node may point to multiple target nodes, and a target node may
be pointed by multiple source nodes. shows an example attribute segment,
which is represented as a mapping from an “IfcPropertySet” node set to an
“IfcProperty” node set.

Metric segment. Metric segments act as filters for the node sets. The
five types of metrics ([Type], [Value], [Size], [Exists], [Unique])
can be divided into two groups:

The [Type] and [Value] metrics can be evaluated by each single node
in the node set, and they act as filters for the node set itself. They are
called “single metric segments”. Figure 4 shows an example single metric
segment “[Value]>=0” as a filter for a IfcValue node set. In this filter, a
node conforming to the rule links to itself, and the remaining nodes link to
nothing. Thus a single metric segment is a mapping from a node set to the
set itself.

The [Size], [Exists] and [Unique] metrics act as filters for the parent
node set. These metrics can not be evaluated by a single node, but can only
be evaluated by a collection of nodes. They are called “collection metric seg-
ments”. Figure 5 shows an example collection metric segment “[Size]>1” as
a filter for the IfcPropertySet nodes in the parent node set. It must be evalu-
ated in combination with the attribute segment “->HasProperties” in front.
The collection metric segment “[Size]>1” is a mapping from a node set to
the parent node set, and the combination “(->HasProperties[Size]>1)” is
a mapping from the parent node set to the parent node set itself.

Rule chain and compound segment. By linking the node mappings
in the order of segments on a rule chain, the rule chain can be represented as

15

IfcPropertySet IfcProperty

->HasProperties

IfcValue IfcValue

[Value]>=0

IfcPropertySet IfcProperty

->HasProperties

IfcPropertySet

[Size]>1

Figure 3: An example attribute segment.

IfcPropertySet IfcProperty

->HasProperties

IfcValue IfcValue

[Value]>=0

IfcPropertySet IfcProperty

->HasProperties

IfcPropertySet

[Size]>1

Figure 4: An example single metric segment.

IfcPropertySet IfcProperty

->HasProperties

IfcValue IfcValue

[Value]>=0

IfcPropertySet IfcProperty

->HasProperties

IfcPropertySet

[Size]>1

Figure 5: An example collection metric segment

a mapping between node sets. When a rule chain is enclosed in a compound
segment, the compound segment acts as a filter for the current entity set.
Similar to the single metric segment, the compound segment can be repre-
sented as a mapping from a node set to the set itself. As shown in Figure 6,
a rule chain inside a compound segment can be represented as a round-trip
path from the root node set to the metric segment at the end, and then back
to the root node set. This round-trip path on a rule chain is equivalent to
the node mapping of the corresponding compound segment.

Logical operators. The rule chains can be combined with logical oper-
ators. Since each rule chain acts as a filter of a node set, the logical combi-
nation of rule chains are equivalent to the boolean operation of filtered node
sets. The logical conjunctions AND, OR, NOT correspond to the intersection,
union, complement operations of sets, respectively. In mvdXML, the logical
conjunctions are not only used to link the rules for the same node set, but
also the rules for different node sets defined by two different RuleIds. As
discussed in Section 3.2, the logical operation between two different RuleIds

16

IfcPropertySet IfcProperty IfcValue IfcValue IfcProperty IfcPropertySet

IfcPropertySet IfcPropertySet

->HasProperties ->Name [Value]="FireRating"

(->HasProperties->Name[Value]="FireRating")

Figure 6: An example rule chain and the corresponding compound segment.

is equivalent to the boolean operation on the lowest common ancestor node
set of the node sets corresponding to two different RuleIds

4.2. Analysis of the MVDLite Validation Algorithm
This section is about the upper limit of the efficiency of MVD validation

algorithms, and the explanation of why the algorithm based on MVDLite
rule structure is faster than the algorithm base on mvdXML.

The target of the MVD validation algorithms is to determine the existence
of a subgraph conforming to a data template and a rule statement. In order
to determine that a subgraph conforms to a rule, each node on the paths
from the root entity node to the RuleId nodes must be visited at least once,
while it is not needed to visit all the nodes to determine that a subgraph does
not conform to a rule. Therefore, the theoretical upper limit of the efficiency
of MVD validation algorithms is to visit the fewest nodes that can determine
whether a subgraph conforms to a rule.

Figure 7 is a comparison of the mvdXML-based validation algorithm and
the MVDLite-based validation algorithm on the same rule. The mvdXML-
based algorithm lists all subgraphs that match a template structure for each
root entity and then check all the listed subgraphs to obtain the result of one

17

(2) For each root entity, list all

subgraphs according to the template.

√

╳

╳

…

√

…

…

…

…
…
…

… …

…
…
…

C='xxx' AND E='yyy'
A B D E

C

(1) Get the root entity set. (3) Validate the rule

on each subgraph.

(4) Get the result of

one root entity.

(a) mvdXML validation algorithm

A B C C B D E E

(->C ='yyy'

╳

√

√

╳

√

(1) Get the root entity set. (2) Filter the nodes through the rule chain. (3) Backtrack to get the results

of all root entities.

->A ->B ='xxx' ->D ->E)

(b) MVDLite validation algorithm

Figure 7: The comparison of validation algorithms for mvdXML and MVDLite.

root entity. On the contrary, the MVDLite-based algorithm is performed on
the rule chain structure, and the results of all root entities can be obtained
at once. The reason why the MVDLite-based validation is faster can be
explained by the fact that the algorithm can effectively reduce the repeated

18

visit to the nodes by merging subgraphs, pruning, and caching:
(1) Merging subgraphs. In IFC data structure, one node is likely to be

referenced by multiple nodes. Therefore, one node is likely to be included in
multiple subgraphs expanded from one root entity or multiple root entities.
The mvdXML-based validation algorithm traverses the subgraphs of each
root entity, in which one node may be visited multiple times. By performing
the validation algorithm on the graph merged by all subgraphs of a certain
root entity type, the repeated visit to the nodes are reduced.

(2) Pruning. In mvdXML-based validation, since the data template
rules are separated from the rules of attributes and values, the step of search-
ing for all subgraphs is usually before the step of checking each subgraph.
Thus pruning is difficult to take because all nodes on all subgraphs are al-
ready visited when searching for subgraphs according to the template. While
in MVDLite, since the data template rules and attribute value rules are in
the unified “rule chain” structure, the searching and pruning can be easily
performed on the rule chain. Each node on the subgraphs conforming to a
rule will be visited up to twice (going forward to the leaf nodes, and then
going back to the root nodes); while on the subgraphs not conforming to
a rule, all nodes below the first node that do not conform to the rule will
not be visited. Compared with the mvdXML-based validation algorithms,
this algorithm with pruning is much closer to the theoretical upper limit of
efficiency.

(3) Caching. In the mvdXML-based algorithm, the validation of each
rule on each subgraph is independent, so it is hard to reuse the calcula-
tion results. While in MVDLite-based algorithm, since each segment on the
rule chain is a mapping between two node sets, the sets and the mappings
can be cached and reused. For example, the segments “IfcWall->typePset
(’Pset_WallCommon’)” may appear in multiple rules involving different prop-
erties in the property set named “Pset_WallCommon”. So if the same seg-
ments are involved in another rule, the cached node set can be directly ob-
tained. In this way, not only the repeated node visits between multiple
subgraphs are reduced, but also the repeated node visits between multiple
rules are reduced.

5. Experiments and Applications

The parsers for the IFC files and for the MVDLite statements are imple-
mented based on ANTLR [36] in C#. Based on these two parsers, a command

19

line tool for MVDLite validation is implemented, which inputs the model and
the ruleset, then outputs the validation reports. In this section, the perfor-
mance of our MVD validation algorithm is compared with mvdXML valida-
tion algorithm on several models and rulesets in different sizes (see Section
5.1). Then a case study is provided to show the user-friendly workflow for
customizing an enterprise-level MVD, and the applications in MVD valida-
tion and partial model extraction on a large real-world model (see Section
5.2).

5.1. MVDLite Validation Experiment
(1) The compared tools. The publicly available MVD validation tool

supporting mvdXML includes an xBIM-based tool [37] and a BIMServer-
based open source tool [38]. The BIMServer-based tool has not been updated
in recent years thus does not support the mvdXML V1.1. Therefore, our
MVDLite validation tool is mainly compared with the xBIM-based tool.

The efficiency of the MVD validation tool is not only relevant to the
validation algorithm, but also some other factors like different programming
languages and different IFC parsers. In order to fairly compare the efficiency
of the algorithm, an MVDLite validation tool and an MVDLite validation
tool are implemented based on the same IFC parser. The experiments in this
section compare the efficiencies of these three tools.

(2) The models. Since most of the publicly available MVD rulesets
are for IFC4 Schema, in our experiments several IFC4 models in different
sizes are used. The models are shown in Figure 8, and the sizes of these IFC
models are listed in Table 1.

• - Duplex.ifc A small sample model of a duplex building provided by
NIBS. This model is converted from two IFC2X3 models, including an
architectural model and an MEP model.

• - Office.ifc A medium-size sample model of an office building provided
by NIBS. This model is converted from three IFC2X3 models, including
an architectural model, a structural model, and an MEP model.

• - B01.ifc A model of the B01 underground storey of a commercial
complex building. This model is exported from Autodesk Revit, which
includes building elements in architecture, structure and MEP disci-
plines. This model is the real-world model in the case study in Section
5.2.

20

(a) UnitTest.ifc (b) Duplex.ifc

(d) F010.ifc(c) Office.ifc

(a) Duplex.ifc

(a) UnitTest.ifc (b) Duplex.ifc

(d) F010.ifc(c) Office.ifc
(b) Office.ifc

(c) B01.ifc

Figure 8: The models used in the experiments.

Table 1: The size of models in the experiments.
model Duplex.ifc Office.ifc B01.ifc
file size 52 MB 193 MB 841 MB
“IfcElement”s 1,170 7,174 57,344
“IfcProperty”s 76,118 476,900 1,434,337
“IfcShapeModel”s 2,029 11,095 89,735
data lines 864,327 3,024,817 11,652,719

(3) The rulesets. The sizes of these mvdXML rulesets and the corre-
sponding MVDLite rulesets are listed in Table 2.

• - UnitTest.mvdxmlA small unit test ruleset used in the xBIMmvdXML
validation tool, which includes several rules about walls.

• - RV.mvdxml The IFC4 Reference View mvdXML provided by build-
ingSMART.

• - DTV.mvdxml The IFC4 Design Transfer View mvdXML provided
by buildingSMART.

21

Table 2: The rulesets used in the experiments.
ruleset UnitTest RV DTV O&M

mvdXML

file size 58 KB 1,308 KB 1,758 KB 6,767 KB
“ConceptRoot”s 23 128 165 1,475
“Applicability”s 2 0 0 1,472
“Concept”s (has rules) 23 319 335 3,404
rule statements 58 1,982 2,024 14,735

MVDlite
file size 40 KB 74 KB 85 KB 926 KB
definition rules 2 0 0 1,472
constraint rules 23 319 335 3,404

Table 3: The time usage of three MVD validation algorithms in ten tasks.
time (seconds)

model ruleset mvdXML(xBIM) mvdXML(ours) MVDLite(ours)
Duplex UnitTest 2.7 1.3 0.5
Duplex RV 3.8 2.7 1.4
Duplex DTV 3.8 3.0 1.4
Office UnitTest 179 8.3 2.5
Office RV 158 15 6.8
Office DTV 161 16 7.3
B01 UnitTest 10,357 66 27
B01 RV 8,306 150 68
B01 DTV 8,477 156 71
B01 O&M time out 11,261 154

• - O&M.mvdxml The MVD for operation and maintenance model de-
livery of a commercial complex building. This ruleset is the enterprise-
level MVD in the case study in Section 5.2. Since this ruleset is de-
veloped according to the enterprise classification standard, it is only
tested on the model “B01.ifc”.

Among the the rulesets, “UnitTest.mvdxml” and “O&M.mvdxml” are in
mvdXML V1.1, and “RV.mvdxml” and “DTV.mvdxml” are in mvdXML V1.2.
From mvdXML V1.1 to V1.2, a new sub-concept reference structure is added.
All the tested MVD validation tools do not support this new reference struc-
ture, and such references are skipped.

(4) Experimental results. The time usage of three MVD validation
algorithms in ten tasks are listed in Table 3, in which the xBIM-based tool
fail to finish the “B01-O&M” task within 12 hours. The experimental results
show that the MVDLite-based validation algorithm is much faster than the

22

mvdXML-based validation algorithms in all tasks. Both MVDLite-based vali-
dation algorithm and mvdXML-based validation algorithm are implemented
on the same IFC parser, in order to eliminate the performance differences
between different IFC parsers. According to this comparison, we found that
the MVDLite-based validation algorithm is still several times faster in MVD
validation on large IFC models. It is worth mentioning that in the rule-
set “O&M”, the domain concepts have clear inheritance relationships, and
MVDLite can effectively use the concept inheritance to accelerate the calcu-
lation, so the validation speed is 73 times faster than mvdXML.

5.2. Case Study
5.2.1. The Workflow for Developing MVDLite Rules

The workflow is designed to make domain engineers and managers work
together with IT engineers in customizing enterprise-level MVDs. The do-
main engineers and managers are familiar with the domain concepts and
exchange requirements, but they are not familiar with the IFC data for-
mat and the MVD rule structure. On the contrary, the IT engineers are
familiar with the data formats of IFC and MVD, but they are not familiar
with the domain-specific concepts and requirements. The workflow is imple-
mented based on the idea of separating the data structure definitions from
the domain-specific rules, which is shown in Figure 9 (a).

First, the IT engineers define the abbreviation expressions in a header (see
Figure 9 (b)), in which the data structures of properties and relationships
involved in the ruleset are represented as abbreviation expressions. Second,
an Excel template is generated to list the domain entity types according to
the classification standard (see Figure 9 (c)), and then the form is handed to
the domain engineers and managers to fill in the detailed requirements, in-
cluding the options of whether they should be included in the partial model,
the naming rules, and the requirements for properties. Next, an MVDLite
ruleset is generated using the abbreviation header and the collected require-
ments, which is then converted to an equivalent mvdXML ruleset. Finally,
the generated rulesets are validated on a sample model, and the results are
fed back to the IT engineers and domain engineers. The header and the
forms are edited accordingly to revision the ruleset to meet the exchange
requirements.

The workflow is tested in an MVD development task for the commercial
complex building. This MVD is developed to extract the partial model for

23

+

↔

Abbreviation header
Classification codes

&
Exchange requirements

MVDLite rules mvdXML rules

IT engineer Managers/engineers

Feedback

Validation
on model

(a)

type as (IfcObject)->IsTypedBy->RelatingType
instancePset as (IfcObject)->IsDefinedBy->RelatingPropertyDefinition:IfcPropertySet
typePset as (IfcObject)->type->HasPropertySets:IfcPropertySet
instanceProp as (IfcObject)->instancePset->HasProperties
typeProp as (IfcObject)->typePset->HasProperties
propValue as (IfcPropertySingleValue)->NominalValue
geom as (IfcProduct)->Representation:IfcProductDefinitionShape

->Representations:IfcShapeRepresentation
composedGeom as (IfcProduct)->IsDecomposedBy->RelatedObjects->geom
openingGeom as (IfcElement)->HasOpenings->RelatedOpeningElement->geom
geomID as (IfcShapeRepresentation)->RepresentationIdentifier
geomType as (IfcShapeRepresentation)->RepresentationType
geomItem as (IfcShapeRepresentation)->Items:IfcRepresentationItem
geomColor as (IfcShapeRepresentation)->geomItem->StyledByItem:IfcStyledItem

->Styles:IfcPresentationStyleAssignment->Styles:IfcSurfaceStyle
->Styles:IfcSurfaceStyleShading->SurfaceColour:IfcColourRgb

(b)

Generated from
classification standard

Fill in by the domain engineers
according to exchange requirements

(c)

Figure 9: (a) The workflow for MVDLite development. (b) The abbreviation header.
(c) The Excel template for collectiing entity and property requirements (translated to
English).

24

operation and maintenance from the complete model, and to ensure the ex-
istence of required properties and relationships. The MVDLite ruleset is 926
KB with 8,525 rows, and the converted mvdXML ruleset is 6,767 KB with
88,905 rows. The file size of the MVDLite ruleset is much smaller, and it
also has an advantage in human readability.

5.2.2. MVD Validation and Partial Model Extraction
In this case study, both the real-world IFC model and the ruleset are in

large scale, which is a challenge for the efficiency of MVD validation task.
The comparison of time usage in the validation of ruleset “O&M” on the
model “B01.ifc” is shown in the last row of Table 3. The mvdXML-based
algorithm uses 11,261 seconds to finish the validation, while the MVDLite-
based algorithm uses only 154 seconds. According to the result, the proposed
fast MVD validation algorithm based on MVDLite has a great advantage in
speed.

The proposed fast MVD validation algorithm is able to efficiently find a
set of nodes that meet certain conditions. This algorithm can be further ap-
plied in partial model extraction tasks, which is able to extract the nodes and
relationships involved in the MVDLite ruleset, and meanwhile to ensure that
the result is still a valid IFC file. The partial model extraction is performed
in three steps:

(1) Selecting the root entity set. In an MVDLite ruleset, the involved
root entities are defined as domain concepts. According to the applicability
rules in the “definition” statements, the root elements can be selected as
an initial extracted node set.

(2) Extracting dependency nodes. In an IFC model, most of the
directly referenced nodes in the data list of a node are necessary dependencies.
Such dependency nodes and their dependencies are iteratively added into the
extracted node set.

(3) Filtering relationships by rules. There are some other nodes
that are indirectly referenced by “IfcRelationship” nodes. By performing
MVD validation algorithm, the referenced nodes involved in the ruleset can
be selected and added to the extracted node set.

The partial model extraction task is performed on the model “B01.ifc” ac-
cording to the ruleset “O&M.mvdlite”, which extracts the building elements,
the properties and geometry representations involved in operation and main-
tenance. The algorithm uses 228 seconds to finish the partial model extrac-
tion task. The comparison of the original model and the extracted partial

25

Table 4: The comparison of original model and extracted model of “B01.ifc”.
original model extracted model

file size (MB) 841 228
“IfcElement”s 57,344 40,165
“IfcProperty”s 1,434,337 56,019
“IfcShapeModel”s 89,735 69,813
data lines 11,652,719 3,565,372

(a) (b)

(c) (d)

Figure 10: (a)(c) The global view and partial view of the original model “B01.ifc”, respec-
tively. (b)(d) The global view and partial view of the extracted model, respectively.

model are listed in Table 4, and the two models are visualized in Figure 10.
Compared with the original model of 841 MB, the extracted model is only

228 MB in size. The building elements and properties that are involved in
the operation and maintenance phase (mainly MEP elements, walls, columns,
and beams) are extracted as a partial model, while the redundant elements
with complicated geometries and properties but unrelated to the operation
and maintenance ruleset are excluded from the partial model.

Through this case study, an MVDLite-based process is implemented for
enterprises to customize MVD rules and to use the MVD rules for model
validation and exchange. The MVDLite ruleset is generated according to the

26

classification standard and the exchange requirement forms. Then the model
validation is efficiently performed, and the partial model for data exchange
are extracted according to the MVDLite ruleset. The process is with good
usability and efficiency.

6. Conclusion and future work

In this paper, MVDLite is proposed as a new representation for MVD
rules, which simplifies the rules and increases the usability by using natural
language terms to replace data structure definitions. The MVDLite-based
workflow reduces the knowledge threshold required for MVD development.
Based on the rule chain structure of MVDLite, a new MVD validation algo-
rithm is proposed, which is several times faster in MVD validation on large
real-world IFC models.

Currently, MVDLite is compatible with the mvdXML V1.1. In a docu-
ment released by the mvdXML team [32], some possible updates for mvdXML
are under discussion, including some grammars that are not supported by
mvdXML V1.1 yet. The current mvdXML grammar update is basically
case-oriented. New features are added mainly based on the need proposed
by industry. However, there is few discussion on the logic foundation and
the completeness of MVD rule languages. The theoretical analysis of MVD
will be our future work.

7. Acknowledgment

This research is sponsored in part by the NSFC Program (No. 61527812),
the National Science and Technology Major Project of China (No. 2016ZX
01038101), the MIIT IT Funds of China (Research and Application of TCN
Key Technologies), the National Science and Technology Support Program
of China (No. 2015BAG14B01-02), the National Key R&D Program of
China (No. 2016QY07X1402, 2018YFB0505400), and the Wanda Research
Project (Research on Commercial Complex Building Information Model Stor-
age Technology).

References

[1] J. Wix, J. Karlshoej, Information delivery manual: Guide to
components and development methods, available from: http://

27

http://iug.buildingsmart.org/idms/development

iug.buildingsmart.org/idms/development (accessed October 2018)
(2010).

[2] R. See, J. Karlshoej, D. Davis, An integrated process for delivering
IFC based data exchange, available from: http://iug.buildingsmart.
org/idms/methods-and-guides (accessed October 2018) (2012).

[3] J. Hietanen, IFC model view definition format, International Alliance
for Interoperability (2006) 1–29.

[4] T. Chipman, T. Liebich, M. Weise, mvdXML: Specification of a
standardized format to define and exchange Model View Defini-
tions with Exchange Requirements and Validation Rules, available
from: http://www.buildingsmart-tech.org/specifications/
mvd-overview/mvdxml-releases/mvdxml-1.1 (accessed October
2018) (2016).

[5] C. Zhang, J. Beetz, M. Weise, Model view checking: automated valida-
tion for IFC building models, in: eWork and eBusiness in Architecture,
Engineering and Construction: ECPPM, 2014, p. 123.

[6] C. Zhang, J. Beetz, B. de Vries, Towards model view definition on se-
mantic level: A state of the art review, in: Proceedings of the 20th
International Workshop: Intelligent Computing in Engineering, 2013.

[7] T. Chipman, ifcDoc Tool Summary, available from: http://www.
buildingsmart-tech.org/specifications/specification-tools/
ifcdoc-tool/ifcdoc-beta-summary (accessed October 2018) (2012).

[8] A. D. GmbH, BIMQ 2019, available from: http://demo.bim-q.de (ac-
cessed May 2019) (2019).

[9] G. Lee, Y. H. Park, S. Ham, Extended process to product modeling
(xPPM) for integrated and seamless IDM and MVD development, Ad-
vanced engineering informatics 27 (4) (2013) 636–651.

[10] M. Venugopal, C. Eastman, R. Sacks, Configurable model exchanges
for the precast/pre-stressed concrete industry using semantic exchange
modules (SEM), Computing in Civil Engineering (2012) 269–276.

28

http://iug.buildingsmart.org/idms/development
http://iug.buildingsmart.org/idms/methods-and-guides
http://iug.buildingsmart.org/idms/methods-and-guides
http://www.buildingsmart-tech.org/specifications/ mvd-overview/mvdxml-releases/mvdxml-1.1
http://www.buildingsmart-tech.org/specifications/ mvd-overview/mvdxml-releases/mvdxml-1.1
http://www.buildingsmart-tech.org/specifications/ specification-tools/ifcdoc-tool/ifcdoc-beta-summary
http://www.buildingsmart-tech.org/specifications/ specification-tools/ifcdoc-tool/ifcdoc-beta-summary
http://www.buildingsmart-tech.org/specifications/ specification-tools/ifcdoc-tool/ifcdoc-beta-summary
http://demo.bim-q.de

[11] M. Weise, P. Katranuschkov, R. J. Scherer, Generalised model subset
definition schema, in: Proceedings of the CIB-W78 Workshop, 2003.

[12] J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming
express schemas into ontologies, Ai Edam 23 (1) (2009) 89–101.

[13] L. Zhang, R. R. Issa, Ontology-based partial building information model
extraction, Journal of Computing in Civil Engineering 27 (6) (2012)
576–584.

[14] P. Pauwels, A. Roxin, SimpleBIM: From full ifcOWL graphs to simplified
building graphs, in: Proceedings of the 11th European Conference on
Product and Process Modelling (ECPPM), 2016, pp. 11–18.

[15] T. Krijnen, J. Beetz, A SPARQL query engine for binary-formatted IFC
building models, Automation in Construction 95 (2018) 46–63.

[16] W. Mazairac, J. Beetz, BIMQL – an open query language for building
information models, Advanced Engineering Informatics 27 (4) (2013)
444–456.

[17] A. Wülfing, R. Windisch, R. Scherer, A visual BIM query language,
in: Proc 10th European Conference on Product and Process Modelling
(ECPPM), 2014, pp. 157–64.

[18] C. Zhang, J. Beetz, B. de Vries, BimSPARQL: Domain-specific func-
tional sparql extensions for querying RDF building data, Semantic
Web (Preprint) (2018) 1–27.

[19] E. Tauscher, H.-J. Bargstädt, K. Smarsly, Generic BIM queries based
on the IFC object model using graph theory, in: The 16th International
Conference on Computing in Civil and Building Engineering, Osaka,
Japan, 2016.

[20] A. Borrmann, E. Rank, Topological analysis of 3D building models us-
ing a spatial query language, Advanced Engineering Informatics 23 (4)
(2009) 370–385.

[21] S. Daum, A. Borrmann, Checking spatio-semantic consistency of build-
ing information models by means of a query language, in: Proc. of theIntl
Conference on Construction Applications of Virtual Reality, 2013.

29

[22] C. Preidel, A. Borrmann, Integrating relational algebra into a visual
code checking language for information retrieval from building informa-
tion models, in: Proceedings of the 16th International Conference on
Computing in Civil and Building Engineering. Osaka, Japan: ICCCBE,
Osaka, Japan, 2016.

[23] H. Amrutha, V. Balasubramanian, A model independent and user-
friendly querying system for indoor spaces, in: Proceedings of the 20th
International Conference on Management of Data, Computer Society of
India, 2014, pp. 17–28.

[24] Y.-C. Lee, C. M. Eastman, W. Solihin, An ontology-based approach
for developing data exchange requirements and model views of building
information modeling, Advanced Engineering Informatics 30 (3) (2016)
354–367.

[25] M. Venugopal, C. M. Eastman, J. Teizer, An ontological approach to
building information model exchanges in the precast/pre-stressed con-
crete industry, in: Construction Research Congress 2012: Construction
Challenges in a Flat World, 2012, pp. 1114–1123.

[26] M. Venugopal, C. M. Eastman, R. Sacks, J. Teizer, Semantics of model
views for information exchanges using the industry foundation class
schema, Advanced engineering informatics 26 (2) (2012) 411–428.

[27] M. Venugopal, C. M. Eastman, J. Teizer, An ontology-based analysis
of the industry foundation class schema for building information model
exchanges, Advanced Engineering Informatics 29 (4) (2015) 940–957.

[28] T. M. de Farias, A. Roxin, C. Nicolle, A rule-based methodology to
extract building model views, Automation in Construction 92 (2018)
214–229.

[29] C. Eastman, J.-m. Lee, Y.-s. Jeong, J.-k. Lee, Automatic rule-based
checking of building designs, Automation in construction 18 (8) (2009)
1011–1033.

[30] M. Weise, T. Liebich, N. Nisbet, C. Benghi, IFC model checking based
on mvdXML 1.1, in: eWork and eBusiness in Architecture, Engineering
and Construction: ECPPM, 2016, p. 19.

30

[31] simplebim, Simplebim – mvdXML add-on for Simplebim 7.1,
available from: http://www.datacubist.com/sdm_downloads/
mvdxml-addon-simplebim-7/ (accessed October 2018) (2018).

[32] M. Weise, mvdXML requirements and examples: review of a stan-
dardized format to define and exchange model view definitions with
exchange requirements and validation rules., available from: https:
//github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1 (ac-
cessed October 2018) (2014).

[33] Y.-C. Lee, C. M. Eastman, W. Solihin, R. See, Modularized rule-based
validation of a BIM model pertaining to model views, Automation in
Construction 63 (2016) 1–11.

[34] Y.-C. Lee, C. M. Eastman, W. Solihin, Logic for ensuring the data
exchange integrity of building information models, Automation in Con-
struction 85 (2018) 249–262.

[35] W. Solihin, C. Eastman, Y.-C. Lee, Toward robust and quantifiable
automated IFC quality validation, Advanced Engineering Informatics
29 (3) (2015) 739–756.

[36] T. J. Parr, R. W. Quong, ANTLR: A predicated-LL (k) parser generator,
Software: Practice and Experience 25 (7) (1995) 789–810.

[37] xBimTeam, XbimMvdXML, available from: https://github.com/
xBimTeam/XbimMvdXML (accessed May 2019) (2016).

[38] opensourceBIM, mvdXMLChecker, available from: https://github.
com/opensourceBIM/mvdXMLChecker (accessed May 2019) (2014).

31

http://www.datacubist.com/sdm_downloads/mvdxml- addon-simplebim-7/
http://www.datacubist.com/sdm_downloads/mvdxml- addon-simplebim-7/
https://github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1
https://github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1
https://github.com/xBimTeam/XbimMvdXML
https://github.com/xBimTeam/XbimMvdXML
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker

Appendix A. MVDLite Grammar

grammar MVDLite_v1_0;

/*
 * Parser Rules
 */

file:
 (abbr_expression | concept_expression)* (block_definition | block_constraint)* EOF;
abbr_expression:
 NAME AS LPAREN NAME RPAREN (mid_rule)+;
concept_expression:
 NAME EXTENDS NAME;
block_definition:
 DEFINITION (concept_expression | rule_expression)*;
block_constraint:
 CONSTRAINT (rule_expression)*;
rule_expression:
 rule_term (logical_interconnection rule_term)*;
rule_term:
 (NAME rule_chain) | (LPAREN rule_expression RPAREN) | (NOT LPAREN rule_expression RPAREN);
rule_chain:
 (mid_rule)* end_rule;
mid_rule:
 attribute_rule | compound_rule | string_rule | special_rule ;
end_rule:
 metric_rule | compound_rule | string_rule | special_rule ;
metric_rule:
 (metric)? operator_value_term;
operator_value_term:
 (operator value) | (LPAREN operator_value_expr RPAREN);
operator_value_expr:
 operator_value_term (logical_interconnection operator_value_term)*;
attribute_rule:
 ITS concept;
compound_rule:
 (LPAREN rule_chain (logical_interconnection rule_chain)* RPAREN)
 | (LPAREN NOT rule_chain RPAREN);
string_rule:
 LPAREN string_literal RPAREN;
special_rule:
 LPAREN NAME RPAREN;
concept:
 NAME (COLON NAME)?;
metric:
 M_VALUE | M_SIZE | M_TYPE | M_UNIQUE | M_EXISTS;
operator:
 EQUAL |NOT_EQUAL | GREATER_THAN | GREATER_THAN_OR_EQUAL | LESS_THAN | LESS_THAN_OR_EQUAL;
logical_interconnection:
 AND | OR | XOR;
value:
 (single_value ('|' single_value)*) | (LPAREN value RPAREN);
single_value:
 logical_literal | real_literal | string_literal | NULL;
logical_literal:
 TRUE | FALSE | UNKNOWN;
real_literal:
 ((sign)? (DIGIT | INT) ('.')? ((DIGIT | INT))? (('e'|'E') (sign)? (DIGIT | INT))?);
sign:
 '+' | '-' ;
string_literal:
 STRING | REGEX_STRING | CONTAINS_STRING | STARTS_WITH_STRING | ENDS_WITH_STRING ;

Figure A.11: The MVDLite grammar: parser rules.

32

/*
 * Lexer Rules
 */

BLOCK_COMMENT: '/*' .*? '*/' -> skip;
LINE_COMMENT: '//' ~[\r\n]* -> skip;
WS: (' '|'\t'|'\n'|'\r')+ -> skip ;

AS: 'as' | '\u66ff\u6362' ; //替换
EXTENDS: 'extends' | '\u7ee7\u627f'; //继承
DEFINITION: 'definition' | '\u5b9a\u4e49'; //定义
CONSTRAINT: 'constraint' | '\u7ea6\u675f'; //约束
ITS: 'its' | '->' | '\u7684'; //的

AND: 'AND' | '&' | '\u4e14' ; //且
OR: 'OR' | '|' | '\u6216' ; //或
XOR: 'XOR' | '^' | '\u5f02\u6216'; //异或
NOT: 'NOT' | '\u4e0d' | '\u975e'; //不 | 非

EQUAL: '=' ;
NOT_EQUAL: '!=' | '\uff01=';
GREATER_THAN: '>' ;
GREATER_THAN_OR_EQUAL: '>=' ;
LESS_THAN: '<' ;
LESS_THAN_OR_EQUAL: '<=' ;

FALSE: 'FALSE' | 'false' | '\u5047'; //假
TRUE: 'TRUE' | 'true' | '\u771f'; //真
UNKNOWN: 'UNKNOWN' | 'unknown' | '\u672a\u77e5'; //未知
NULL: 'NULL' | 'null' | '\u7a7a'; //空

M_VALUE: '['('Value' | '\u503c') ']'; //[值]
M_SIZE: '['('Size' | '\u6570\u91cf') ']'; //[数量]
M_TYPE: '['('Type' | '\u7c7b\u578b') ']'; //[类型]
M_EXISTS: '['('Exists' | '\u5b58\u5728') ']'; //[存在]
M_UNIQUE: '['('Unique' | '\u552f\u4e00') ']'; //[唯一]

DIGIT: '0'..'9' ;
INT: '0'..'9'+;
HEX_DIGIT: DIGIT | ('a'..'f' | 'A'..'F') ;
LETTER: ('a'..'z') | ('A'..'Z') ;

COLON: ':' ;
LPAREN: '(' ;
RPAREN: ')' ;
QUOTATION: '\'' | '"';

OCTAL_ESC: '\\' ('0'..'3') ('0'..'7') ('0'..'7') | '\\' ('0'..'7') ('0'..'7') | '\\' ('0'..'7') ;
UNICODE_ESC: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT ;
ESC_SEQ: '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\'
 |'.'|'?'|'+'|'*'|'['|']'|'('|')'|'{'|'}'|'^'|'|'|'$'|'s'|'S'|'d'|'D'
) | UNICODE_ESC | OCTAL_ESC ;

STRING: QUOTATION (ESC_SEQ | ~('\\'| '\'' | '"'))* QUOTATION;
REGEX_STRING: 'r' STRING ;
CONTAINS_STRING: 'c' STRING ;
STARTS_WITH_STRING: 's' STRING ;
ENDS_WITH_STRING: 'e' STRING ;

NAME: NAME_START_CHAR NAME_CHAR*;

fragment
NAME_CHAR:
 NAME_START_CHAR
 | '0'..'9' | '#' | '$' | '%' | '^' | '&' | '*' | '_' | '+'
 | '{' | '}'| ';' | ',' | '.' | '?' | '/' | '~' | '`' | FULL_WIDTH_SYMBOL ;

fragment
NAME_START_CHAR: 'A'..'Z' | 'a'..'z' | '\u4e00'..'\u9fa5' | '@' ;

fragment
FULL_WIDTH_SYMBOL:
 '\u3001'|'\uff0c'|'\u3002'|'\uff1b'|'\u300a'|'\u300b' //、，。；《》
 |'\uffe5'|'\u2014'|'\u3010'|'\u3011'|'\uff1a' //￥—【】：
 |'\uff08'|'\uff09'|'\u2018'|'\u2019'|'\u201c'|'\u201d'; //（）‘’“”

Figure A.12: The MVDLite grammar: lexer rules.

33

	1 Introduction
	2 Related Work
	2.1 Methods for MVD Representation and Development
	2.2 The mvdXML Format
	2.3 The Knowledge Threshold in Developing MVDs
	2.4 Automated MVD Validation

	3 The MVDLite Language
	3.1 The Grammar of MVDLite
	3.1.1 Rule Expression
	3.1.2 Concept Expression and Abbreviation Expression

	3.2 The Conversion between MVDLite and mvdXML

	4 Efficient MVD Validation with MVDLite
	4.1 The MVDLite Validation Algorithm
	4.2 Analysis of the MVDLite Validation Algorithm

	5 Experiments and Applications
	5.1 MVDLite Validation Experiment
	5.2 Case Study
	5.2.1 The Workflow for Developing MVDLite Rules
	5.2.2 MVD Validation and Partial Model Extraction

	6 Conclusion and future work
	7 Acknowledgment
	Appendix A MVDLite Grammar

