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Figure 1: We highlight our novel view synthesis results on real-world scenes with complex reflection
effects. Our MaterialRefGS outperforms the state-of-the-art methods in producing photorealistic
renderings, disentangling physical materials, and recovering accurate scene geometry.

Abstract

Modeling reflections from 2D images is essential for photorealistic rendering
and novel view synthesis. Recent approaches enhance Gaussian primitives with
reflection-related material attributes to enable physically based rendering (PBR)
with Gaussian Splatting. However, the material inference often lacks sufficient
constraints, especially under limited environment modeling, resulting in illumi-
nation aliasing and reduced generalization. In this work, we revisit the problem
from a multi-view perspective and show that multi-view consistent material in-
ference with more physically-based environment modeling is key to learning
accurate reflections with Gaussian Splatting. To this end, we enforce 2D Gaus-
sians to produce multi-view consistent material maps during deferred shading.
We also track photometric variations across views to identify highly reflective
regions, which serve as strong priors for reflection strength terms. To handle
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indirect illumination caused by inter-object occlusions, we further introduce an
environment modeling strategy through ray tracing with 2DGS, enabling pho-
torealistic rendering of indirect radiance. Experiments on widely used bench-
marks show that our method faithfully recovers both illumination and geometry,
achieving state-of-the-art rendering quality in novel views synthesis. Project Page:
https://wen-yuan-zhang.github.io/MaterialRefGS.

1 Introduction

Learning scene appearance representations and recovering unseen views from multiple posed RGB
images has been a long-standing task in computer vision and graphics [22, 36, 18, 64]. Recent
advances in Neural Radiance Fields (NeRF) [36] leverage volume rendering to learn implicit scene
representations for novel view synthesis. More recent efforts have been made by learning explicit 3D
Gaussians (3DGS) [22] to achieve real-time rendering through a differentiable splatting procedure.
Despite achieving photorealistic synthesis, 3DGS shows limited performance when confronted with
complex reflective environments. This limitation arises from the contradiction between the simplistic
geometric representations and the intricate shading mechanisms of real-world objects.

To tackle this problem, recent methods typically separate the rendering color into diffuse and specular
components, and adopt inverse rendering frameworks [55, 11] to learn illumination decomposi-
tion through physically based rendering [44]. They endow each Gaussian primitive with learnable
reflection-related properties, such as metallic and roughness [20, 24]. A splatting pass rasterizes
these attributes into screen-space material maps [22, 18], followed by a lighting pass that evaluates a
Bidirectional Reflectance Distribution Function (BRDF) [4] using material maps and environment
lighting to synthesize the final image. This two-stage pipeline is known as deferred shading-based
PBR [24, 56, 66]. It decomposes the view-dependent reflection effects into view-independent material
properties by considering how the light interacts with the objects and environments, thereby improv-
ing the fidelity of novel views. However, the illumination decomposition poses several optimization
challenges. First, inferring material properties from multi-view images is an ill-posed problem. All
material parameters are optimized only through photometric loss after complex light transport, so
multiple combinations of lighting and materials can explain the same pixels, which often leads to sub-
optimal illumination decomposition [46, 58]. Second, the view-dependent behavior of 3D Gaussian
representations conflicts with the goal of learning view-independent material properties. When the
same physical attribute yields inconsistent appearances in different viewpoints, the BRDF struggles
to infer accurate reflections from ambiguous observations, resulting in aliasing and degenerated
illumination decomposition [10, 31].

To resolve these issues, we propose a novel approach that learns illumination decomposition for
modeling reflections with 2DGS through multi-view consistent material inference. We first enforce
Gaussians to produce multi-view consistent material buffers based on their physical attributes. This
is achieved by aligning the projections of geometric surfaces on material maps from different views.
We find that this constraint significantly improves illumination decomposition by limiting the view-
specific overfitting. To better facilitate this process, we track photometric variations on object
surfaces along the camera trajectory and quantify these variations as reflection scores. A spatial
reflection fusion module is then applied to aggregate these per-view reflection scores into a multi-view
consistent reflection strength prior. This prior is subsequently used as a supervision for the reflection
strength attribute, i.e., metallic.

In addition, we observe that secondary reflection effects caused by inter-object occlusions often lead
to degraded novel view synthesis. To address this, we propose an improved environment modeling
strategy via differentiable ray tracing, which combines splatted indirect radiance and queried direct
radiance with an on-the-fly estimation of occlusion probability. This approach effectively provides
physically grounded signals in occluded regions, enabling more realistic indirect illumination. Our
numerical and visual evaluations on widely used benchmarks demonstrate our superiority over
the latest methods in terms of material inference and novel view synthesis. Our contributions are
summarized as follows:

• We propose a novel approach to modeling reflections through Gaussian Splatting with multi-
view consistent material inference, including multi-view material consistency constraint and
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reflection strength prior supervision. Our approach provides a new perspective for modeling
reflections through physically grounded illumination decomposition.

• We introduce a differentiable environment modeling strategy through 2DGS based ray
tracing, which enhances photorealistic rendering of indirectly illuminated regions caused by
inter-object occlusions.

• We achieve state-of-the-art performance of novel view synthesis both in numerical results
and visual comparisons on widely used benchmarks.

2 Related Work

2.1 Novel View Synthesis

The task of novel view synthesis aims to predict unseen views of a scene from a set of posed RGB
images. Traditional methods typically rely on image interpolation [45] or inpainting [2] to generate
novel views. With the rapid development of deep learning [70, 69, 67, 68, 5, 39, 28, 52, 32], novel
view synthesis has gradually shifted toward learning-based approaches. Neural Radiance Fields
(NeRF) [36, 62, 63, 65, 16, 51] pioneers this task by learning a mapping from 5D coordinates to
volume densities as the scene representations. More recently, 3D Gaussian Splatting (3DGS) [22] has
emerged as a new paradigm for real-time rendering by rasterizing Gaussian ellipsoids into images in a
splatting manner. Various extensions support diverse scales and scenes through novel data structures
such as hierarchies [23, 34] and octrees [43]. Others address sparse-view challenges by incorporating
geometric priors [7, 19, 27, 17]. Beyond static scenes, some works also explore 3DGS for dynamic
scenes [50], semantic-aware manipulation [41], and content generation [71, 60, 9]. Recent efforts
aim to extract high-quality surfaces from 3DGS by flattening 3D Gaussians into 2D disks [18] and
leveraging differentiable kernels to rasterize them into images. To better align Gaussians with object
surfaces, regularization strategies such as depth-normal consistency [18, 15] and neural gradient
supervision [61, 29, 35] are applied. In our work, we adopt 2D Gaussians as the foundational
representation due to their effectiveness in modeling surface geometry and normals.

2.2 Modeling Reflections in NeRF and 3DGS

The view-dependent color representations used in original NeRF [36] and 3DGS [22], such as
neural networks or spherical harmonics, struggle to capture high-frequency specular reflections
that are commonly observed in real-world scenes. Existing solutions typically decompose the
outgoing radiance into diffuse and specular components and blend them using learnable weights. To
better model the specular reflections, some methods introduce directional encodings like Integrated
Directional Encoding [47] and Gaussian Directional Encoding [26]. Other approaches extract
accurate meshes to provide reliable normal for reflection modeling [33, 48, 13, 25]. Recent advances
in 3DGS [22] offer new perspectives for addressing this challenge. Inspired by inverse rendering,
Relight3DGS [11] assigns each Gaussian with physical properties such as metallic and roughness,
and performs PBR on the Gaussians to synthesize the final image. Recent studies have proven that
rendering per-Gaussian illumination attributes into material maps followed by deferred shading-
based PBR [24, 56, 66, 20] yields better performance than per-Gaussian shading [11]. To improve
environment interactions, some methods develop ray tracing techniques for Gaussians [37, 14, 53].
However, these methods primarily focus on per-view light-material interactions and neglect the
globally consistent geometric information inherent in the multi-view settings. To fill in this gap,
we propose leveraging multi-view cues to facilitate the disentanglement of material properties,
enabling more accurate and realistic modeling of reflections in 3D Gaussians. Notably, our method
is not equivalent to inverse rendering. Our goal is to model specular color through illumination
decomposition, while relying on the Gaussians to render the diffuse color. In contrast, inverse
rendering methods evaluate all lighting effects through BRDF, making them more suitable for
quantitatively evaluating material decomposition and for relighting tasks. However, due to the
complexity of learning diffuse component, these methods are limited to simple object-centric scenes.

3 Method

Given a set of posed RGB images {Ij}Nj=1 that represents a scene with high reflections, we aim to
synthesize a novel image from an unseen viewpoint. We learn a set of 2D Gaussians as the scene
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representations. We begin by introducing the preliminaries (Sec. 3.1), and then describe our multi-
view material inference strategy (Sec. 3.2) and environment modeling strategy (Sec. 3.3). Finally, we
detail the optimization procedure (Sec. 3.4). An overview of our method is provided in Fig. 2.

3.1 Preliminary

3D Gaussian Splatting (3DGS) [22] has become paradigms for learning 3D representations from
multi-view images. A scene is represented by Gaussian functions {Gi}Ki=1 with attributes like mean
xi, opacity oi and scaling si. We also attach several reflection-related material attributes to Gaussians,
including diffuse color cd ∈ R3, albedo a ∈ R, metallic m ∈ R and roughness r ∈ R. We can then
rasterize these Gaussians into images using

Ψ̂ =

N∑
i=1

ψi ∗ oi ∗ pi ∗
i−1∏
j=1

(1− oj), (1)

where oi, pi are the opacity and screen-space probability [72] of the i-th Gaussian, respectively, and
ψi denotes a selected attribute of Gi. By choosing different attributes such as cdi, ai,mi or ri as ψi,
we can render the corresponding material maps ΨCd ,ΨA,ΨM ,ΨR, respectively. To facilitate surface
reconstruction, 2DGS [18] flattens each 3D Gaussian into a 2D disk by setting one scaling dimension
to zero. We adopt 2DGS as our base representation for better surface and normal alignment.

Our deferred shading-based PBR adopts a simplified version of the Disney BRDF model [4]. Given a
viewing direction ωo, the rendered color on the ray-surface intersection can be computed by

c(ωo) = (1−m)cd + Ls(ωo, a,m, r, n),

Ls(ωo, a,m, r, n) =

∫
Ω

Li(ωi)fs(ωi, ωo)(ωi · n)dωi,

fs(ωi, ωo) =
DFG

4(ωi · n)(ωo · n)

(2)

where ωi, n, Ls, fs, D, F,G denote the incident direction, normal, outgoing specular radiance, BRDF
term, normal distribution function, Fresnel term and shadowing-masking term, respectively. Since
computing the integral of Ls over the upper hemisphere Ω is computationally expensive, we adopt
the split-sum approximation [38, 56, 31], which separates the integral into two components,

Ls(ωo, a,m, r, n) ≈
∫
Ω

fs(ωi, ωo)(ωi · n)dωi ·
∫
Ω

Li(ωi)D(ωi, ωo)(ωi · n)dωi, (3)

where the first term can be precomputed using a,m, r and stored in a look-up table. The second term
can be queried from a set of learnable environment cubemaps using reflected direction and r.

Similar to reflective Gaussian methods [20, 56], we decouple the diffuse component cd and the
specular component Ls, assigning the prediction of cd to Gaussian rasterization. Unlike classical
graphics pipelines that jointly infer diffuse and specular terms from albedo and roughness [31, 14],
we find that such a design significantly increases optimization difficulty, especially in complex real-
world scenes. Moreover, since the diffuse component is relatively insensitive to viewing direction,
delegating its prediction to the Gaussians allows us to better disentangle reflection effects from
illumination.

3.2 Multi-view Consistent Material Inference

Current methods model scene reflections by learning a set of Gaussians associated with material
properties through PBR. The underlying assumption is that view-dependent specular variations can
be disentangled into view-independent material attributes, while evaluating the final view-dependent
appearance can be deputed to BRDF. However, this assumption often breaks down in practice,
as shown in Fig. 8 (a), where the learned material maps exhibit significant discontinuities and
inconsistency across different views. Since Gaussians cover different pixels and contribute varying
weights across viewpoints during alpha blending, material parameters exhibit significant inconsistency
from different perspectives. This inconsistency hampers accurate illumination decomposition, as
the BRDF struggles to infer a global physical reflectance effect from such inconsistent material
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Figure 2: Overview of our method. We learn illumination decomposition by imposing multi-view
material consistency constraint and reflection strength prior supervision on the rasterized material
maps (Sec. 3.2). To facilitate this process, we introduce an environment modeling strategy through
ray tracing with 2DGS, which effectively captures photorealistic incident lighting effects (Sec. 3.3).
observations. To overcome this obstacle, we propose to learn illumination decomposition by exploring
multi-view consistent geometric clues as material inference constraints and guidance.

Multi-view Material Consistency. Based on the above analysis, we constrain the 2D Gaussians to
produce multi-view consistent material maps, which is essential for accurate light-object-environment
interactions inference. Specifically, for a surface point p visible from both viewpoint vi and vj ,
we want the projection π(p) of p on the two material maps Ψi(πi(p)),Ψj(πj(p)) to be the same.
Drawing inspiration from multi-view stereo methods [8, 6], we impose constraints on plane patches
between adjacent views. We first sample a 7× 7 pixel patch P (πi(p)) around πi(p), back-project
it into 3D space along vi using the rendered depth di at πi(p), rotate it with the rendered normal at
πi(p), and reproject it into Ψj using the rendered depth at πj(p), to form a warped patch P ′(πj(p)),

P ′(πj(p)) = HijP (πi(p)), Hij = Kj(Rij −
Tijn

T
i

di
)K−1

i , (4)

where Ki,Kj are the intrinsic parameters of camera vi and vj , Rij , Tij , Hij denote the relative
rotation, relative translation and homography matrix from vi to vj , respectively. We then enforce
consistency between the two patches on the material maps using an MSE loss,

Lmv = ∥Ψi[P (πi(p))]−Ψj [P
′(πj(p))]∥2. (5)

In practice, we once select one reference view along with multiple source views, warp the patch from
the reference view to each source view, and compute a loss for every reference–source patch pair.
The multi-view material consistency constraint is imposed to diffuse, roughness and metallic maps
ΨCd ,ΨR,ΨM . We do not use this constraint on the albedo map ΨA, since albedo contributes little to
most non-reflective surfaces, and enforcing consistency is ineffective and potentially harmful.

Multi-view Consistent Reflection Strength Prior. Multi-view consistency on material maps alone is
insufficient to provide clear guidance for illumination decomposition. Based on the observation that
highly reflective surfaces exhibit significantly different appearances across different viewpoints [3, 13],
we explore multi-view photometric variations as explicit supervision for reflection strength. We
first apply luminance normalization [54] on the ground truth RGB images to eliminate brightness
inconsistencies caused by shadows and textures. As illustrated in Fig. 3, given a reference view
vr, we select M nearby views {vni}Mi=i along the camera trajectory. For each pixel (u, v) in vr, we
sample a 3 × 3 patch Pr(u, v) and warp it into the near views as {P ′

ni(u, v)}Mi=1 using Eq. 4. We
then compute the averaged per-pixel variance among these patches as a reflection score for vr, using
standard deviation,

refscore =
1

9

∑
(x,y)∈Pr(u,v)

std(Ψr[Pr(u, v)],Ψn1[P
′
n1(u, v)], ...,ΨnM [P ′

nM (u, v)]), (6)
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Figure 3: Illustration of computing reflection strength priors.

where Ψ denotes the nor-
malized RGB image and
std(·) is a per-pixel standard
deviation operator. Since
the reflected environments
on the images may appear
similar from certain view-
ing angles, the obtained per-
view reflection scores are
often inconsistent, as shown
in Fig. 3 (a). To address this,
we further introduce a spa-
tial reflection fusion mod-
ule to aggregate multi-view
reflection scores. We back-
project the per-view reflec-
tion scores into 3D space us-
ing depth maps to form a
reflection score point cloud.
For each query pixel, we
perform a ball query [40]
around its back-projected
3D location within the point
cloud and compute the averaged top-K scores, thus yielding the final reflection strength prior wref ,
as illustrated in Fig. 3 (b). The prior indicates how likely the surface has a high reflection strength,
therefore can serve as a weight of the constraint on material maps ΨM ,

Lref (u, v) =

{
wref · Γ(u, v) · |M0(u, v)−ΨM (u, v)| if ΨM (u, v) < M0

0 if ΨM (u, v) ≥M0
, (7)

where M0(u, v) is a pre-computed target value, and Γ(u, v) is a binary mask indicating whether
the supervision is applied at pixel (u, v). To adapt our constraint to centric scene structures, we
extract foreground masks using [12] and segment them into semantically meaningful regions using
SAM2 [42]. For each region, Γ(u, v) is set to 1 if the averaged reflection prior wref of all pixels in
the region exceeds a threshold, and 0 otherwise. The target metallic value M0(u, v) is determined
according to the averaged metallic value within each region. In a word, if a region more likely
corresponds to a highly reflective surface, we apply a constraint that encourages higher metallic
values for these pixels, as illustrated in Fig 3 (c). The intensity of the constraint is controlled by
wref , allowing the supervision to be adaptively modulated based on our confidence of the surface
reflectivity. Similar observations were discussed in [24, 56, 53], where highly reflective surfaces are
often reliably identified early during the optimization.

Normal Prior. We also incorporate monocular normal priors obtained by a pre-trained network [57]
to supervise the normals rendered by 2DGS. We find it to be an effective cue for scene geometry
inference during the early training stage.

3.3 Environment Modeling through Ray Tracing

When using split-sum approximation to model the specular illumination in Eq. 3, an incident light ωi

fails to retrieve a plausible radiance from the environment map if it is occluded by other objects in the
scene. To address this issue, we decompose the incident radiance into direct and indirect components,
and introduce an occlusion probability O(ωi) ∈ [0, 1] indicating how likely ωi is occluded,

Li(ωi) = Lindirect(ωi) + (1−O(ωi)) · Ldirect(ωi). (8)

The direct lighting Ldirect(ωi) can be obtained by querying a learnable environment map using the
reflected direction and roughness. The environment map is a mip-mapped cubemap constructed
with multiple roughness levels. To estimate the color of the indirect light which is occluded by
other objects, we perform a Gaussian ray tracing [53]. Starting from a surface point, we trace a ray
along the reflected direction and identify all intersected Gaussians, where each Gaussian has been
transformed into a Bounding Volume Hierarchy (BVH) with two triangles. The intersected Gaussians
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Table 1: Numrical evaluations on all four datasets. Best results are highlighted as 1st , 2nd , 3rd .
Datasets ShinyBlender [47] GlossySynthetic [33] Ref-Real [47] Mip-NeRF 360 [1]

Methods PSNR↑ SSIM↑ LPIPS↓ MAE◦ ↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
RefNeRF [47] 33.13 0.961 0.080 18.38 25.65 0.905 0.112 23.62 0.646 0.239 - - -
ENVIDR [30] 32.88 0.969 0.072 2.74 29.06 0.947 0.060 23.00 0.606 0.332 - - -
3DGS [22] 30.37 0.947 0.083 - 26.01 0.886 0.089 23.85 0.660 0.230 27.21 0.815 0.214
GaussianShader [20] 31.94 0.957 0.068 7.00 27.11 0.922 0.082 23.46 0.521 0.257 - - -
2DGS [18] 29.58 0.946 0.084 - 26.07 0.918 0.088 24.15 0.661 0.292 27.03 0.805 0.223
3DGS-DR [24] 33.94 0.971 0.059 2.62 29.49 0.952 0.054 23.99 0.664 0.229 26.44 0.796 0.249
Ref-Gaussian [56] 35.04 0.973 0.056 4.59 30.08 0.957 0.050 24.61 0.685 0.252 26.62 0.781 0.272
EnvGS [53] 33.83 0.969 0.066 6.36 28.17 0.938 0.067 24.62 0.671 0.241 27.36 0.799 0.222
Ours 35.57 0.976 0.049 2.04 30.83 0.962 0.046 25.04 0.703 0.185 27.06 0.809 0.181

GaussianShader Ref-Gaussian3DGS-DR EnvGS Ours Ground Truth

Figure 4: Visual comparisons on Synthetic Datasets. Our method successfully recovers fine-grained
reflections on the helmet, as well as inter-reflection effects on the teapot.

are depth-sorted, and a splatting is performed to compute both the accumulated transmittance, denoted
as O(ωi), and the resulting lighting of the indirect illumination, denoted as Lindirect(ωi),

Lindirect(ωi) =

N∑
i=1

cd ∗ oi ∗ pi ∗
i−1∏
j=1

(1− oj) + cr, O(ωi) =

N∑
i=1

oi ∗ pi ∗
i−1∏
j=1

(1− oj), (9)

where N is the number of the intersected Gaussians during ray tracing. We also incorporate a residual
term cr in the indirect radiance to account for noise and higher-order lighting effects [58, 56]. The
ray tracing procedure naturally handles both occluded and unoccluded cases, where unoccluded rays
yield Lindirect(ωi) = O(ωi) = 0. Therefore, we only need one ray tracing pass and one environment
query to obtain the full incident radiance. Compared to Ref-Gaussian [56] which relies on an offline
binary visibility indicator to separate direct and indirect terms and estimates indirect light solely
through a residual color, our method evaluates occlusion in a fully differentiable manner. Moreover,
this design allows Gaussians to participate in environment illumination modeling and be jointly
optimized, leading to more physically grounded modeling and improved generalization.

3.4 Optimization

We train our method for a total of 30k iterations. We begin by training a 2DGS [18] with normal
priors during the first 3k iterations to ensure geometric stability. After that, we incorporate PBR
and our environment illumination modeling into the training process. At 10k iteration, we remove
the normal prior to avoid potential bias from inaccurate predictions, and introduce our multi-view
regularization terms. We also adopt normal propagation [24, 56] to propagate reliable normals to
neighboring Gaussians for consistency and stability. The loss function can be written as

L = Lc + λn−dLn−d + λnLn + λmvLmv + λrefLref , (10)
where Lc = 0.8 ∗ Lrgb + 0.2 ∗ LD−SSIM is the photometric loss commonly used in Gaussian-
based methods [22, 56], Ln−d denotes the depth-normal consistency loss used in 2DGS [18], and
Ln = |1−NT N̂ | is the normal prior loss. Lmv,Lref correspond to our multi-view consistency loss
(Eq. 5) and reflection strength loss (Eq. 7), respectively.

4 Experiments

4.1 Experiment Settings

Datasets & Metrics. We evaluate the performance of our method on widely used benchmarks,
including two synthetic datasets, ShinyBlender [47] and GlossySynthetic [33], as well as two real-
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GaussianShader Ref-Gaussian3DGS-DR EnvGS Ours Ground Truth

Figure 5: Visual comparisons in real-world Ref-Real [47] dataset. Our method accurately reconstructs
reflection textures from surrounding environments on highly reflective surfaces.

Ref-Gaussian3DGS-DR EnvGS Ours Ground Truth

Ours Normal

Ours Normal

3DGS

Figure 6: Visual comparisons in real-world Mip-NeRF 360 [1] dataset. Our method faithfully
reconstructs highly reflective surfaces, such as the aluminum bowl and the metal plate.

world datasets, Ref-Real [47] and Mip-NeRF 360 [1]. All of these datasets contain challenging
scenes with prominent reflective surfaces. To evaluate the quality of novel view synthesis, we report
PSNR, SSIM [49] and LPIPS [59]. We also evaluate the accuracy of the predicted normals using
Mean Angular Error (MAE).

Baselines. We compare our method with the state-of-the-art reflection modeling methods, including
NeRF-based methods: Ref-NeRF [47], ENVIDR [30], as well as GS-based methods: 3DGS [22],
GaussianShader [20], 2DGS [18], 3DGS-DR [24], Ref-Gaussian [56] and EnvGS [53].

4.2 Comparisons

Comparisons on Synthetic Dataset. We first evaluate our method on two synthetic datasets,
ShinyBlender [47] and GlossySynthetic [33], and report the numerical results in Tab. 1, where
we achieve the best performance across all metrics on both datasets. We further provide visual
comparisons in Fig. 4, where our method accurately captures the environment reflections on the
helmet. In addition, our approach effectively models secondary light reflections, such as the self-
reflection of the teapot lid knob on the metallic lid, which benefits from our environment modeling.
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Figure 9: Ablation study on normal prior
and environment modeling.

Comparisons on Ref-Real Dataset. We also report quantitative comparisons on the real-world
dataset Ref-Real [47] in Tab. 1, where our method consistently achieves state-of-the-art performance
across all metrics. Visual comparisons in Fig. 5 show that our method accurately reconstructs the
reflection textures from the surrounding environments on highly reflective surfaces, such as tree
branches reflected on car windows and ground seams reflected on the metallic sphere.

Comparisons on Mip-NeRF 360 Dataset. We further evaluate our method on the more challenging
real-world dataset Mip-NeRF 360 [1], as reported in Tab. 1. Existing reflective 3DGS methods
often show degenerated performance on such complex environments with few reflective surfaces. In
contrast, our method achieves competitive results and outperforms all baselines in terms of LPIPS,
highlighting our strong generalization ability. Visual comparisons are provided in Fig. 6, where our
method faithfully recovers highly reflective surfaces such as the aluminum bowl and the metal plate,
which even remain difficult for existing GS-based reconstruction methods.

Comparisons of Illumination Decomposition. To validate the effectiveness of our illumination
decomposition, we visualize the decomposed material components and the learned environment
maps on GlossySynthetic dataset [33], as shown in Fig. 7. Note that our method cannot be directly
compared with inverse rendering methods [11, 31, 21], as the illumination modeling approaches are
much different.

4.3 Ablation Study

Effectiveness of Each Module. We conduct ablation studies to evaluate the effectiveness of each
module in our framework on both synthetic and real-world datasets. We start by analyzing the
multi-view material inference strategies. Without any strategies, the result (Fig. 8 (a), “w/o Lmv , w/o
Lref” row in Tab. 2) show inconsistent material maps and weak reflections. Introducing Lmv makes
the multi-view material maps uniform and consistent, leading to clearer reflections on the top of the
sphere (Fig. 8 (b), “w/ Lmv, w/o Lref” row in Tab. 2). Further adding Lref improves the metallic
in textureless reflective regions, making subtle reflections like ground seams more visible (Fig. 8
(c), “Full Model” row in Tab. 2). We also ablate the environment modeling strategy by removing ray
tracing, relying on residual color and environment map to overfit incident illumination. This causes
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Table 2: Ablation study on each one of our modules.

Datasets ShinyBlender [47] Ref-Real [47]

Models PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
w/o Lmv , w/o Lref 34.87 0.972 0.055 24.24 0.655 0.260
w/ Lmv , w/o Lref 35.21 0.975 0.051 24.47 0.670 0.242
w/o Ln 35.37 0.975 0.050 24.39 0.672 0.229
w/o Environment 34.69 0.976 0.049 24.76 0.681 0.199
Full Model 35.57 0.976 0.049 25.04 0.703 0.185

noticeably blurred reflections in inter-reflection regions (Fig. 9 (b), “w/o Environment” row in Tab. 2).
Lastly, removing the normal prior from full model leas to degenerated geometry and color (Fig. 9 (a),
“w/o Ln” row in Tab. 2).

Table 3: Ablation study on normal prior.
Models MAE↓ CD↓
w/o Ln, w/o Reg, w/o Env 3.47 0.94
w/o Ln 2.59 0.68
Full Model 2.04 0.60

Normal Prior. To evaluate the necessity of the
normal prior, we conduct ablation studies on
ShinyBlender dataset [47] under three experi-
mental settings: Full Model, Full model with-
out normal prior (w/o Ln), Full model without
normal prior, material regularization and envi-
ronment modeling (w/o Ln, w/o Reg, w/o Env).
We report the normal accuracy in Tab. 3 using
MAE, as well as the geometric reconstruction accuracy compared with ground truth meshes using
Chamfer Distance (CD). The results indicate that, beyond the normal prior, our material regularization
and environment modeling also contribute significantly to geometry learning. This is because both our
material constraints and environment modeling are differentiable to the depth and normal, enabling
end-to-end joint optimization of geometry, appearance, and material properties for improved overall
performance.

5 Conclusion

We propose MaterialRefGS, a novel approach that learns multi-view illumination decomposition for
reflective gaussian splatting through multi-view consistent material inference. To this end, we enforce
the Gaussians to produce consistent material maps across different views, and explore reflection
strength priors from photometric variants to provide explicit supervision for specular reflectance
modeling. We also introduce a novel environment modeling strategy based on Gaussian ray tracing,
which compensates for the indirect illumination caused by inter-object occlusion. Extensive ablation
studies justify the effectiveness of our proposed modules, loss functions, and training strategies. Our
evaluations show our superiority over the latest methods in rendering photorealistic novel views and
recovering accurate geometry.
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