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Abstract—A new visibility graph-based algorithm is presented for computing the

inner distances of a 3D shape represented by a volumetric model. The inner

distance is defined as the length of the shortest path between landmark points

within the shape. The inner distance is robust to articulation and can reflect the

deformation of a shape structure well without an explicit decomposition. Our

method is based on the visibility graph approach. To check the visibility between

pairwise points, we propose a novel, fast, and robust visibility checking algorithm

based on a clustering technique which operates directly on the volumetric model

without any surface reconstruction procedure, where an octree is used for

accelerating the computation. The inner distance can be used as a replacement

for other distance measures to build a more accurate description for complex

shapes, especially for those with articulated parts. The binary executable program

for the Windows platform is available from https://engineering.purdue.edu/

PRECISE/VMID.

Index Terms—Inner distance, visibility graph, articulated shape descriptor,

volumetric models.
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1 INTRODUCTION

DESCRIPTION and understanding of 3D shapes play a central role in
computer vision, computer graphics, and pattern recognition. One
of the principal challenges faced today is the development of shape
descriptors with new capabilities. The simplest and most widely
used shape descriptor may be based on the distance measure
between sampling point pairs on shape surfaces, typically, which
measures the euclidean distance (ED) or geodesic distance (GD).
However, neither the euclidean distance nor the geodesic distance
reflects shape articulation well. This paper presents a new
visibility graph-based algorithm for computing and applying the
inner distances (IDs) [1] in a 3D articulated shape represented by a
volumetric model. One advantage of using the inner distance is
that it is robust to articulation and it reflects the shape structure
and deformation well without an explicit decomposition.

A shape descriptor is a concise representation of a shape and

captures some of its essence [2]. After the descriptors are extracted

from 3D geometric objects, they are compared in order to

determine the shape similarity instead of comparing the full 3D

models. Shape descriptors can be roughly classified by their

invariance with respect to different shape transformations [2], [3],

[4]. One class of shape descriptors, called extrinsic shape descriptor,
captures some rigid-body-transformation invariance of global
geometric properties (e.g., scale, translation, and rotation). These
techniques include shape distribution (SD), moment invariance,
spherical harmonic descriptor (SHD), 3D Zernike descriptor, etc.
[5], [6], [7], [8]. Most existing methods are only effective for
comparing 3D rigid objects, but they cannot handle the deformed
shapes of flexible objects well. However, many 3D objects, such as
living objects and molecules, are flexible and their spatial
arrangement or pose may change.

Another class of shape descriptors, called an intrinsic shape
descriptor, is invariant with respect to isometric transformation or
articulated deformation. These descriptors do not change with
isometric embedding or articulation of the shapes. Several recent
works have been developed for this purpose based on geometric
or topological attributes of the shape or both [2], [4], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. Some methods focus on topology or
graph comparison [11], but the graph extraction process is often
very sensitive to local shape changes and noise. Several
techniques take into account the local features on the boundary
surfaces of a shape [13]. In particular, Gal et al. [2] proposed the
local diameter shape signature by computing the distance from a
boundary surface to its medial axis. Other methods have been
proposed for partial shape matching [18], [19]. However, many
times, the local and partial methods do not provide a good
description of the overall shape [2]. Some recent studies have also
dealt with nonrigid shape matching using diffusion distance, heat
kernels, and spectral approaches [10], [16], [17], which consider
topological changes of surface deformation.

Measuring the distance between sampling point pairs on
surfaces of shapes is a fundamental problem. Here, we compare
three representative distances: euclidean distance (ED), geodesic
distance (GD), and inner distance (ID). The ED descriptor [7] (or
D2) is usually represented by a histogram of distance values, but it
cannot handle the deformed shapes well. An alternative way [4],
[20], [21] is to replace ED by GD, which is defined as the length of
the shortest path on the surface between sample points. Elad and
Kimmel [4] presented a bending invariant descriptor for surface by
combining GD and multidimensional scaling. Hamza and Krim
[22] used GD for classification of 3D mesh models instead of ED in
shape distributions. Ruggeri and Saupe [21] used a similar idea for
matching point set surfaces. Bronstein et al. [20] applied GD for
isometry-invariant partial surface matching. Although GD is
insensitive to surface bending, it is weak in discriminating power
for handling articulated objects [1], [2], [9], [23].

Ling and Jacobs [1], [23] recently proposed an algorithm for
computing and applying the inner distances for building new 2D
shape descriptors. ID is robust to articulated deformation and it is
more effective at capturing shape structures than either ED or GD.
Based on [23], Biswas et al. [24] proposed a framework for 2D
shape indexing and retrieval. Liu and Zhang [25] embedded a
surface mesh in 3D into a planar contour and then computed
pairwise inner distances between sample points along the 2D
contour using [23]. Bronstein et al. [9] analyzed 2D articulated
shapes with inner distances. More recently, Rustamov et al. [14]
introduced the interior distance between two points inside the
mesh, which is obtained by propagating the boundary distance
into the interior using barycentric coordinates.

Here, we present a new method for computing the inner
distances for a 3D shape represented by a volumetric model. One
common way to compute pairwise inner distances between 2D
contour points is to first construct a visibility graph, and then find
the shortest path in the graph as the inner distance [1], [23], [25].
We follow a similar way for computing the inner distances for 3D
shapes. Our work can be considered as an extension of computing
the inner distances from 2D to 3D based on the visibility graph
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approach. One of the main difficulties that we have overcome was
checking the visibility between sample points of the volumetric
model for constructing a visibility graph. To resolve this problem,
we propose a novel, fast, and robust visibility checking algorithm
based on a clustering technique which operates directly on the
volumetric model without any surface reconstruction procedure.

2 PRELIMINARIES

2.1 Definition and Properties

We extend the definition of inner distance within a 2D silhouette
[1] to a 3D solid. Let O be a 3D object as a connected and closed
subset of IR3.

Definition 1 (Inner Distance). Given two points x;y 2 O, the inner
distance between x and y, denoted as dðx;y;OÞ, is defined as the
length of the shortest path connecting the two points within O.

When O is convex, the inner distance reduces to the euclidean
distance. Apparently, the inner distance is invariant to rigid
transformation. The general problem of computing the inner
distance is quite complicated, and we make some simplifying
assumptions. When there are multiple shortest paths, we arbi-
trarily choose one. In practice, we are interested in the shape of O,
which is defined by its boundary surface, denoted by @O.
Therefore, we restrict landmark points sampled on the boundary
surface @O. Fig. 1 illustrates the inner distance.

2.1.1 Articulation Insensitivity of Inner Distance

One appealing feature of the inner distance is articulation
insensitivity. In this work, we consider O as a model of an
articulated object. Intuitively, O is an articulated object if 1) O can be
decomposed into several rigid parts connected by flexible junctions,
and 2) the junctions between parts are very small compared to the
parts [1]. Let � be a transformation that changes the pose of an
object O. � is roughly considered as articulated transformation if the
transformation of any part of O is rigid (rotation and translation
only) and the transformation of the junctions can be nonrigid. This
preserves the topology between the articulated parts. Intuitively,
the inner distance reflects the shape structure and articulation well
even without explicitly decomposing the shapes into parts. Ling
and Jacobs [1] have proven that the inner distance is insensitive to
articulated transformation of O by decomposing O into some rigid
parts connected by junctions, where the change in the inner
distance only depends on the size limitation of the junctions. Since
we assume that the junctions of an articulated object O should have
relatively small sizes compared to O, the relative change in the
inner distance is very small too.

2.1.2 Comparison with Motion Planning

The inner distance path discussed in this paper shows some
similarities to the shortest path in the motion planning problem, which

typically finds the collision-free shortest path between two points in
a closed space [27]. But, unfortunately, computing the shortest path
within a 3D polyhedron is an NP-hard problem. Numerous
methods have been developed to deal with this problem, such as
the visibility graph, potential field, Voronoi diagram, and cell
decomposition, most of which are only effective in 2D. In contrast
with the classical motion planning problem with polyhedral
obstacles, there are some new challenges in computing the inner
distances for shape description. The 3D objects discussed between
the motion planning problem and our application are distinct. In
shape retrieval, many polygonal mesh models may contain holes,
intersecting polygons, or be nonmanifold, and do not enclose a
volume unambiguously. In comparison to 3D motion planning,
which solves an entirely collision-free shortest path between one
pair of points, the presented inner distances demand relatively
short computation time between all sample point pairs, and an
approximate solution is acceptable. These observations lead to
demand for other shape representations that enclose an unambig-
uous volume and are effective in computing the inner distances.

2.2 Volumetric Models

To avoid the effect of “polygon soups” in inner distance
computation, we have chosen the volumetric models instead of
polygonal meshes. Note that our method does not handle these
situations of polygon soups since it relies on a voxelization
procedure to repair the models and make them watertight. In
contrast, the volumetric representation encloses a volume properly
and allows computation that is more robust to noise and
perturbations [28]. The volumetric data are also common to many
applications in medical scanners (e.g., CT and MRI), scientific
simulations (e.g., CFD) [29], computational biology, and shape
signatures [8], [30], [31], [32], [33]. We consider the input data as a
volumetric/voxelized representation of a 3D shape, which can be
regarded as an approximation of the volume enclosed by a
polygonal mesh. A volumetric model is represented as a uniform
3D lattice consisting of object points O and background points O.
We denote the boundary surface of O by @O. Fig. 2a shows all
boundary points of @O colored in light gray. Our method is also
suited to other shape representations through converting them into
volumetric forms using some free software, such as PolyMender
[34]. Volumetric data are generated by placing a 3D shape into a
3D cubic grid, where each lattice point is assigned either 1 or 0: 1
for object points O and 0 for background points O.

2.3 The Visibility Graph

We have chosen the visibility graph for approximating the inner
distance path, where the visibility graph is constructed by the links
connecting the visible nodes. The shortest path between two given
nodes goes through arcs of the visibility graph. Many works in 2D
and 3D motion planning find the shortest path based on the
visibility graph approach [27]. The key to constructing a visibility
graph is to check the visibility between two nodes, which means
that two nodes are connected in a graph if the corresponding
points can see each other. For our purpose, we define the visibility
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Fig. 1. The red dashed lines that connect two landmark points x and y denote
the shortest paths within the molecular shapes. The right object is an articulated
deformation to the left one, and the relative change of the inner distance
between the corresponding pair of points (x and y) is small during articulated
deformation [26].

Fig. 2. Illustration of computing the inner distances. (a) All boundary points of the
volumetric model of a fertility are colored in light gray. (b) The shape with
500 uniform sample points (red color) and their inner distances (green lines).
(c) The magnified views. Note that the inner distances capture the shape,
especially for some holes.



between two sample points within a 3D object. In the 2D case, the

visibility is easy to solve by intersecting the line segment

connecting the source and target points with the 2D polygon

contour [1], [23], [27]. However, it is a nontrivial task to check the

visibility for a 3D volumetric model.
The visibility between two points has been widely researched

in motion plan and computational geometry [27]. Several recent

works have discussed the visibility in discrete geometry based on a

volumetric representation [30]. However, most of these algorithms

focus on the visibility outside a given object. In our case, the

problem is quite different, where we want to decide if there is at

least one path inside the object. Soille [35] defined the visibility

between two points using the Bresenham digital line drawing

algorithm. Coeurjolly et al. [36] presented a discrete definition of

the classical visibility based on digital straight lines. Many existing

techniques determining the visibility between two points are based

on tracking the neighborhood from the starting point to the target

one [30], [36], which becomes more complex than in 2D and the

computational cost is high in 3D. The reader may consult [36] for a

review of related work. In this paper, we present a fast algorithm

for checking visibility based on a clustering idea.

3 COMPUTING THE INNER DISTANCE

The outline of an algorithm for computing an approximation of

volumetric model inner distances (VMID), is given below.

Algorithm 1. (VMID)

1. Sample k points S ¼ fp1; . . . ;pkg on the boundary surface @O

of O using k-means clustering.

2. Define a visibility graph G over all sample points by

connecting points pi and pj in S if pi and pj are visible,

and an edge between pi and pj is added to the graph

with its weight equal to the euclidean distance kpi � pjk.
3. Compute the inner distance by applying a shortest path

algorithm to the graph G.

4. (Optionally) Build the shape descriptor of O as the

histogram of values of inner distances.

An example for illustrating the inner distance computation is

shown in Fig. 2.

3.1 Sample Points

The input volumetric model consists of a point array. If all points

of the boundary surface @O are utilized for the final inner distance

computation, this will increase the storage and computing costs.

Therefore, we first sample points from @O. One issue of concern is

the sample density. The more samples we take, the more

accurately and precisely we can reconstruct the shape. However,

a large number of sample points increases the storage and

computation costs, so there is an accuracy/time trade-off in the

choice of the number k of sample points. In our experiments, we

have found that using k 2 ½300; 1;000� yields shape distributions

with low enough variance and high enough resolution to be useful

for our initial experiments. A second issue is the sampling method.

We implement two sampling methods: random sampling and

k-means clustering-based sampling. Random sampling cannot

yield a good approximation. We use Lloyd’s algorithm of k-means

clustering for obtaining the uniform clusters of boundary points

[37]. The point in each cluster which is nearest to its centroid is

chosen as the representative sample point. Other nonuniform point

clustering techniques such as curvature-adaptive clustering [38]

can also be applied to our work by restricting different stopping

criteria, but this leads to an increase in computation time.

3.2 Visibility Check

A crucial part for defining a visibility graph G is to check the

visibility between all pairwise points. To address this problem,

we present a novel, fast, and robust visibility check algorithm

based on a clustering technique that does not require any surface

reconstruction. In some sense, our clustering idea can be

considered as an extension of the ray tracing routine [39] which

directly computes the intersection of a ray and a point cloud by

intersecting a cylinder around the ray with the point cloud. Then,

the intersection is computed as a weighted average of the points

that are inside the cylinder. However, [39] only finds one of the

intersection points. We extend their method based on a

clustering technique. Unlike the previous intersection approaches

[39], [40], our algorithm does not reconstruct or approximate a

surface from a point cloud while finding all intersection points.

A similar clustering idea has appeared in our previous work [41]

for computing the area of a point-sampled surface. In [41], a

major drawback is that the intersection problem is strongly

dependent on the normal vectors of points on the boundary

surface. In contrast, the visibility check algorithm presented in

this section is normal-free. The procedure is described as follows

(see Fig. 3).

Algorithm 2. (Visibility Check)

1. Collect the boundary points of @O inside a cylinder

around a line segment ‘‘‘‘ connecting two sample points pi
and pj.

2. Cluster the collected points by projecting them onto the

line segment ‘‘‘‘.

3. Classify the clusters for checking the visibility.

3.2.1 Collecting Inclusion Points

We consider a cylinder around ‘‘‘‘ with the radius r (see Fig. 3b). To

determine r, we need to obtain the density of the point set @O, where

the density is the maximum size of a gap in @O. Suppose that d is the

edge length of a voxel and it usually is set as a unit value (i.e., d � 1),

then the longest distance in the neighborhood around a voxel is
ffiffiffi

3
p

d.

Therefore, the density radius is chosen as
ffiffiffi

3
p

d in this paper.

Typically, we choose r ¼
ffiffiffi

3
p

d as the radius of the cylinder for

obtaining sufficient intersection points and less time. We call these

points of @O inside the cylinder, the inclusion points.
Octree construction. To speed up searching for the inclusion

points, we use octrees described in [42]. Assuming that an octree is

constructed for @O, we classify the cells of the octree as two types:

boundary cells containing points of @O, and empty cells containing

no point of @O. Let Cb ¼ fCig be a set of boundary cells, where Ci is

the ith boundary cell. If ‘‘‘‘ does not intersect with Ci, we continue

looking for another boundary cell until the intersection yields. All

points of @O within the cylinder that intersects the cells Ci are

collected as inclusion points of ‘‘‘‘ with @O, as shown in Fig. 4.
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Fig. 3. Illustration of the visibility check for a 2D model. (a) The input point array
(blue points) sampled from a camel image with extracting the border (black
points). (b) Collect the inclusion points that are inside a cylinder (gray) around a
line segment connecting two sample points (red). (c) Cluster the inclusion points,
where each cluster is highlighted in a circle.



3.2.2 Clustering by Projection

After collecting the inclusion points, we then cluster them (see
Fig. 3c) for counting the number of intersection points. Clustering
methods are widely used in computer graphics to reduce the
complexity of 3D objects. For instance, Pauly et al. [38] used
region-growing and hierarchical clustering methods to simplify
point clouds. Unlike [38], our clustering method maps 3D points
into 1D parameter coordinates by projecting the inclusion points
into the line segment ‘‘‘‘. Suppose that fqig � @O is a set of
inclusion points of ‘‘‘‘ and @O. We first project each point qi onto ‘‘‘‘,
and get one corresponding parameter ti 2 IR. Hence, we obtain a
set ftig of parameters. Second, the set ftig is sorted in increasing
order. Here, we suppose below that ftig has already been sorted.
Finally, we build the clusters by ftig as described below. Starting
from the minimal parameter of ftig, a cluster Q0, which is a set of
some inclusion points in fqig, is built by comparing the distance
of adjacent parameters. This cluster is terminated when the
distance of two adjacent parameters is larger than a maximum
bound (we typically choose 1:5d as the bound). Then, starting
from the terminated parameter, the next cluster is built repeti-
tively. Clustering is terminated until the maximal parameter is
reached. The center of each cluster can be regarded as one
intersection point. After classifying the clusters, we choose the
number of resultant clusters as the number of intersection points.
An upper bound of the running time to the clustering between
two sample points pi and pj is Oðm logðmÞÞ because of sorting 1D
parameter coordinates of inclusion points, where m is the number
of total boundary points @O. Fig. 4 shows the procedure for
building clusters by projection.

3.2.3 Classifying Clusters for Checking Visibility

According to the number of clusters, we classify the intersection
into the following three cases: 1) containing only one intersection
point (visibility), 2) containing two intersection points (visibility/
invisibility), and 3) containing more than two intersection points
(invisibility). For case 1, where the number of intersection points is
only one, the line segment ‘‘‘‘ connecting pi and pj is coincident
with the boundary surface @O, and we consider this case as
visible. For case 3, where the number of intersection points is more
than two, pi and pj are classified as invisible. For case 2, pi and pj
are either visible or invisible. Either the line segment ‘‘‘‘ falls
entirely inside the given shape O or ‘‘‘‘ (except the two endpoints)
falls outside O. To distinguish between inside or outside, we
compute the midpoint of pi and pj and check the density value of
the closet neighbor lattice point of the midpoint. If the density
value is nonzero, pi and pj are visible; they are invisible,
otherwise. After all pairs of sample points are checked for
visibility, we can define the graph G.

3.3 Computing the Shortest Path

We estimate the inner distances between all sampling point pairs
by computing their shortest paths. Algorithms for finding the
shortest paths in a graph are well known. For example, Hilaga et al.
[11] measured the geodesic distance on a triangulated surface by
the Dijkstra graph search algorithm. Elad and Kimmel [4] used the
fast marching on triangulated domains. Here, we choose Dijkstra’s
algorithm to compute the inner distances between all sampling

points in the visibility graph G. Dijkstra’s algorithm is a graph
search algorithm that solves the single source shortest path
problem for a graph. The time complexity is Oðk3Þ for k sample
points. In order to implement Dijkstra’s algorithm more efficiently,
Fibonacci heap is used as a priority queue. We use the code
package of Dijkstra’s algorithm [43].

Now we convert a set of inner distances to a shape descriptor
in a similar manner to shape distribution [2], [7]. Given k sample
points, the number of inner distances of the shape is at most k2=2.
Specifically, we evaluate k2=2 inner distance values from the shape
distribution and construct a histogram by counting how many
values fall into each of the fixed sized bins (we typically choose
128 bins). Empirically, we have found that using k ¼ 500 samples
and 128 bins yields shape descriptors with low enough variance
and high enough resolution to be useful for our experiments.

Computational complexity. We assume that the input volu-
metric object O consists of n object points, where @O contains
m boundary points (m� n). An upper bound of the running time
to check the visibility between one pair of sample points is
Oðm logðmÞÞ, as discussed before. As a result, the complexity of
visibility check between all pairs of sample points is Oðk2m logðmÞÞ
for k sample points on @O (k � m). After the graph is ready, the all-
pair shortest path algorithm, known as Dijkstra’s algorithm,
requires Oðk3Þ. The time complexity of this algorithm, using
Fibonacci heaps in the implementation of Dijkstra’s algorithm, is
Oðk2 logðkÞ þ kjEjÞ, where jEj is the number of edges in the
visibility graph. For our inner distance computation, a great deal of
the running time is spent in the visibility check stage.

Alternatively, one can use the fast marching method (FMM) for
computing the inner distances on a volumetric model O, which
takes Oðkn lognÞ between all pairs of k sample points.

4 RESULTS AND DISCUSSION

We have implemented our algorithm in C++ and experimented
with a large number of volumetric models. All of the experiments
were run on a PC with Pentium Dual-Core 2.60 GHz CPU and
2G RAM, excluding the time for loading models. An axis-aligned
octree at depth 5 is constructed in the preprocessing step and this
procedure usually takes less than 0.5 seconds. We use 500 sample
points for approximating the inner distances of all models.

To show the ability of inner distances approximating 3D shapes,
we demonstrate our method on several artificial and scanned
models in Fig. 5. Each model is originally represented in polygonal
formats and converted into volumetric forms using PolyMender

[34]. Observe how the inner distances capture the holes for filigree
and elk. Table 1 gives the time in seconds for some volumetric
models referred to in this paper, where “n” is the number of object
points of the models, “m” is the number of boundary points, and
“k” is the number of sample points. For our test, our method is
around 20 times faster than FMM for some complex models, where
FMM was implemented using a Fibonacci heap.

To demonstrate the utility of deformation invariant descrip-
tors, we have developed a shape search system and tested this
system for several databases containing abundant articulated
deformation of living objects and molecules. In particular, many
molecules of interest are flexible and undergo significant shape
deformation as a part of their function, but most existing
methods of molecular shape comparison treat them as rigid
bodies [8], [44], which may lead to incorrect measures of the
shape similarity of flexible molecules. To address this issue, we
have applied the presented inner distance descriptors for
retrieving the Database of Macromolecular Movements (Mol-
MovDB) [26]. MolMovDB presents a diverse set of molecules that
display large conformational changes in proteins and other
macromolecules (see http://www.molmovdb.org/). The user
selects a 3D model from the database and the application
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Fig. 4. Cluster the inclusion points by projection, where r is the radius of a cylinder
around ‘‘‘‘ connecting two sample points, and the black points denote the inclusion
points inside the cylinder. We map each inclusion point qi into 1D parameter
coordinate ti 2 IR by projecting qi onto the line segment ‘‘‘‘.



computes the similarity measure for all models in the database.
To compare the effectiveness of the proposed descriptor, we
executed a series of shape matching experiments with three
different databases of 3D articulated models:

. ISDB [2] is a database of different articulated models of
animals and humans containing about 104 models.

. MolMovDB [26] is a database of different molecules with
large conformational changes classified into 214 groups
with a total of 2,695 PDB files.

. CDB is a union of the two previous databases.

We have precalculated all models in three databases. In general,

computing the inner distances for most query models does not

take more than 20 seconds. In all examples, the query time on a

large database took under a second. The ID descriptor is compared

with several known descriptors [6]: ED, GD, Shape Distribution,

Spherical Harmonic Descriptor, and Solid Angle Histogram (SAH)

in terms of the performance in retrieving similar shapes. We use

standard evaluation procedures from information retrieval,

namely, precision-recall curves, for evaluating the various shape

distance descriptors [45]. Precision-recall curves describe the

relationship between precision and recall for an information

retrieval method. A perfect retrieval retrieves all relevant models

consistently at each recall level, producing a horizontal line at a

precision ¼ 1:0. Fig. 6 shows the average precision-recall curves for

the ISDB, MolMovDB, and CDB. The detailed evaluation is given

in the supplemental material, which can be found in the Computer

Society Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2011.116. The results show that the ID method

performs better than other descriptors for flexible models in

the three databases. Surprisingly, the GD method performed
worse than the ED method in Figs. 6b and 6c. Although GD is
insensitive to surface stretching or tearing, it remains invariant to
all inelastic deformations, i.e., deformations that do not “stretch”
or “tear” the object, as long as the deformation preserves geodesic
(curve lengths) on the object boundary. From our experiments, we
also found that some molecules with one domain are often judged
as similar to others with two or three domains when using GD
descriptors. In the molecule database, GD cannot give good search
results compared to ED, as well. Fig. 7 demonstrates the variation
in precision-recall curves of ID with increasing sampling rates k 2
f50; 100; 200; 300; 400; 500; 1;000g for ISDB. The high sampling rate
(e.g., k � 300) performs better than the low one (e.g., k ¼ 50), while
performance variation is small when k > 500.

Comparison with GD. Natural articulated shapes, although
they belong to the nonrigid deformable shape category, have a
deformation freedom which is actually limited since each rigid
part can only rotate around a flexible junction. Therefore,
articulation can actually be considered as a decomposed rigid
transformation. If we assume the ideal case such that all junctions
are degenerate to single points, an articulation is a topology-
preserving map in which euclidean isometrically maps parts and
junctions. From this perspective, both GD and ID metrics are
insensitive to articulated deformation. Our argument for choosing
ID instead of GD is that, like ID, GD is invariant to articulations,
but GD is also invariant to broader classes of deformation (bends)
which preserve geodesic metric. The shape can be bent drastically
and ends up with significant structural changes in terms of
subparts or junctions. Therefore, GD is weak in discriminating
power for handling articulated objects. Fig. 8 illustrates our point
better, in which all five shapes are isometries in geodesic metric
space; therefore, using GD, they are indistinguishable. On the other
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TABLE 1
Computational Time

aT1 is the time for constructing an octree at depth 5.
bT2 is the time for computing inner distances with our method.
cT3 is the time for computing inner distances using FMM.

Fig. 6. Precision-recall curves computed with several known descriptors for three
databases.

Fig. 7. Variation with increasing sampling rates k.

Fig. 5. Visualizing the inner distances of three volumetric models with 500 sample
points each. Rows 1-3: filigree, elk, and neptune. Column a shows the original
surfaces of three models and column b shows the corresponding sample points
(red), while column c shows the paths of inner distances (green lines).

Fig. 8. Using GD, the above five shapes will have the identical pairwise boundary
geodesic distances. For articulated shapes, we assume they are composed of
different part structures and thus should have dissimilar shape descriptors. While
using ID, these shapes are distinguishable since the inner distance changes when
the part structures evolve.



hand, ID is more appropriate since it reflects the essential invariant
property for articulation. ID is in essence equal to ED inside each
part, while it remains unchanged for structure preserved subpart
rotation. It is meanwhile very sensitive to concavity/convexity
changes of shape. This makes ID superior to GD as an articulation
invariant shape representation.

Comparison with diffusion distance. Coifman and Lafon [46]
introduced diffusion maps and diffusion distances as a method for
data parameterization and dimensionality reduction. The diffusion
distance between two points in the point cloud involves the
average of all the paths connecting these two points (average
probability of traveling between the points). Some recent studies
[10], [14], [47] have applied the diffusion distance to shape
description. The diffusion distance is also a bending invariant
function. In contrast to the traditional distance measure (such as
ED or GD), which is defined as the length of a single path
connecting two landmark points, the diffusion distance is the
average of multiple paths between two points. This paper only
considers the distance measured along a single path. However, it
is of interest to explore the visibility graph with the diffusion
distances for computing the average length of paths connecting
two landmark points in the sense of inner distances, which can
help resolve the topological sensitivity problem for shape
articulation; this is, however, beyond the scope of this paper. We
leave this application to a separate publication.

5 CONCLUSION

We have presented a new method for computing and applying the
inner distances for 3D volumetric shapes with a visibility graph.
The inner distance for shape description has some common
properties shared with many well-known extrinsic shape descrip-
tors. For instance, it is invariant under rigid transformation and
insensitive to noise and small local geometric perturbations.
Furthermore, it has some additional features compared to the
existing intrinsic shape descriptors. One main advantage of the
inner distance is that it is insensitive to articulated deformation
and can approximate the complex shapes.

APPENDIX

SUPPLEMENTARY MATERIAL

An online supplement to this paper which provides the detailed
evaluation of experimental results can be found in the Computer
Society Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.116.
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