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a b s t r a c t

An articulated shape is composed of a set of rigid parts connected by some flexible junctions. Junctions
have been demonstrated to be critical local features in many visual tasks such as feature recognition,
segmentation, matching, motion tracking and functional prediction. However, efficient description and
detection of junctions still remain a research challenge due to the high complexity of articulated de-
formation. This paper presents a novel junction-aware shape descriptor for a 3D articulated model de-
fined by a closed manifold surface. To encode junction information on the shape boundary, the core idea
is to develop a new geometric measure, called the visible internal volume (VIV) function, which as-
sociates the shape's volumetric context to its boundary surface. The VIV at an arbitrary point on the
shape boundary is defined as the volume of visible region within the shape as observed from the point.
The VIV variation serves as the new shape descriptor. One advantage of using the VIV for 3D articulated
shape description is that it is robust to articulation and it reflects the shape structure and deformation
well without any explicit shape decomposition or prior skeleton extraction procedure. The experimental
results and several potential applications are presented for demonstrating the effectiveness of our
method.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Non-rigid shape analysis has been receiving a growing amount
of attention in many applications in computer vision, computer
graphics, pattern recognition and molecular structure analysis
[1,2]. A simplified approach to non-rigid shape analysis is based on
articulated shapes [1,3–6], which assumes that the non-rigid shape
consists a set of rigid parts connected by flexible junctions (or
named joints/hinges [1,7]). Each of rigid parts has a certain degree
of freedom to move, and junctions are relatively small compared
to the parts they connect.

Junctions, as critical local features, provide valuable local in-
formation for analyzing articulated shapes. Many applications,
such as feature recognition, segmentation, matching, motion
tracking, functional prediction and folding detection, can benefit
from automatic detection of junctions. For instance, detecting
junctions and parts can help to improve the performance of
Tsinghua University, Beijing
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articulated shape segmentation [8,9]. Many medical visual tasks
such as vessel tracking may rely on junction extraction, which can
facilitate diagnosis and understanding of pulmonary vascular dis-
eases [10]. In molecular structure analysis, many flexible mole-
cules can be viewed as 3D articulated objects with special hinge/
junction sites [7,11], where identifying such feature sites is a
fundamental problem for protein functional prediction and com-
parison. Although the abilities to infer junction information of 3D
articulated shapes have proven to be useful in many applications,
efficient description and detection of junctions still remain a re-
search challenge due to the high complexity of 3D articulated
deformation.

To address this issue, this paper presents a junction-aware
shape descriptor for a 3D articulated model defined by a closed
manifold surface. To encode junction information on the shape
boundary, the core idea is to develop a new geometric measure,
called visible internal volume (VIV) function, which considers the
volumetric context inside the shape. The VIV at an arbitrary point
on the shape boundary is defined as the volume of visible region
as observed from the point. The denoised and filtered variation of
VIV serves as the base of our new shape descriptor. One advantage
of using VIV for shape description is that it is robust to articulation
and can reflect shape structure and deformation well without any
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explicit shape decomposition or prior skeleton extraction proce-
dure. We have tested our method and compared it with some
relevant approaches using several well-known 3D articulated
shape databases, such as Princeton Segmentation Benchmark
(PSB) [12] and ISDB [13]. Some experimental results and applica-
tions are presented for demonstrating the effectiveness of our
method.

Note that a class of junction detection methods (e.g. [7,11,14])
is based on shape alignment/comparison techniques, which first
compare two or more different shapes and then determine the
correspondences and junctions. Unlike the comparison-based
techniques, our method only resorts to the geometric re-
presentation of the given individual shape. For this reason, the
proposed method can be computed off-line and this property is of
great importance to many further applications that require fast
and effective processing.
2. Related work

During the past decades, many junction detection methods in
2D images were proposed in the literature. Junctions in 2D can be
classified by the number of wedges [15], including two-junctions
(e.g. corners), three-junctions (e.g. T or Y-junctions), four-junctions
(e.g. X-junctions), and so on. Such junction features are very im-
portant for image analysis and object recognition [15,16]. Junction
detectors/descriptors do the job of describing and identifying both
locations and information of junctions [16]. There are two basic
approaches for detecting junction features in 2D: region-based
approaches and edge-based ones. The former usually models
junctions as image regions where some wedge-shaped regions
meet [10,15], and the later often describes junctions as image
points where two or more ridges meet [16,17]. Generally speaking,
both region-based and edge-based approaches utilize some char-
acteristics which are usually available only in 2D images for de-
tecting junctions. Such 2D characteristics are generally difficult to
be obtained by only analyzing 3D geometric shapes. A survey of
junction detection in 2D images is beyond the scope of this paper.

Although junction detectors/descriptors have been broadly
studied in 2D images, very few papers explicitly discussed this
issue for 3D shapes.

2.1. Junction detection for 3D shapes

In general, the existing approaches for junction detection are
strongly dependent on 3D shape representation in specific appli-
cations. There are several possible ways to solve this issue. The
first category of approaches is fitting-based methods. For example,
Zhao et al. [18] introduced a fitting-based technique for detecting
vessel junctions of 3D CT data, where the parametric junction
model is fitted using three tori patches and an ellipsoid surface.
However, it is not an easy task to fit the junction region only using
simple quadratic surfaces for complex 3D shapes.

The second category of approaches is based on structure ana-
lysis methods, which are generally used in protein structure ana-
lysis. Specially, if given a pair of protein structures [7,11,14], the
junctions are often found through structure alignment between
the two proteins. If only an individual protein structure is given
without referring to any other proteins [19,20], junction prediction
usually takes advantage of some additional chemical information
of the protein itself, such as amino acid sequences. In contrast, our
method is designed to treat the geometric representation of an
individual 3D shape, while there is no prior structure information
or non-geometric property required for the shape.

The third category of approaches is skeleton-based methods.
Many techniques in computer graphics focus on topology or graph
extraction of 3D shapes with surface representations (e.g. poly-
gonal meshes [21–23]) or volumetric representations [23]. The
topology extraction process produces a thin skeleton (or medial
axis), possibly with additional junctions and branches corre-
sponding to the logical components of a given shape [21,22].
Nevertheless, the extracted skeleton is often very sensitive to
perturbation and noise on the shape's boundary, where robust
skeleton computation is not an easy task. In addition, the com-
puted skeleton only induces a rough junction position on the
curve-skeleton itself, while the final junction region corresponding
to the boundary surface still needs to be computed and refined.
Although several robust skeleton extraction methods may provide
a prior reference for junction detection applications, it remains a
separate research topic. In contrast, our method directly highlights
the junction regions on the boundary surface without requiring
any prior skeleton extraction procedure.

The fourth category of approaches is segmentation-based
methods. 3D shape segmentation/partition methods have gained
much attention in recent years, but most of methods have to face
the same question of how to define parts or part boundaries of 3D
objects [8,24–26]. The classical part-type segmentation techniques
aim to analyze the geometric structure of an individual shape in
order to detect its parts or part boundaries (e.g. [8,9,25]). Recently,
another trend of methods is to segment the shapes jointly, which
utilizes the features from multiple similar shapes to improve
segmentation of each shape [24,26]. In essence, there is also a
strong connection between part-partitioning and skeletonizing
[9,26]. For example, many part-type segmentation methods are
based on skeleton extraction and its structure analysis [9]. After
dividing a 3D shape into meaningful parts, the intersection curve
where two or more parts meet can assist to find the candidate
junction. However, using part-type segmentation to assist junction
identification is a type of “chicken-or-egg” dilemma, since the
definition of a part implies the identification of clear-cut junctions.
In contrast, our method produces a junction-aware shape de-
scriptor without any explicit shape decomposition. Moreover, our
descriptor, as an intrinsic measure, can also assist segmentation of
3D articulated shapes over pose changes.

The fifth category of approaches is based on shape descriptor
methods. Our method also falls into this category. A shape de-
scriptor is a concise representation of the shape that expresses
some of its specific properties [4,13]. A simple realization of
junction detection can be based on measuring the local surface
properties of the shape boundary, such as local surface curvature,
point signatures on surface [27], dihedral angles and gradient [28].
However, such measures are limited by their local surface nature.
Recently, there are some efforts to develop new shape descriptors
for detecting the interesting and important surface regions or
features, such as salient regions [29,30] and distinctive regions of
surfaces [31,32]. However, they are still purely surface-based and
do not take account of volumetric information within 3D shapes.

It is worthwhile to mention the shape-diameter function (SDF)
(or named local-diameter descriptor) presented by Shamir et al.
[13,25,26]. The SDF is a scalar function defined on the boundary
surface of a 3D shape, which provides an implicit link between the
local volume of the shape and its boundary surface. Intuitively, the
local shape diameter is an approximated sphere diameter mea-
sured from the medial axis to a point on the boundary surface,
which is computed as follows. For each point p on the boundary
surface, the algorithm first shoots a cone of rays opposite to the
normal of p and identifies their intersection points with the
boundary surface. Then the median or weighted average length of
all the intersection rays is calculated as the shape diameter of p.
Our previous work has applied the SDF to flexible protein shape
comparison [33]. As a shape descriptor, the SDF is pose-invariant
but still not junction-aware, and we will explain this point later.
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Generally speaking, most existing shape descriptors are not
specifically designed to characterize the junction features of 3D
articulated models. Moreover, many of these descriptors typically
relate to the measures of local surface convexities or concavities,
but such convex and concave features on local surfaces do not
completely reflect the characteristics of junctions. A reasonable
junction-aware descriptor should also capture the volumetric
context of 3D shapes. Recently, as a volume-oriented geometric
metric, the inner distance [3] was developed, which measures the
length of the shortest path between two surface points within the
shape volume. By extending Ling and Jacobs's work [3] from 2D to
3D, our recent work described a visibility graph-based algorithm
for computing inner distances of 3D volumetric shapes [4], which
also derived some applications [34–36]. Although the inner dis-
tance is articulation-invariant, it needs to compute a pair-wise
distance and is not junction-aware. In contrast, this paper devel-
ops a new volume-oriented measure (i.e. VIV) and quantifies its
variation as a junction-aware shape descriptor, which is not a pair-
wise distance measure compared with inner distance.

Another recent work related to ours is Ref. [8], in which a part-
aware surface measure was developed by considering the volu-
metric context inside a 3D shape. It is based on an observation that
the visible region as observed inside a shape's volume provides a
strong hint for part transition. The visible region generally remains
stable within a part, while often changes greatly across part
boundaries. Our notion is also inspired by such observation. The
algorithm in [8] first computes the reference point ri for each mesh
facet by mapping the centroid of the facet onto the pre-calculated
medial axis. Then the visible region as seen from each reference
point ri is approximated by a sampling approach, which consists of
three steps: (1) m rays are uniformly sampled on a sphere sur-
rounding ri; (2) m intersection points between the rays and the
mesh boundary surface are collected in a set of { … }( ) ( )s s, ,i i

m1 ;
(3) the visible region of ri is implicitly represented by a set of
vectors { − … − }( ) ( )s r s r, ,i i i

m
i

1 , as called volumetric shape image
(VSI) [8]. The algorithm requires an extra computation of the
rough medial axis to map the boundary surface points onto the
medial axis. In addition, it does not explicitly provide the volume
of visible region, but only using a set of vectors instead. In essence,
[8] is a pair-wise surface metric similar to inner distance, which
measures the difference between the VSI vectors of two points on
the surface as the shape descriptor. In a similar way to [8], Var-
anasi and Boyer [37,38] implemented a shape segmentation al-
gorithm. In fact, the strategies in [8,37,38] are related to skeleton
extraction. In contrast, our method explicitly calculates the actual
volume of visible region without any medial axis or skeleton ex-
traction procedure. Furthermore, being different with [8], our
junction-aware descriptor is not a pair-wise distance measure. The
volume-oriented VIV measure presented in this paper can be also
considered as a complement of existing part-aware surface mea-
sures, which will be demonstrated in Section 6.2.

2.2. Contributions

Our main contributions can be summarized below.

� A novel geometric measure, called visible internal volume (VIV)
function, is presented for 3D articulated shapes, which con-
siders the volumetric context inside the shape. We first build a
visibility graph between all pairs of boundary points within the
shape, and then the VIV value at each boundary point is esti-
mated by summing the volume of all visible pyramids as seen
from the point.

� A junction-aware shape descriptor for 3D articulated models is
proposed by quantifying the VIV variation. The descriptor is
computed as the Gaussian-weighted average of the VIV varia-
tion of neighborhood points for each boundary point.

� We discuss how the VIV function and the new descriptor can be
incorporated into several potential applications such as junction
extraction, shape segmentation and shape retrieval.

Several advantages of the presented descriptor contain that it is
robust to articulation and it reflects the shape structure and de-
formation well without any explicit shape decomposition or prior
skeleton extraction. In addition, our method only depends on the
geometric representation of an individual model without any re-
ference models.

The remainder of this article is organized as follows. Section 3
introduces some basic concepts and gives an overview of our al-
gorithm. Section 4 presents the new VIV function and its compu-
tation algorithm. Section 5 proposes the new junction-aware
shape descriptor. Section 6 gives the experimental results, com-
parison, applications and discussions. Finally, Section 7 concludes
the paper.
3. Preliminaries

This section introduces some basic concepts for articulated
shapes and gives an overview of our algorithm.

3.1. Articulated shapes
Definition 1 (Articulated shape). An articulated shape O consists
of K disjoint rigid parts R1,…,RK and L flexible junctions J1,…,JL,
such that

= ( ∪ ⋯ ∪ ) ∪ ( ∪ ⋯ ∪ ) ( )O R R J J . 1K L1 1

Intuitively, O is an articulated object if it satisfies the following
conditions:

(1) O can be decomposed into several rigid parts connected by
junctions.

(2) The volume of each junction is relatively small compared to its
connected rigid parts.

(3) Let Φ be a transformation that changes the pose of an object
O. Φ is roughly considered as an articulated transformation if
the transformation of any part of O is rigid (rotation and
translation only) and the transformation of junctions can be
non-rigid or flexible.

(4) The new shape ′O achieved from articulation of O is again an
articulated object and can articulate back to O.

Several similar definitions also appeared in other literature
[1,5,39]. Based on the above intuitions, some remarks should be
mentioned below [3].

� Each rigid part Ri is connected and closed, ⋂ = ∅R Ri j ,
≠ ≤ ≤i j i j K, 1 , .

� Each junction Ji connects two or more rigid parts. In particular,
the size of Ji can be measured by ε( ) ≤Jvol i , where ( )Jvol i de-
notes the volume of Ji. ε ≥ 0 is very small compared to the size
of the connected rigid parts. A special case is ε = 0, which
means that all junctions degenerate to single points and O is
called an ideal articulated object.

� The articulated transformationΦ from an articulated object O to
another articulated object ′O is a one-to-one continuous map-
ping [3,1]. This preserves the topology between the articulated
parts. In particular, each deformed junction still has the volume
less than or equal to ε.



Fig. 1. Illustration of the visible region (light red) as observed from a boundary point traveling along the articulated shapes. The top row shows an ideal articulated object
case, where the visible region of the junction point B undergoes a radical increase compared with the points A/A’ and C/C’ on the two rigid parts. The bottom row shows that,
in a general articulated object, the visible region remains relatively stable or only changes gradually when moving along a rigid part. In contrast, there is always a large
change in the volume (area in 2D) of visible regions as the observed point crosses junction portions. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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The input model in this paper is considered a closed manifold
triangular mesh.

3.2. Algorithm overview

Our method is mainly motivated from an observation that the
Fig. 2. Illustrating the procedure of our algorithm. (a) The input mesh of a cup model. (b
(c) Finding the visible region (green pyramids) of each vertex based on the graph. (d) App
the color map shown in this paper, colors indicate the values of VIV or shape descriptors
figure caption, the reader is referred to the web version of this paper.)
visible regions as observed within a rigid part remain stable, but
often suffer from a large change in the volume when moving
across the junction portion. This leads to the realization that
junctions can be captured by considering occlusion or visibility
inside the shape. Fig. 1 illustrates such observation by an example,
where there is always a large change in the volume of visible
) Building the visibility graph (green lines) between all pairs of vertices (red points).
roximating the VIV function. (e) Computing the junction-aware shape descriptor. In
– from red (high) to blue (low). (For interpretation of the references to color in this
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regions within the shape as the observed point crosses junction
portions.

Starting with a triangular mesh model O as an input, the main
procedure of our algorithm consists of the following two steps, as
illustrated in Fig. 2.

1. Calculate the visible internal volume (VIV) function for the input
shape O on its mesh surface.
1.1. First, build a visibility graph between all pairs of mesh
vertices within O (see Fig. 2b).
1.2. Then, the visible region as seen from each vertex is found
based on the visibility graph (see Fig. 2c).
1.3. Next, approximate the VIV function of O (see Fig. 2d),
where the VIV value of each mesh vertex is estimated by
summing the volumes of all the pyramids centered at this
vertex and with a visible triangle of mesh as a base.

2. Compute the junction-aware shape descriptor of O by quanti-
fying the VIV variation of neighborhood vertices of each vertex
(see Fig. 2e).

The following sections describe each step in detail.
4. Visible internal volume

The first step of our algorithm is to define and calculate the
values of the visible regions for an input shape O. The visible region
[37] of a point ∈ Op can be defined as a domain (connected open
set), in which the inner distance [3,4] between p and each point in
the domain is equal to the Euclidean distance. It can be thought of
as the domain spanned by shooting rays from p in all directions
towards the surface. To quantify the visible region, we define a
new geometric measure for assisting junction analysis as follows.

Definition 2 (Visible Internal Volume (VIV)). Given a 3D shape O,
the VIV at an arbitrary point ∈ Op is defined as the volume of
visible region within the shape O as observed from p.

In the following, there are some notes for VIV that need to be
mentioned first.

1. The VIV is a non-negative scalar function. In this paper, we
denote the VIV at ∈ Op by ( )f p and ( ) = { ( ) ∈ }f O f Op p: for
short.

2. We are interested in 3D shapes defined by their boundaries,
hence only the boundary points are used as landmark points for
computing the VIV in our application. In the remainder of this
paper, O will denote a closed triangular mesh. The VIV values
are defined on all the vertices of a mesh, and linearly inter-
polated within the edges and triangles of the mesh.

3. Unlike a ‘part’ or ‘junction’, the VIV can be clearly defined as
long as the visible facets of O as observed from p are found.
Especially for the triangular mesh O, ( )f p can be computed by
summing the volumes of all pyramids centered at p and with a
full (or partial) visible triangle of O as a base.

There are several appealing features for the VIV when dealing
with 3D articulated shapes. All the features are directly derived
from Definition 2.

Proposition 1. The VIV in Definition 2 is invariant to rigid trans-
formation (translation and rotation only). When a shape undergoes
scale variation, the value of its associated VIV scales accordingly.

Proof. First we consider translational and rotational transforma-
tion. Denote ′O as the 3D shape transformed after rotating or
translating a 3D shape O. Suppose for a contradiction that ( ′)f p is
different with ( )f p , where ′ ∈ ′Op is the transformed point cor-
responding to its source point ∈ Op . This means that the visible
region of ′p will be inconsistent with the visible region of p. As-
sume that ′ ∈ ′Oq (its source point is ∈ Oq ) is a point on the in-
consistent region, i.e. that ′q is on the visible region of ′p while q is
not on the visible region of p. That means that ′q can be seen from

′p within ′O , whereas q cannot be seen from p within O. This
contradicts rigid transformation of O, since any rigid transforma-
tion is a one-to-one continuous mapping that preserves the to-
pology between O and ′O .

Then we consider scale transformation. As we mentioned be-
fore, for the triangular mesh O, ( )f p can be computed by summing
the volumes of all the pyramids centered at p and with a full (or
partial) visible triangle (or part) of the mesh O as a base. When O
undergoes scale variation, each pyramid scales accordingly, re-
sulting in that the value of the associated ( )f p scales accordingly.
This completes the proof. □

To create a VIV function which is also scale independent, we
can divide its value by the maximum one of all VIV values based
on Proposition 1, i.e.

( ) = ( )
{ ( )} ( )∈

f
f

f
p

p
xmax

.
2Ox

Furthermore, being similar to the observation in [8,37], the VIV
does not change much within a rigid part of a shape, but changes
drastically across the junction (see Fig. 1). Since the VIV compu-
tation is done over the mesh volume, it reflects the volumetric
context of the shape. Being different with [8], that implicitly
considers the visible volumes of interior points sampled on the
medial axis, we explicitly calculate the visible volumes (i.e. Defi-
nition 2) of points on the boundary surface.

4.1. Comparison with curvature and shape diameter

There are some inherent connections and differences between
the curvature, the shape diameter and the VIV.

Curvature: Although curvature remains stable in each rigid part
during the skeletal articulation, it cannot capture the essential
difference between the points in junction regions and those in
rigid parts. Curvature measures the degree of concavity and con-
vexity, but purely from a local surface perspective. Beside, curva-
ture may undergo an unexpected change for a point in a non-rigid
junction region. The negative minimal curvature [22,8] may help
to identify some portions of the part boundaries (e.g. points A, B
and C in Fig. 3), but it is still hard to identify the junction region
(yellow region) as a whole. For the VIV definition, we can in-
tuitively consider the curvature at a point p to be related to the
‘viewing angle’ of visible region from the viewpoint p.

Shape diameter: The shape diameter [13,25,26] essentially re-
flects the ‘thickness’ between a boundary point to its opposite side
surface. Compared with curvature, the shape diameter captures
the shape volumetric information and the global structure better.
For the junction detection purpose, an alternative assumption is
that the junction portion should have the relatively small shape
diameter. However, the small shape diameter does not necessarily
lead to a junction. As exemplified in Fig. 3, the shape diameters
along the most portion of the contour are the same, while the
three points A, B and C reach the maximum shape diameter. For
the VIV definition, we can intuitively consider the shape diameter
to be related to the ‘viewing depth’ of visible region from the
viewpoint p.

In general, compared with curvature and shape diameter, the
VIV function gives a more comprehensive measure for the volu-
metric context of a shape. We can roughly consider the VIV as a
feature combination of both the viewing angle (curvature) and



A B
C

Fig. 3. Illustration for comparison with curvature and the shape diameter in a 2D
case. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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viewing depth (the shape diameter) of the visible region from a
viewpoint located on the surface boundary. More experimental
comparisons with curvature and the shape diameter will be given
in Section in 6.1.

4.2. The visibility graph

We utilize the visibility graph for estimating the VIV function,
where the visibility graph is constructed by the links connecting
the visible pair of vertices of O. For our purpose, we define the
visibility graph between all pairs of vertices as follows.

Definition 3 (Visibility graph). Given a closed manifold triangular
mesh O, its vertex visibility graph G is defined as follows. The
nodes of G correspond to the vertices of the mesh, and two ver-
tices are connected by an arc if and only if they are mutually
visible within O, i.e. if the line segment connecting the two ver-
tices is in the interior or along the boundary of O.

The problem of computing the visibility graph of 2D polygons
has been widely studied in computational geometry [40], which
can be computed in ( )O n2 time [41]. But, unfortunately, the 3D
visibility graph for polyhedra is much harder. The visibility graph
is also associated with the problem of finding the shortest visible
path between two points within a closed space, which is NP-hard
in 3D [40]. Several recent studies [3,4] have also explored the
visibility graph-based algorithms for computing inner distances of
articulated shapes. Instead of computing the exact visibility graph
in 3D space, that is a complex and expensive task, we present an
approximation algorithm for computing roughly the visibility
graph of triangular meshes based on octree acceleration.

4.2.1. Octree construction
A crucial part for defining the visibility graph is to check the

visibility between all pairs of vertices within O. This calculation
can be accelerated using a spatial search structure, such as octree
and kd-tree. In our preprocessing step, an axis-aligned octree is
typically built around the boundary mesh for accelerating the
visibility graph computation.

Starting with the bounding box of O, we subdivide it into
8 equally sized cells. Each cell is recursively split into 8 children
cells as long as it contains the triangles of the mesh. The iteration
is terminated until a user-chosen depth d (typically 4 or 5) is
reached. This process is similar to octree construction in [42]. After
constructing the octree, we classify its cells into three types:
boundary cells intersecting with the boundary mesh of O, interior
cells inside O and exterior cells outside O. The algorithm of cell
classification is referred to Refs. [42,43]. Fig. 4b shows an octree of
a centaur model.
4.2.2. Visibility checking
Following Definition 3, we define the visibility graph G over all

vertices of O by connecting each pair of vertices pi and pj. If the
line segment (denoted by ) connecting pi and pj falls entirely
within O, pi and pj are visible and is added to the graph G. Note
that if pi and pj are on the same triangle of the mesh, they are
marked as visible and linked with an arc in the visibility graph;
otherwise, we collect the intersection points between and the
boundary mesh of O, with acceleration of the octree's boundary
cells. The intersection algorithm is based on Ref. [41]. In particular,
if and the mesh only intersect at the two endpoints (i.e. pi and
pj) of , pi and pj are either visible ( lies inside O) or invisible (
lies outside O). To distinguish inside or outside, one may choose
the midpoint of and decide if the midpoint is inside the given O
using the classical point-in-polyhedron algorithm [41], e.g. the
well-known ray-casting algorithm. To avoid extra intersection
computation between the mesh and the ray through the midpoint,
we use the classified cell types of octree to speed up. This is done
by simply finding the cell containing the midpoint, and then
checking its cell type as follows:

(1) If the cell type is interior, pi and pj are visible.
(2) If the cell type is exterior, pi and pj are invisible.
(3) If the cell type is boundary, the point-in-polyhedron algorithm

is further used for checking.

Note that if intersects the mesh at multiple points except pi
and pj, we simply mark it as invisible. Although such a simplified
processing may not be accurate in some cases, such as that pi and
pj are both on the same one side of a 3D cube model, which is
relatively uncommon for 3D articulated models. A more accurate
and robust classification of intersection points can also be applied
to our work, for instance, by considering some degeneracies of
tangent to the mesh surface. But this accurate classification leads
to an increase in computation time and complexity. Fig. 4c and
Fig. 4d show the approximated visibility graph between all pairs of
vertices using our approximation algorithm.

In general, octree construction and cell classification do not
take more than ten seconds even for large meshes, and conse-
quently, building the visibility graph even on large meshes takes
only a few minutes (see Table 1 for some examples). In contrast, if
there is no acceleration of spatial octree, it often takes tens of
minutes or even one hour for building the visibility graph for a
large mesh.

4.3. The VIV computation

After building the visibility graph G, the next work is to find the
visible region of each vertex based on G, and then compute its VIV.
Given a specific vertex ∈ Op , we first search all triangles of the
mesh O and determine whether each triangle ∈T Oi is visible from
the viewpoint p. Benefiting from the visibility graph G computed
before, the visibility test for triangle Ti can be performed fast, by
evaluating the visibility between p and the three vertices of Ti.
Based on G, we roughly define the visibility of Ti from p as the
following three cases:

(1) If the three vertices of Ti are all visible from p, Ti is marked as
the full visible triangle.

(2) If one or two vertices of Ti are visible from p, Ti is marked as
the partial visible triangle.

(3) Otherwise, Ti is marked as the invisible triangle.

Fig. 5a shows the visible region at a selected vertex, by con-
necting the selected vertex and its full/partial visible triangles into



Fig. 4. Building the visibility graph between all pairs of vertices on the mesh. (a) The original model. (b) An octree of depth 5. (c) The visibility graph (green lines) between all
pairs of vertices (red points). (d) The magnified view. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)

Table 1
Computation time.

Model Figure #Vertices #Faces T1a (s) T2b (s)

Centaur 4 352 700 0.43 2.82
Ant 9 402 800 0.81 3.40
Teddy 9 752 1500 1.98 41.76
Octopus 9 1002 2000 1.15 50.84
Cup 9 1500 3000 6.17 174.89

a T1 is the time for octree construction and cell classification.
b T2 is the time for building the visibility graph between all pairs of vertices

and computing the shape descriptor.
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pyramids. Note that we only use the visibility graph G for ap-
proximately deciding the visibility of triangles. Computing the
exact visible region for complex polyhedral shapes is quite in-
volved, but it is not necessary for our purpose. Consequently, we
define the VIV function of each vertex p by

∑ α( ) = ( ) ( )
( )∈

f T Tp p p, vol , ,
3T O

j j

j

where ( )Tpvol , j is the volume of the jth-pyramid centered at p
and with the jth-triangle Tj as the base. For the reader's con-
venience, we give the expression of the volume of a pyramid in the
following equation [44], where qj

1, q j
2 and q j

3 are the three vertices

of Tj:
( ) = ( − )·Tp p g Nvol ,
1
6

,j j j

where = ( + + )g q q q /3j j j j
1 2 3 and = ( − ) ∧ ( − )N q q q qj j j j j

2 1 3 1 .
The weight α in Eq. (3) is defined by:

α ( ) =
( )

T
T

p,
vis

3
,j

j

where ( )Tvis j is the number of visible vertices of Tj from p (it is
directly obtained from G), i.e. α¼1, 2/3, 1/3 or 0. Alternatively, the
scale independent VIV function can be computed using Eq. (2).

Fig. 5 b visualizes the VIV function of the centaur model, where
the VIV value of each triangle of O is linearly interpolated by its
three vertices. Fig. 6 displays the VIV values of series of 3D ar-
ticulated shapes. Observe that there is a great change in the
junction portions.

4.4. Computational complexity

Let n be the number of vertices on the input triangular mesh O
and m be the number of triangles on ( ≈ )O m n2 for triangular
meshes). First, it takes time O(m) to check whether the line seg-
ment between one pair of vertices is inside O, where checking
intersections between the line segment and all the triangles is O
(m) and the inside–outside testing using the octree's cell types is

( )O 1 . As a result, the complexity of constructing the visibility graph
G between all pairs of vertices is ( )O n m2 (or ( )O n3 ). After G is ready,
computing the VIV value of each vertex in Eq. (3) is linear.



Fig. 5. Illustration of the visible region, VIV and junction-aware shape descriptor. (a) shows the visible region (green pyramids) at a vertex on the centaur's body. (b) vi-
sualizes the VIV function, where there is a great change on junctions. (c) shows the VIV variation. (d) visualizes the junction-aware shape descriptor, where junctions are
highlighted by the descriptor. Warmer colors (red and yellow) show high values and cooler colors (green and blue) show low values. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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Together with ( )O n3 construction of the visibility graph, an upper
bound of running time for the VIV computation takes ( )O n3 .
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5. Junction-aware shape descriptor

The second step of our algorithm aims to develop a junction-
aware shape descriptor for a 3D articulated model based on its VIV
function. For each vertex ∈ Op , we first find its k-nearest neigh-
bors using the ANN library that can be found at: http://www.cs.
umd.edu/mount/ANN/. One can consider several distances to de-
fine the neighborhood, such as the Euclidean distance or geodesic
distance. We have tried both and found that the Euclidean dis-
tance gives the similar results to geodesic distance, but can be
computed faster. Let ( )N pk denotes the set of k-nearest neighbor-
ing vertices of p.

Then we define the junction-aware shape descriptor at each
vertex p as the Gaussian-weighted average of the VIV variation
between p and its neighboring vertices:

σ

σ
( ) =

∑ | ( ) − ( )| [ − ∥ − ∥ ( )]

∑ [ − ∥ − ∥ ( )] ( )

∈ ( )

∈ ( )

f f
p

x p x p

x p

exp / 2

exp / 2
,

4

N

N

x p

x p

2 2

2 2
k

k

where ( )p denotes the shape descriptor of p, ( )f p is the VIV
function value of p in Eq. (3), | ( ) − ( )|f fx p is the VIV variation
between p and its neighboring vertex x , and s is the standard
deviation of the Gaussian filter. In our implementation, s for each
vertex p is adaptively computed as the average of distances be-
tween p and its neighboring vertices. ( )p is insensitive to shape
deformation that does not alter the volumetric shape locally,
which includes articulated deformation or skeleton based move-
ments or piecewise rigid transformation.

The following Algorithm 1, named VertexDescriptor, gives the
pseudo-code for applying the above Eq. (4) to a single vertex p,
where the algorithm returns the junction-aware descriptor value.
Fig. 5c shows the VIV variation on the mesh by computing the
average of difference of the VIV between each vertex and its
neighborhood vertices. Fig. 5d visualizes the values of junction-
aware shape descriptor by applying the Gaussian filter to the VIV
variation. Observe that the junction portions are highlighted by
the descriptor.

Algorithm 1. VertexDescriptor(Vertex p).
Find k-nearest neighbors { }qi of p;
= |{ }|k qi ;

Compute s as the average of Euclidean distances between
{ }qi and p;
normalizer¼0;
sum¼0;
for ≔i 1 to k do

= ∥ − ∥d p qi ;

σ= ( − ( ))W dexp / 22 2 ;
variation¼ | ( ) − ( )|f fp qi ;

http://www.cs.umd.edu/mount/ANN/
http://www.cs.umd.edu/mount/ANN/
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Fig. 6. Visualizing the VIV function of series of 3D articulated shapes. Rows are centaur, cup, teddy, octopus, ant and cat. Columns show the various poses.
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sum þ¼ ·W variation;
normalizer þ¼W;

end for
return descriptor¼sum/normalizer;
13:

Parameters: Algorithm 1 includes two parameters: k and s. The
descriptor with the small neighborhood number k highlights
the thin junction features, while the descriptor with the large
k identifies the thick junction features. In Fig. 7a, the smaller k
sharpens the junction features, but this may result a discontinuous
feature (see Teddy's neck). In contrast, in Fig. 7c, the larger k over-
smooths the junction features, but this may introduce the re-
dundant features (see Teddy's neck too). In our implementation
we typically set k¼15 for large meshes. Note that, in Eq. (4), we are
assuming a cut-off for the Gaussian filter at a distance s that pe-
nalizes the neighborhood vertices far from p. In practice, one may



Fig. 7. The junction-aware shape descriptor is relative to the number k of neighboring vertices. (a) k¼8. (c) k¼15. (d) k¼30. The smaller k sharpens the junction features,
while the larger k over-smooths the junction features.
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Fig. 8. Computation time for several models with respect to their various resolu-
tions. As the number of mesh's vertices increases, computation time increases
accordingly.
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choose a large s, such as the maximal distances between p and its
neighboring vertices, but this often over-smooths the junction
features.

Noise and outlier: Noisy data of the mesh surface may lead to
unstable VIV computation, which will produce an undesirable
shape descriptor. To overcome this, we conduct a pre-smoothing
on the VIV function for a noisy mesh by averaging the VIV value of
each vertex within its 1-ring neighborhood. After smoothing the
VIV function, Algorithm 1 is recalled for computing the descriptor
using the smooth VIV function. In addition, to avoid the local
perturbation and obtain a more distinguishable junction-aware
descriptor, we also eliminate the influence of some small outlier's
descriptor values through setting the smallest 10% values of de-
scriptor as zero, where the percent of outliers can be chosen by the
user.
6. Experimental results

We have implemented our algorithm in Cþþ and experi-
mented with a large number of articulated models. The tested
models are selected from several well-known 3D articulated shape
databases, such as Princeton Segmentation Benchmark (PSB) [12]
and ISDB [13]. The experimental results and some potential ap-
plications are presented here for demonstrating the effectiveness
of our proposed method.

All the experiments were run on a PC with a 2.60 GHz pro-
cessor and 8 GB memory, excluding the time of loading models. An
axis-aligned octree at depth 5 is constructed in the preprocessing
step and this procedure usually takes less than a few seconds.
Table 1 summarizes the time in seconds for some articulated
models referred to in this paper, where ‘#Vertices’ is the number
of mesh's vertices, ‘#Faces’ is the number of mesh's triangles, ‘T1’
is the time for octree construction and cell classification at depth 5,
and ‘T2’ is the time for building the visibility graph between all
pairs of vertices and computing the shape descriptor. A great deal
of the running time is spent in building the visibility graph, while
the stage of computing the VIV function and shape descriptor is
almost real time. Fig. 8 shows the computation time for several
models with respect to various resolutions, where we typically
simplify four meshes (i.e. teddy, centaur, cup and octopus) into
various resolutions from 200 to 2000 vertices. The results show
that the computation time increases accordingly as the number of
the mesh's vertices increases. Since our method only depends on
the geometric representation of the individual shape itself, it can
be computed off-line and this property is of great importance to
many further applications that require fast and effective proces-
sing, such as feature recognition, shape retrieval and motion
tracking.

To verify the capability of our method, several articulated
shapes are tested and demonstrated in Fig. 9. The second column
on the left shows the computed visibility graph that captures the
shape structures well. The third column on the left displays the
VIV function, where there is a drastic change on junctions. The
rightmost column shows our descriptor that highlights the junc-
tion features in the warm colors. For all the examples in Fig. 9, the
neighborhood number is set to k¼15, while the smallest 10% va-
lues of descriptor are regarded as outliers and are discarded.

6.1. Comparison with several relevant methods

We also compared our work with several relevant methods
including curvature, mesh saliency, and shape diameter. Fig. 10
shows various examples of results using curvature and mesh sal-
iency and our descriptor. The results suggest that curvature only



Fig. 9. Visualizing the visibility graph, VIV and junction-aware shape descriptor. Rows are ant, vase, teddy, cup and octopus. The leftmost column shows the original models,
the second one shows the visibility graph, the third one visualizes the VIV function, and the rightmost one displays the junction-aware shape descriptor.
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Fig. 10. Comparison of our descriptor (right column) with curvature (left column) and mesh saliency (middle column).
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reflects the convexities or concavities of local surface, and it is very
sensitive to local perturbations and noises.

Mesh saliency [29,30] is a measure of regional importance for
3D meshes using a center-surround operator on Gaussian-weigh-
ted mean curvatures. It is able to identify the regions that are
different from their surrounding context. Although the saliency
measure is superior to mesh curvature, it does not capture the
volumetric context inside the shape. In addition, mesh saliency has
the same drawback with curvature during identifying the junction
features, i.e. that the convex and concave features on local surfaces
do not completely reflect the characteristics of junctions. For ex-
ample, the ears of teddy and the tips of octopus's eight arms are
convex portions (see Fig. 10), but they are not junctions. In con-
trast, our junction-aware descriptor can distinguish the junction
features well.

As we mentioned before, the SDF [13,25,26] approximates the
double distance from each mesh vertex to the corresponding
medial axis, i.e. the shape diameter. Although the SDF takes into
account the interior of the shape, it does not capture the general
volumetric context, as shown in Fig. 3 in a 2D case. Fig. 11 shows
another 3D example. Here, Fig. 11a displays the SDF [25] of a
model of table lamp with an adjustable folding arm, and Fig. 11b
shows a SDF-based descriptor by applying our Algorithm 1 in
Section 5 to SDF instead of our original VIV function [45]. Fig. 11c
and Fig. 11d show our VIV function and junction-aware descriptor.
Note that the shape diameters of points on the lamp's arm are
almost same, resulting in that the SDF-based descriptor cannot
capture the joint features of lamp's arm. In contrast, our descriptor
captures such joint features well.

6.2. Applications

Some potential applications in computer vision and computer
graphics may benefit from the VIV function and the junction-
aware shape descriptor. A direct application of our shape de-
scriptor is for initial junction extraction. This can be simply done
by using a threshold to divide the descriptor values of vertices into
two types: junction regions and rigid parts. Here we mark these
vertices with their descriptor values larger than the threshold as
the candidate junction portions, and the remaining vertices are
marked as the rigid parts. Fig. 12 illustrates this application for
several models, where the threshold is typically selected as the
median one of descriptor values of all vertices and the junction
regions of each model are highlighted by orange color.

Based on the initial junction regions extracted, we can further
compute the handle loop [46,47] which is a critical geometric



Fig. 11. Comparison of our method and the SDF, where a model of table lamp with an adjustable folding arm is selected for test. (a) SDF. (b) SDF-based descriptor [45].
(c) VIV. (d) Junction-aware descriptor. Note that the lamp arm is a bending cylinder-like shape with two joints, so the shape diameters of points on the lamp's arm are almost
same. This results in that the SDF cannot capture the joint features of lamp's arm (see (b)). In contrast, our descriptor captures such joint features well (see (d)).

Fig. 12. Application to junction extraction (colored regions) and handle loop approximation (blue curves). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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feature. The algorithm of handle loop approximation has been
described in our previous work [45]. Being different from [45], this
paper uses VIV-based shape descriptor for approximating the
handle loops instead of SDF-based shape descriptor in [45].
However, since the algorithm of handle loop approximation is not
a contribution to this article, we just summarize the main process
of the algorithm. It consists of three steps as follows.

(1) Firstly, all the vertices on the initial junction regions are
grouped into different clusters, one of which denotes a junc-
tion region to be further refined.

(2) Then, the vertices on each clustering junction are refined
through removing some redundant vertices and adding some
missing vertices. This step will lead to a desired junction
region.
(3) Finally, a handle loop along each junction region is computed
as the cut of shape segmentation.

In the last step, we first use robust principal component analysis
[48] for these vertices in each junction region to compute a plane.
Then the intersection curve between the plane and the junction
region forms the handle loop (see the blue curves surround
junction regions of each model in Fig. 12). Note that a clear-cut
junction and its handle loop need further processing which leads
to a separate future work. The readers can refer to [45] for the
details of each step of the algorithm.

Another possible application is to improve some part-aware
segmentation algorithms for 3D articulated shapes [8,25] by con-
sidering the VIV function instead of some existing measures, such
as the SDF [25] or VSI [8]. For instance, the SDF-based mesh



Fig. 13. Application to articulated shape segmentation, where the consistent segmentation results on mesh surfaces of several models reveal the similar parts.
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segmentation algorithm in [25] is composed of two steps:
(1) using soft-clustering of the mesh triangles to k clusters based
on their SDF values, and (2) finding the actual segmentation using
k-way graph-cut to include local mesh geometric properties. Our
implementation follows the above two steps, but the SDF of each
triangle in the first step is replaced by our VIV function, where the
VIV value of each triangle is linearly interpolated by its three
vertices. Fig. 13 shows the segmentation results on the mesh sur-
faces of several articulated models with k¼3 clusters, which reveal
the similar parts in all of them.

Recently, Ling and Jacobs [3] proposed an algorithm for com-
puting and applying the inner distances for building new 2D shape
descriptors. One of its central work is to first construct a visibility
graph connecting all visible boundary points, and then find the
shortest path in the graph as the inner distance. Following the
similar way, we presented a visibility graph based algorithm for
computing the inner distances of 3D articulated volumetric mod-
els [4], which extends [3] from 2D to 3D. However, the current
implementation of 3D inner distance computation [4] still limits to
3D volumetric models, which has not been applied to polygonal
meshes yet. A by-product of our VIV computation is 3D visibility
graph between all pairs of vertices, which can be directly used for
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Fig. 14. Application to articulated shape retrieval. The precision–recall curves
compare the retrieval results achieved with the ID descriptor versus other methods
on ISDB, where the by-product visibility graph of VIV is used for computing the ID
descriptor of triangular meshes.
3D inner distances (ID) computation [4] of triangular meshes.
Fig. 14 shows the application to articulated shape retrieval, where
the average precision–recall curves are tested on the ISDB database
[13] with several known descriptors: Euclidean distance (ED),
geodesic distance (GD), shape distribution (SD), spherical harmo-
nic descriptor (SHD), and solid angle histogram (SAH) in terms of
the performance in retrieving similar shapes. The retrieval results
show that the ID descriptor generated by our visibility graph
performs better than other descriptors for articulated models.

6.3. Discussions

One issue of our method is its robustness to the object's re-
presentation. The VIV function is only meaningful on an object
which defines a closed volume. This means that the object con-
taining holes and gaps may need some pre-processing, such as
mesh repairing [42] to produce a closed manifold surface. How-
ever, in the octree construction process, the vertex normal on a
mesh can be used for improving cell classification [42,43] even for
some non-closed meshes, and consequently, we can produce an
approximating visibility graph between all pairs of vertices with
the help of the octree. Once the meaningful visibility graph is built,
our VIV computation can be run without further considering the
non-closed cases. This creates robustness when handling small
holes in the boundary.

In this paper we deal with a single object in isolation. Conse-
quently, the VIV function of a single shape may lack sufficient cues
to identify its all junctions (see e.g. Fig. 15). For example, the VIV-
based shape descriptor may fail to detect the junctions when the
vertices near the junctions happen to have the similar VIV. On the
other hand, it is possible that some parts are falsely detected as
junctions. Fig. 15 shows an example that fails to detect the junc-
tions, where the vertices near the horse necks (the bottom two
horses) have the similar VIV. In fact, it is quite difficult to resolve
this issue if just using an isolated model. However, it is of interest
to improve our method by referring to multiple poses of the same
object, where different poses may complement each other for
identifying the missing junction portions. To achieve this, we plan
to borrow some recent ideas from joint-segmentation/co-seg-
mentation of multiple poses [24]. It is, however, beyond the scope
of this paper, and we will leave this study to the future work.



Fig. 15. Illustrating the VIV function for different poses of the same horse. Note that there is a relatively great change of VIV values on the necks of the top two horses, but
there is no apparent change on the necks of the bottom two horses.
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7. Conclusion

This paper considers the problem of junction-aware shape de-
scriptor for an individual 3D model. The challenge is how to encode
junction information on the boundary surface of the shape. By de-
veloping a novel visible internal volume (VIV) function and quantify-
ing its variation in the neighborhood of each point on the surface, we
manage to achieve such a junction-aware descriptor. The effectiveness
of our method is testified by a number of examples on several well-
known 3D articulated shape databases. Furthermore, we explore some
potential applications including junction detection and handle loop
approximation, shape segmentation, as well as shape retrieval, which
could benefit from our method.

The VIV function is a new powerful geometric measure associating
volumetric information to the boundary surface. It offers a new per-
spective for understanding 3D articulated shapes. We believe that the
VIV definition can further assist many other geometry processing
applications such as feature recognition, segmentation, matching,
motion tracking and functional prediction. In addition, our current
implementation of building the visibility graph for VIV computation
takes a long time for large meshes. It is possible to speed it up sig-
nificantly by parallelizing on multi-core platforms, because visibility
checking between each pair of vertices is completely independent
from all other vertices. The parallel implementation of our algorithm is
an independent future work.
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