
Pattern Recognition 43 (2010) 3900–3909
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

100084

E-m

(Y.-S. L
journal homepage: www.elsevier.com/locate/pr
Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods
Yu-Shen Liu a,b,c,�, Jing Yi a, Hu Zhang a, Guo-Qin Zheng a, Jean-Claude Paul a,d

a School of Software, Tsinghua University, Beijing 100084, China
b Key Laboratory for Information System Security, Ministry of Education of China, Beijing, China
c Tsinghua National Laboratory for Information Science and Technology, Beijing, China
d INRIA, France
a r t i c l e i n f o

Article history:

Received 2 January 2010

Received in revised form

29 May 2010

Accepted 3 June 2010

Keywords:

Surface area estimation

Digital geometry

Cauchy–Crofton formula

Quasi-Monte Carlo methods

Low-discrepancy sequences
03/$ - see front matter & 2010 Elsevier Ltd. A

016/j.patcog.2010.06.002

esponding author at: School of Software,

, China. Tel.: +86 10 6279 0533; Mobile: +86

ail addresses: liuyushen@tsinghua.edu.cn, liuy

iu).
a b s t r a c t

A novel and efficient quasi-Monte Carlo method for estimating the surface area of digitized 3D objects

in the volumetric representation is presented. It operates directly on the original digitized objects

without any surface reconstruction procedure. Based on the Cauchy–Crofton formula from integral

geometry, the method estimates the surface area of a volumetric object by counting the number of

intersection points between the object’s boundary surface and a set of uniformly distributed lines

generated with low-discrepancy sequences. Using a clustering technique, we also propose an effective

algorithm for computing the intersection of a line with the boundary surface of volumetric objects. A

number of digitized objects are used to evaluate the performance of the new method for surface area

measurement.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Length, area and volume are important mass properties of
geometric objects that need to be computed frequently in many
medical, biological and industrial applications. In this paper, we
study the particular problem of estimating the surface area
of a digitized three-dimensional (3D) object in a volumetric
representation. This problem may arise in various applications of
digital geometry [3,9,17,24,36,38,41]. For instance, the cortical
surface area is likely to be related to functional capacities in the
analysis of the cortex in MR images [38,40]. In hemodialysis, the
peritoneal surface area is considered an important factor of
dialysis effectiveness [3]. Another class of applications is in 3D
shape recognition and matching which focus on the area
of geometric measurements [17]. Furthermore, surface area
estimation of the landscape from digital elevation models (DEMs)
plays an important role, especially in landscape analysis and
studies of wildlife habitat [12].

Digital geometry analysis aims at measuring properties of the
continuous world on the basis of digitized objects [17]. A digitized
object consists of a finite number of lattice points or voxels. The
area measurement can only be estimated in the digitized object,
but rather in the original, pre-digitized object [24]. A number of
ll rights reserved.

Tsinghua University, Beijing

159 1083 1178.

ushen00@gmail.com
previous studies have concerned this estimation. A direct way is
to compute the total area of exposed voxel faces. However, since
the voxel representation of smooth continuous surfaces is
generally jagged, the computed area is usually much greater
than that of the original continuous surface, resulting in
over-estimation [24,38].

Another possible solution is to reconstruct a polygonal mesh of
an iso-surface from the input volumetric object and then sum up
the area of the resulting polygons. The classical approaches, such
as the Convex Hull algorithm [2], consider a polygonalization of
the boundary point set and estimate the surface area by summing
the area of the facets. The marching cubes algorithm and its
variants [27,30,39] are often used for extracting the iso-surfaces.
However, there are some limitations on estimating surface area of
volumetric objects based on reconstruction strategy [24,38]. First,
when the marching cubes algorithm is used to create the
triangulated representation, topology ambiguities may occur
and holes may be generated. Second, the surface area estimated
based on the local polyhedrization techniques does not converge
to the true surface area as the resolution increases [16].
Furthermore, computational complexity of many reconstruction-
based methods is rather high [24,38], as they require an explicit
approximation of the boundary of the object. In contrast, the
surface area estimation in our work operates directly on the
volumetric objects without any explicit or implicit reconstruction
procedure.

A third type of approaches is the voxel-based area estimation
[24,29,37,38,41] by extending some existing planar perimeter

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.06.002
mailto:liuyushen@tsinghua.edu.cn
mailto:liuyushen00@gmail.com
mailto:liuyushen00@gmail.com
dx.doi.org/10.1016/j.patcog.2010.06.002

O1

O

Fig. 1. Compute the boundary surface are of a body O contained within the

reference body O1 using the Cauchy–Crofton formula [26]. Random lines are

chosen within O1.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–3909 3901
estimation methods (e.g. [7,20]). The main advantage is that the
surface area is measured directly from the binary volume and no
polygonal mesh is carried out. One early work was proposed by
Mullikin and Verbeek [29], where their estimation is designed to
be unbiased by minimizing the mean-square error for planes. The
core of voxel-based approaches is to assign surface area weights
to the voxels of a digitized object, then the total surface area can
be estimated by summing up the weighted area contributed by all
surface voxels of the object. Windreich et al. [38] delimited a
region of interest on the surface of the digitized object and
estimated its area using Mullikin and Verbeek’s method. In
contrast to [29], which used the six face-neighbors of a voxel,
Lindblad improved the surface estimation by considering the
2 �2 �2 neighborhood in Ref. [24] (the preliminary version
appeared as [23]). Other extensions to surface area estimation
based on weighted counts of voxels can be found in Refs. [35,41].
Since the choice of the weights is not unique, there is a number of
competing choices motivated by geometric arguments [41].
Although the weights are assigned to the local configuration
without need to explicitly reconstruct a polygonal mesh, these
weight-based approaches are similar to the marching cubes
algorithm and they are essentially the implicit reconstruction
methods. In addition, Coeurjolly and Flin et al. [5,9] present the
algorithm for surface area estimation based on discrete normal
vector field integration. Several publications [5,18,19] have also
studied the multigrid convergent surface area estimation; the
reader may consult [17] for detailed expositions.

Alternatively, the surface area can be estimated in a statistical
sense [11,21]. One strategy is the line intersection count method
[11] that is a stereology estimation for 2D perimeter and 3D
surface area. This estimation involves four steps: (1) generating a
line probe, (2) finding object border in a digital object,
(3) counting object-probe intersections, and (4) applying stereo-
logical formulas to obtain area estimation. Nevertheless, the
stereology estimation strongly depends on the pre-selection of
start position and direction of line probes for area estimation [11].
Recently, Legland et al. [21] presented a local estimation for the
perimeter and surface area of a discretized 2D or 3D set by
discretization of Crofton formula using filtering and look-up table
transformations. In this paper, we present an alternatively
stochastic algorithm for surface area estimation of digitized 3D
objects. Like the previous stereology approach, our method is
based on ray casting, but it uses an entirely different principle for
computing the area by random rays. Furthermore, we use low-
discrepancy sequences to obtain good statistical properties.

The work most related to ours is Ref. [22], in which a
quasi-Monte Carlo method is presented for computing the surface
area of a constructive solid geometry (CSG) model in computer
aided design. It is based on the Cauchy–Crofton formula, and
performs the area estimation by counting the number of
intersection points between the boundary surface of the CSG
model and a set of uniformly distributed lines. In essence, the
Cauchy–Crofton formula transforms a problem of estimating the
surface area into a problem of counting the intersection points. In
the same spirit, this paper mainly discusses how to apply
the quasi-Monte Carlo method to a digitized 3D object in the
volumetric representation for quickly and efficiently estimating
the area of the object’s underlying surface. The main challenge in
our work is to determine all intersection points between a line
and the volumetric object. For this purpose, we present a new
algorithm of intersecting a line with a digitized object’s boundary,
which is based on a clustering technique. Our research in this
paper accomplishes the task of estimating surface area by
operating the input volumetric object without reconstructing
any polygonal mesh. This simplifies the overall system design and
avoids difficulties, ambiguities and distortion that may arise due
to the application of a polyhedrization process. Our method in this
paper can be considered as an alternative and complementary
tool for surface area estimation of digitized 3D objects.
2. Preliminaries

2.1. Formula for surface area estimation

To measure the boundary surface area of a digitized 3D object,
we make use of the Cauchy–Crofton formula from integral
geometry, which relates the area of a surface to the number of
intersections that the surface has with all lines in R3 [15,22,26].
Consider a surface in R3, whose area is denoted as s. For a line L

intersecting the surface, let dL be the density of all lines
intersecting the surface. The Cauchy–Crofton formula can be
written asZ

w dL¼ ps, ð1Þ

where w represents the number of intersection points of a given
line with the surface, and the integration is taken over the space
of all possible lines in R3. The reader may consult Ref. [22] for
more detailed derivation of the formula.

Next we show how to use the above formula to estimate the
surface area of a given 3D object O. Suppose that S is the boundary
surface of O whose area s needs to be computed. Suppose further
that S1 is the boundary surface of a reference object O1 which
contains O. We assume that the area s1 of O1 is known. Consider a
set L of N lines that are randomly sampled from the set of lines
that intersect O1, as illustrated in Fig. 1. Let nS and nS1

be the total
numbers of intersection points of the lines in L with S and S1,
respectively. According to Eq. (1), by the integration
approximation, we have [22]

nS

N
� cps and

nS1

N
� cps1,

where c is a constant of proportionality. Then, by combining these
equations, the surface area s of O can be estimated by

s�
nS

nS1

s1: ð2Þ

Eq. (2) is essentially a Monte Carlo method for numerical
integration approximation, and this technique has been applied

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–39093902
to area estimation for CSG models [22], point-sampled surfaces
[26], and molecular surfaces [15]. The Cauchy–Crofton formula
transforms a problem of surface area estimation into a problem of
intersection counting.

2.2. Digitized 3D objects

We consider a digitized 3D object as a uniform 3D lattice
consisting of object points O and background points O. We
represent the 3 �3 �3 neighborhood of each lattice point x by
Ni(x) (i¼6, 18, 26), which is a set of i points and each point (other
than x) that share a common grid edge, face, and cell with x. The
boundary of O is defined as [14]

@O¼ fxjxAO and NiðxÞ \ Oa|g, ð3Þ

where @O is a set of points sampled from some unknown
underlying surface SAR3. In this paper, we consider O as an
26-connected domain, i.e. N26(x). There have been numerous
works on the volumetric representation, such as molecular shape
comparison [8,25] and structure identification of cryo-EM models
[14]. Our method presented in this paper is also suitable for
other shape representations through converting them into the
volumetric forms using some free softwares, such as PolyMender

[13] and binvox [28], which produce a binary 3D voxel grid that
approximates the original model. We generate a volumetric data
by placing a 3D shape into a 3D cubic grid, compactly fitting the
shape to the grid. Each lattice point is assigned either 1 or 0; 1 for
object points O and 0 for background points O.
3. Algorithm overview

We have just sketched the basis for computing the surface area
of a given 3D body. Now we apply Eq. (2) to estimate
the underlying surface area of a digitized object O. Suppose that
the boundary @O of O describes some underlying surface S whose
area s needs to be computed. Suppose that S1 is the surface of a
reference object O1 whose area s1 is known. To summarize, the
new algorithm for estimating the surface area of O can be
described as follows.

Algorithm 1 (AreaEstimation).
1.
 Generate the reference object O1 containing O.

2.
 Generate a set L of N uniformly distributed lines that

sample the set of all lines intersecting the reference object
O1.
3.
 Compute the number of intersection points of the lines in L
with respect to the reference surface S1 and the underlying
surface S of the point set O. Let nS1

and nS denote those two

numbers of intersection points, respectively.

4.
 Approximate the area s of S by Eq. (2).
Fig. 2. The smallest enclosing ball of points in 2D. The inner circle is the smallest

enclosing circle generated by Gärtner’s method, whereas the outer circle is

generated by the barycenter method.
3.1. The smallest enclosing ball

There are two requirements for generating a reference body
O1: (1) O1 should been chosen as a simple object to simplify the
intersection; (2) O1 should enclose O as closely as possible such
that the approximation error derived from the Monte Carlo
method is small [33]. O1 is generally chosen as a sphere to reduce
the intersection of a line with O1 [22], where the sphere is
denoted by SR. The simplest method for computing the enclosing
sphere for the boundary @O of O is that the barycenter of @O is
chosen as the center of SR, and the maximum distance of @O with
the barycenter is chosen as the radius of SR; we call this method
the barycenter method. However, the sphere generated by the
barycenter method may be too loose for @O, leading to the larger
approximation error of area estimation. Researching the smallest
enclosing ball is a classical problem of computational geometry.
In our implementation, we take advantage of Gärtner’s miniball

method [10] for computing the smallest enclosing ball of @O as SR.
Fig. 2 illustrates a 2D example for comparing Gärtner’s miniball
method with the barycenter method. Note that the inner circle
generated by Gärtner’s miniball method is smaller than the outer
circle generated by the barycenter method. An alternative might
be to consider a convex bounding box, such as an axis-parallel
bounding box, as O1, and the correlative sampling problem is
discussed by Castro et al. [4].
3.2. Generating uniformly distributed lines using low-discrepancy

sequences

The second step in our algorithm is generating a set L of N

uniformly distributed lines that sample all lines intersecting the
reference object O1. Castro et al. [4] generated a uniform density
of lines on a bounding sphere or a convex bounding box, where
the convex bounding box might be to consider an axis-parallel
bounding box of point sets. Li et al. [22] introduced one model for
sampling on a sphere as follows: a random line is defined by a line
passing through two independent uniformly distributed points on
the surface of a sphere SR with radius R. Uniformly distributed
points (x, y, z) on a sphere can be generated from pairs ðu;aÞ of
uniformly distributed random numbers by using the following
equation

ðx;y; zÞ ¼ ðR
ffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
cosa, R

ffiffiffiffiffiffiffiffiffiffiffiffi
1�u2

p
sina;RuÞ, ð4Þ

where uA ½�1,1� and aA ½0,2pÞ. Further discussion of
generating uniformly distributed points on spheres is given in
Ref. [26].

It is known that uniformly distributed random points are not
distributed as evenly as so-called low-discrepancy sequences of
points for the purpose of accurate numerical integration
[22,31,32]. In this paper, we use low-discrepancy sequences,
instead of pseudo-random number generators, to generate the set
L of evenly distributed lines. For this reason, our method is also
called a quasi-Monte Carlo method. Let N be the number of
sampling for approximating numerical integration. Using low-
discrepancy sequences has theoretical error bound O(N�1 logs N),

Fig. 3. The distribution of 1000 points on the surface of a sphere using Eq. (4): (a) shows pseudo-random points at slide view and (b) shows Niederreiter’s low-discrepancy

sequences of points at the same view. The sampling of the surface is clearly more even in the latter case.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–3909 3903
which is much faster than the probabilistic error bound O(N�1/2)
of Monte Carlo methods using pseudo-random sequences
[6,22,26,31,32], where discrepancy is defined in a s-dimensional
space. There exists a lot of different low-discrepancy sequences:
Halton, Sobol, Niederreiter, and others [32,33]. In our case, we use
Niederreiter’s 4D low-discrepancy sequences of points for Eq. (4).
Fig. 3 shows the difference in distribution evenness of two sets of
points on a sphere using a pseudo-random number generator and
Niederreiter’s low-discrepancy sequence in Eq. (4).
3.3. The intersection algorithm

A crucial part for surface area estimation is to count the
number of intersection points between each line in L and the
underlying surface S of a volumetric object O. S is available only in
digital form @O. Since @O consists of a point array, we have to deal
with the intersection problem between a line segment and a point
set @O. To resolve this problem, we present a novel, fast, and
robust intersection algorithm based on a clustering technique
without requiring any surface reconstruction.

In some sense, our clustering idea can be considered as an
extension of the ray tracing routine [34], which directly computed
the intersection of a ray and a point cloud by intersecting a
cylinder around the ray with the point cloud. Then, the
intersection is computed as a weighted average of points that
are inside the cylinder. However, [34] only finds one of the
intersection points. We extend their method based on a clustering
technique. In contrast to previous intersection approaches [1,34],
our algorithm does not reconstruct or approximate a surface from
a point cloud while finding all intersection points. The similar
clustering idea has appeared in our previous work [26] to find the
intersection points between a set of straight lines and a point
cloud with associated the normal vectors. In Ref. [26], a major
drawback is that the intersection strongly depends on the normal
vector of points on the boundary surface. In contrast, our
intersection algorithm presented in this section is normal-free.
In Ref. [11], Huang and Klette represented a probe straight line as
a sequence of voxels. A voxel visited along a digital line is an
intersection iff it is a 26-border voxel of the object O. Although
their method can test whether a digital line intersects with O, it
can not count the number of all intersection points. Our
intersection algorithm is described as follows.

Algorithm 2 (Intersection).
1.
 Detect whether an intersection has occurred between a
cylinder around a line and a point set, and collect the points
inside the cylinder.
2.
 Cluster the collected points by projecting them onto the
line.
3.
 Classify the clusters.

4.
 Count the number of intersection points, which is equal to

the number of the resultant clusters.
Fig. 4 gives an illustration of intersection between a line
segment and a 2D digital object.

The first step of Algorithm 2 is similar to intersection detection

described in Refs. [26,34]. We collect the candidate intersection
points in the same way to [26] as follows. Let ‘AL be a line with
the parametric representation: ‘ðtÞ ¼ oþtn for some tAR, where
o and n is an origin and a unit direction of the line ‘, respectively.
We consider a cylinder around the line segment ‘ with the radius
r (see Fig. 4(c)). To determine r, we need to obtain the density of
the point set @O, where the density is the maximum size of a gap
in @O. Suppose that d is the edge length of a voxel and it usually is
set as a unit value (e.g. d� 1) then the longest distance in the
neighborhood around a voxel is

ffiffiffi
3
p

d. Typically, we choose
r¼

ffiffiffi
3
p

d as the radius of the cylinder for obtaining sufficient
intersection points and less time. We call these points of @O inside
the cylinder the inclusion points. In our implementation we
construct an axis-aligned octree of O to accelerate the speed of
searching inclusion points, as described in Ref. [26]. In Fig. 5, the
black points are inclusion points relative to a line segment ‘

surrounded by a cylinder of radius r.
After collecting the inclusion points, we then cluster them (see

Fig. 4(d)) for counting the number of intersection points. Our
cluster strategy maps 3D points into 1D parameter coordinates by
projecting the inclusion points into the line segment ‘. Suppose
that fqigD@O is a set of inclusion points of ‘ and @O. Firstly, we
project each point qi onto ‘, and get one corresponding parameter
tiAR. We also obtain a set {ti} of parameters. Secondly, the set {ti}

Fig. 4. The illustration of Algorithm 2 for a 2D digital object. (a) The input point array (blue points) is sampled from a camel image. (b) Extract the border (black points).

(c) Collect the inclusion points that are inside a cylinder (gray) around a line segment connecting two endpoints (red). (d) Cluster the inclusion points, where clusters are

highlighted in ellipses. Note that our cluster method maps 3D points into 1D parameter coordinates by projecting the inclusion points into the line segment. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

qi

ti

r

> 1.5

l

d

Fig. 5. Cluster the inclusion points by projection, where r is the radius of a cylinder

around ‘ connecting two sample points and the black points denote the inclusion

points inside the cylinder. We map each inclusion point qi into 1D parameter

coordinate ti AR by projecting qi onto the line segment ‘.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–39093904
is sorted in increasing order. Here we suppose that {ti} has already
been sorted. Finally, we build the clusters by {ti} as described
below. Starting from the minimal parameter of {ti}, a cluster Q0,
which is a set of some inclusion points in {qi}, is built
by comparing the distance of adjacent parameters. This cluster
is terminated when the distance of two adjacent parameters is
larger than a maximum bound (we typically choose 1.5d as the
bound). Then, starting from the terminated parameter, the next
cluster Q1 is built repetitively. Clustering is terminated until
the maximal parameter is reached. After classifying clusters, we
choose the number of resultant clusters as the number of
intersection points. Fig. 5 shows the procedure of building clusters
by projection. Alternatively, the representative intersection point
of one cluster can be computed as the average of projecting the
inclusion points onto the line segment [26]. Fig. 6 illustrates the
procedure of surface area estimation using the quasi-Monte Carlo
method (Fig. 7).
3.4. Computational complexity

In this section, we discuss the computation complexity of
intersection in Algorithm 2. Assume that the input volumetric
object O consists of n object points, where @O contains m

boundary points ðm5nÞ. N uniformly distributed lines are
sampled on the reference sphere SR. In Algorithm 2, an upper
bound of the running time to intersect a line with O is O(m log(m))
because of sorting 1D parameter coordinates of inclusion points.
As a result, the total complexity of intersection for N lines is
O(N m log(m)).

However, the real computational complexity is much lower
than the theoretic one. Since the number of object points is
volumetric level number, and the number of boundary points m is
an area level number, while the average number m0 of inclusion
points in each cylinder can be considered as a line level number.
Therefore, we can roughly approximate the relations among n, m,
m0 as m¼O(n2/3), mu¼Oðn1=3Þ. Hence our complexity is O(Nm0 log
m0) for N lines, which is about O(Nn1/3 log n1/3). But in real case,
the number of inclusion points m0 is rather small and hence
m0 log m0 can be roughly approximated as a smaller constant. As
tested in our experiments, the running time for computing the
intersection are very fast.

Fig. 6. The illustration of surface area estimation using the quasi-Monte Carlo method. (a) A digitized duck model with a given resolution (64 �64 �64). (b) The enclosing

reference sphere. (c) A set of 200 uniformly distributed lines (green), and the corresponding endpoints (red) on the surface of the sphere. (d) The intersected lines and

corresponding intersection points (blue) with the duck model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

Fig. 7. Four synthetic objects sampled from some simple objects: (a) cube, (b) sphere, (c) cylinder, and (d) a CSG unit of cube and cylinder.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–3909 3905
4. Results and discussions

We have implemented the quasi-Monte Carlo method for
surface area estimation on different digitized 3D objects, which
are digitized from some simple objects or obtained by some
devices. The algorithms presented in this paper have been written
in a C+ + program. All the experiments were run on a PC with
Pentium Dual-Core 2.60 GHz CPU and 2G RAM. In the preproces-
sing step, we construct an axis-aligned octree [26] with depth
5 and compute the smallest enclosing ball. This procedure can be
performed in a short time. Table 1 gives the time in seconds for
the preprocessing step of some volumetric models referred to in
this paper.
4.1. Implementation and parameters

In our implementation, the enclosing reference body O1

defined in Section 3.1 is a sphere with radius R, where R is
chosen to be slightly larger than the radius of the smallest
enclosing ball of the given object. Our method requires two
parameters: the number N of uniformly distributed lines and the

Table 1
Time and error comparison for complex models with various resolutions.

Model H m T1
a (s) T2

b (s) T3
c (s) T4

d (s) E1
e (%) E2

f (%)

Duck 50 6497 0.016 0.016 1.797 1.531 1.137 10.218

100 28,990 0.031 0.016 1.891 1.641 0.026 6.322

150 67,152 0.047 0.031 2.063 1.781 0.335 4.371

200 121,940 0.078 0.078 2.094 1.906 0.411 2.806

Bunny 50 6190 0.016 0.016 1.547 1.438 2.027 6.856

100 26,695 0.031 0.016 1.672 1.563 1.095 4.323

150 63,481 0.047 0.031 1.688 1.656 0.364 2.619

200 112,338 0.047 0.063 1.703 1.781 0.579 1.576

Brain 50 6800 0.016 0.016 1.797 1.625 8.824 5.854

100 30,350 0.047 0.016 2.000 1.766 3.859 2.155

150 71,384 0.062 0.031 2.250 2.078 0.838 1.287

200 128,322 0.094 0.063 2.500 2.188 0.255 1.073

Protein 50 6999 0.016 0.000 1.703 1.594 33.490 14.259

100 31,432 0.031 0.016 1.797 1.766 8.783 3.160

150 73,272 0.047 0.031 2.047 1.875 1.142 2.181

200 132,642 0.062 0.094 2.250 2.016 0.786 1.633

Here, the errors are relative to the area of the original mesh using low-discrepancy

sequences and pseudo-random numbers, respectively.

a ‘‘T1’’ is the time of constructing an octree at depth 5.
b ‘‘T2’’ is the time of computing the smallest enclosing ball.
c ‘‘T3’’ is the time of estimating area using low-discrepancy sequences.
d ‘‘T4’’ is the time of estimating area using pseudo-random numbers.
e ‘‘E1’’ is the relative error using low-discrepancy sequences.
f ‘‘E2’’ is the relative error using pseudo-random numbers.

Fig. 8. The relative errors of surface area estimation for four synthetic objects at a

given resolution (H ¼ 100), where the horizontal axis denotes the number of

lines used for the quasi-Monte Carlo method and the vertical axis denotes the

relative errors.

Fig. 9. Time comparison of estimating the surface area.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–39093906
radius r of the cylinder surrounding the intersection line. One may
select a large N, which yields the better approximation result at
the expense of computation time. We choose r¼

ffiffiffi
3
p

d for
obtaining sufficient intersection points and less time, where d is
the edge length of a voxel unit. For the regular cubic grid,
it usually is set as a unit value, i.e. d¼1. A larger value for r yields
the expense of computation time and increases the approxima-
tion error.

The relative error Er [11] used for performance measure is
defined by

Er ¼
j~s�sj

s
, ð5Þ

where ~s is the estimated area value and s is the surface area of the
original object (we typically call s the true surface area value). All
errors measured and presented below are the relative errors. It
may be of interest to other error measures, such as mean-square
error [24,29].
4.2. Performance evaluation

4.2.1. Four simple models for the surface area measure

To evaluate the performance of surface area estimation,
we test the presented method on four synthetic objects: cube,
sphere, cylinder, and a CSG unit of cube and cylinder (referred to
‘‘Cube+Cylinder’’), as shown in Fig. 7. The original object is first
generated in the continuous space and then digitized using Gauss
digitization in a 3D cubic grid. The cubic grid is considered as a 3D
H �H �H array, where the integer H is the grid resolution of the
digitized object.

Fig. 8 shows the curves of relative errors generated by our
method for the four synthetic objects at a constant resolution
(H ¼ 100), where the number of lines is specified from 100 to
100,000. The relative error curves in Fig. 8 show that the quasi-
Monte Carlo method leads to small approximation errors with
increasing the number of lines. When N¼5000 lines are generated
using Niederreiter’s low-discrepancy sequences, it is expected to
approximate the relative error OðN�2=3Þð � 0:34%Þ for the
quasi-Monte Carlo method [22]. In practice, we also find that
5000 lines for our method can lead to both small errors and little
computation time. For the above four synthetic objects (H ¼ 100),
Fig. 9 gives the curves of computation time (in seconds), which
are relative to the number of lines during estimating the area of
four objects used. For the time curve of each model, the more
lines are chosen, the larger computation time is consumed.
The computation time is also related to the size of the input
objects.

It is of interest to study behavior in the surface area estimation
with respect to various resolutions. In Fig. 10, we typically test the
four synthetic objects from H¼20 to 128 with N¼5000 lines using
Niederreiter’s low-discrepancy sequences. The results show that
the estimated surface area converges to the true surface area as
the resolution increasing.

In addition, we also test surface area estimation for the
cylinder in different rotational orientations, as illustrated in
Fig. 11. The rotations for the original objects slightly affect the
estimated surface area with increasing the resolution.

Fig. 10. The relative errors in estimating surface area of four objects with respect

to the various resolutions.

Fig. 11. The relative errors in estimating surface area of the cylinder in different

rotational orientations as the resolution increasing.

1 Convex Hull was obtained with ‘‘Qhull’’ at http://www.qhull.org
2 The source code is available at http://w3.jouy.inra.fr/unites/miaj/public/

perso/DavidLegland/Logiciels/localEstimation.html
3 The source code is available at: http://www.cb.uu.se/� joakim/software/

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–3909 3907
4.2.2. Simulation results for complex models

Now, we demonstrate our method on several examples of
digitized objets with great complexity, as shown in Figs. 12 and 6.
Duck and bunny are acquired by 3D scanning devices, and the
image volumes of protein and brain are from biology and medical
research. Each model is originally represented in polygonal
formats and digitized using Gauss digitization with various
resolutions, where the surface area of the original mesh is
referred to the true area. These examples are computed using
two different methods: one is the standard Monte Carlo method
using 3D lines generated with pseudo-random numbers and the
other is the quasi-Monte Carlo method using Niederreiter’s low
discrepancy sequences. Table 1 shows time and error comparisons
for these complex models using the two methods with 5000 lines.
In Table 1, ‘‘H’’ is the grid resolution, ‘‘m’’ is the number of
boundary points, ‘‘T1’’ and ‘‘T2’’ and ‘‘T3’’ and ‘‘T4’’ give the
respective timing data for the new method. The ‘‘E1’’ and ‘‘E2’’
items are defined by the error relative to the area of the original
mesh using low-discrepancy sequences and pseudo-random
number generator, respectively. The running time is less than
3.0 s for most cases. The results show that our method gives small
approximation errors with increasing resolutions. The compar-
isons in Table 1 also suggest that using the low discrepancy
sequences leads to smaller approximation errors than using
pseudo-random numbers.
Note that the protein object in Fig. 12(c) occurs large errors
ð � 33:490%Þ at resolution H¼50. The reason is that the original
molecular surface consists of many atoms which have complex
structure. When the molecular surface is digitized as the set of
voxels at low resolution, the digitized object is coarse and misses
many local features. As the grid resolution increases, the digitized
object approximates the molecular surface, resulting in the small
approximation error (� 0:786% at resolution H¼200).
4.3. Comparison with other works

Next, we compare our method with several other methods to
estimate surface area for one same volumetric model. In Table 2,
the tested sphere is digitized with 793,687 object points and
60,878 boundary points. The method ‘‘Voxel faces’’ estimates the
surface area of a digitized 3D object as the sum of the total area of
exposed voxel faces over the border of the object. This, however,
results in rather big over-estimation ð � 19:784%Þ. The classical
approaches (the Convex Hull [2] and marching cubes algorithms)
consider a polygonalization of the boundary point set and
estimate the surface area by summing the area of the facets.
Although the relative error using Convex Hull1 is low, the
convergence rates of its estimation are limit to convex objects.
The marching cubes algorithm extracts an iso-surface and then
sums up the area of the triangles in the iso-surface, but its relative
error is worse than Convex Hull for the convex sphere. The surface
area estimation is also tested in the ‘‘Local Estimation’’2 method
[21], which approximates the surface area of a discretized set by
assigning a weight value to each voxel and summing over the
weighted discretized sets. Ref. [21] gives the low error ð � 1:078%Þ
for the sphere model. The method presented by Lindblad [23]3

runs quite fast (0.015 s) and gives the low error ð � 1:648%Þ. We
also borrowed the results from Flin et al. [9], in which their
method computes the normal vector field on the boundary voxels
of digitized 3D objects and then estimates the surface area based
on the computed normal vector field integration. Flin et al.’s
method can give a low error ð � 0:726%Þ. In contrast, the surface
area estimation using our quasi-Monte Carlo (QMC) method
exhibits lower error than the other methods.

In Table 3, we also extend the comparison with a more
complex object, i.e. the digitized protein model with resolution
H¼200. The comparison shows that the ‘‘Voxel faces’’, Convex
Hull and marching cubes methods produce rather big
approximation errors for the complex object. ‘‘Local Estimation’’,
Lindblad’s method and our QMC method lead to small
approximation errors. The comparisons demonstrate that our
method tends to perform better results for objects with complex
boundary surfaces than the other methods.

The idea in this work is similar to our previous work [26], in
which we presented a quasi-Monte Carlo method for computing
the area of a point-sampled surface with associated surface
normal for each point. The method in [26] is based on the
Cauchy–Crofton formula, and it transforms a problem of estimat-
ing the surface area into a problem of counting the intersection
points with the point-sampled surface. Its core is the computation
of the number of intersection points between a line and the point-
sampled surface. In our current work, we borrow the similar idea,
i.e. low-discrepancy sequences + Cauchy–Crofton formula, from
[26], and adopt it to the surface area estimation of digitized 3D
objects. Our current work can be considered as a simplified

http://www.qhull.org
http://w3.jouy.inra.fr/unites/miaj/public/perso/DavidLegland/Logiciels/localEstimation.html
http://w3.jouy.inra.fr/unites/miaj/public/perso/DavidLegland/Logiciels/localEstimation.html
http://www.cb.uu.se/∼joakim/software/
http://www.cb.uu.se/∼joakim/software/

Fig. 12. Three complex volumetric models digitized by using Gauss digitization: (a) the bunny model; (b) the brain image volume; and (c) the protein image volume.

Table 2
Comparison our method with other works for the digitized sphere model with

resolution H¼128.

Methods Time (s) Errora (%)

Voxel faces 0.612 19.784

Convex Hull [2] 0.951 1.281

Marching cubes 1.963 8.801

Local estimation [21] 5.644 1.078

Lindblad [23] 0.015 1.648

Flin et al. [9] – 0.726

QMCb 1.651 0.479

a ‘‘Error’’ is relative to the true area of the original sphere.
b Estimating the surface area using our quasi-Monte Carlo method.

Table 3
Comparison our method with other works for the digitized protein model with

resolution H¼200.

Methods Time (s) Errora (%)

Voxel faces 0.391 47.113

Convex Hull [2] 1.063 27.986

Marching cubes 10.172 8.799

Local estimation [21] 19.984 1.924

Lindblad [23] 0.078 3.201

QMCb 2.406 0.786

a ‘‘Error’’ is relative to the surface area of the original mesh.
b Estimating the surface area using our quasi-Monte Carlo method.

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–39093908
version of previous work [26] adapted to voxelized objects
through taking advantage of the uniform binary voxel-structure.
Thanks to the binary volumetric representation, which is
considered as a uniform 3D lattice, we derive the normal-free
intersection algorithm for the surface area estimation. To
demonstrate the abilities of our method, we export the grid
points that correspond to border voxels of the same digitized
protein object in Table 3 as the point-sampled surface. Next we
import the boundary grid points into our previous program in [26]
and compute the normal vector of each point. Finally, we use
default parameters for computing the area of point-sampled
surface, which yields the larger approximation error ð � 2:929%Þ
than the error using our current QMC method in this paper. The
result shows that the current method gives a higher accuracy
compared to the method for point-sampled models.

4.4. Discussions

Some discussions are presented below.
Parallel implementation: A variety of methods have been

developed for surface area estimation of digitized 3D objects,
but most of them are designed for traditional single-processor
architectures. The current trend in computer hardware is towards
increasingly parallel architectures. The technique presented in
this paper estimates the surface area by counting the number of
intersection points between the random lines and the target
object. Because each sampling intersection line is completely
independent from all other lines, our algorithm is a natural fit for
a highly parallel architecture such as a GPU. A version of the
parallel algorithm has been developed in Ref. [15] for estimating
molecular surface area. In the future we plan to achieve a parallel
implementation for estimating surface area of large volumetric
data.

Non-regular grid: In this paper, our work is suited to the regular
cubic grid, which is the most commonly used in digital geometry
analysis. Our algorithm requires one user-specified radius r of the
cylinder surrounding the intersection line for intersection detec-
tion. If the digitized object is the non-regular grid, which has a
non-uniform 3D lattice, the current intersection technique may
lead to large approximation errors. In order to eliminate the
influence of non-regular, one possible strategy is to re-voxelize
the non-regular grid for obtaining a uniform grid. However,
the re-voxelization is non-trivial and may contain too many
voxels such that it will spend more time on preprocessing
and intersecting. Improving the effectiveness and robustness of
line intersection is a core topic for future work.

Multi-surfaces: The Cauchy–Crofton formula can also be
directly used for multiple objects by considering multi-surfaces
as a collection of regular surface patches [22,26]. Some examples
have been shown and discussed in [26]. In the same way, our
work in this paper can be applied to multiple objects.

Fuzzy objects: The surface area estimation of digitized 3D
objects with fuzzy borders seems to be attractive for applications,
and it mainly deals with the evaluation of estimation at low
resolutions. For improving precision, especially in the case of low
resolution grids, the investigations of several measurements
on fuzzy digital 2D and 3D objects were discussed [36]. As
other future directions of research, we will explore estimating
quantitative properties of fuzzy objects.
5. Conclusions

This research provided a fast and robust technique for
estimating the surface area of a digital object. The input is a 3D
binary digital image, i.e., a set of voxels. The volumetric
representation is maintained and no triangulation is carried out.
The suggested technique is a quasi-Monte Carlo method based on
the Cauchy–Crofton formula from integral geometry. It is simple
and does not need any complex data structure. The performance
of surface area estimation is verified on a number of digitized

Y.-S. Liu et al. / Pattern Recognition 43 (2010) 3900–3909 3909
synthetic objects, and the experiments show that the quasi-Monte
Carlo method is fast, robust and obtains the high accuracy. Our
method can be considered an alternative approach for surface
area estimation of digitized 3D objects as a complement of other
existing techniques.
Acknowledgments

The authors appreciate the comments and suggestions of all
anonymous reviewers, whose comments significantly improved
this paper. The authors would like to thank Dr. Joakim Lindblad
and Dr. Frédéric Flin for communicating and Dr. Tao Ju for the
source code for processing the volumetric models. Chao Wang
implemented the Gauss digitization of polygonal models in a 3D
cubic grid. The research was supported by Chinese 973 Program
(2010CB328001), the National Science Foundation of China
(U0970155, 60625202, 90715043), and Chinese 863 Program
(2007AA040401). Prof. Paul was supported by ANR-NSFC
(60911130368).
References

[1] A. Adamson, M. Alexa, Ray tracing point set surfaces, in: Proceedings of Shape
Modeling International, 2003, pp. 272–279.

[2] C.B. Barber, D.P. Dobkin, H.T. Huhdanpaa, The quickhull algorithm for convex
hulls, ACM Transactions on Mathematical Software 22 (4) (1996) 469–483.

[3] E. Breton, P. Choquet, L. Bergua, M. Barthelmebs, B. Haraldsson, J.J. Helwig, A.
Constantinesco, M. Fischbach, In vivo peritoneal surface area measurement in
rats by micro-computed tomography ðmCTÞ, Peritoneal Dialysis International
28 (2008) 188–194.

[4] F. Castro, M. Sbert, Application of quasi-Monte Carlo sampling to the multi-
path method for radiosity, in: Proceedings of the Third International
Conference on Monte Carlo and Quasi Monte Carlo Methods in Scientific
Computing, Lecture Notes in Computational Science and Engineering,
Springer Verlag, Berlin, Germany, 1998.

[5] D. Coeurjolly, F. Flin, O. Teytaud, L. Tougne, Multigrid convergence and
surface area estimation, 11th International Workshop on Theoretical
Foundations of Computer Vision Geometry, Morphology, and Computational
Imaging, Lecture Notes in Computer Science, vol. 2616, , 2003, pp. 101–119.

[6] T. Davies, R.R. Martin, Low-discrepancy sequences for volume properties in
solid modelling, in: Proceedings of CSG’98, , 1998, pp. 139–154.

[7] L. Dorst, A. Smeulders, Length estimators for digitized contours, Computer
Vision, Graphics, and Image Processing 40 (3) (1987) 311–333.

[8] Y. Fang, Y.-S. Liu, K. Ramani, Three dimensional shape comparison of flexible
protein using the local-diameter descriptor, BMC Structural Biology 9 (29)
(2009).

[9] F. Flin, J. Brzoska, D. Coeurjolly, et al., Adaptive estimation of normals and
surface area for discrete 3-D objects: application to snow binary data from
X-ray tomography, IEEE Transactions on Image Processing 14 (5) (2005)
585–596.

[10] B. Gärtner, Fast and robust smallest enclosing balls, Proceedings of the
Seventh Annual European Symposium on Algorithms (ESA), Lecture Notes in
Computer Science, vol. 1643, , 1999, pp. 325–338.

[11] Y. Huang, R. Klette, A comparison of property estimators in stereology and
digital geometry, 10th International Workshop of Combinatorial Image
Analysis (IWCIA 2004), Lecture Notes in Computer Science, vol. 3322,
2004, pp. 421–431.

[12] J. Jenness, Calculating landscape surface area from digital elevation models,
Wildlife Society Bulletin 32 (3) (2004) 829–839.

[13] T. Ju, Robust repair of polygonal models, ACM Transactions on Graphics 23 (3)
(2004) 888–895.
[14] T. Ju, M. Baker, W. Chiu, Computing a family of skeletons of volumetric
models for shape description, Computer-Aided Design 39 (5) (2007)
352–360.

[15] D. Juba, A. Varshney, Parallel, stochastic measurement of molecular surface
area, Journal of Molecular Graphics and Modelling 27 (2008) 82–87.

[16] Y. Kenmochi, R. Klette, Surface area calculation for digitized regular solids,
Vision Geometry IX, SPIE-4117, 2000, pp. 100–111.

[17] R. Klette, A. Rosenfeld, Digital Geometry: Geometric Methods for Digital
Picture Analysis, Morgan Kaufmann, San Francisco, 2004.

[18] R. Klette, H. Sun, A global surface area estimation algorithm for digital regular
solids, Technical Report CITR-TR-69, Computer Science Department, Uni-
versity of Auckland, New Zealand, 2000.

[19] R. Klette, H. Sun, Digital planar segment based polyhedrization for surface
area estimation, International Workshop on Visual Form 2001, Lecture Notes
in Computer Science, vol. 2059, , 2001, pp. 356–366.

[20] J. Koplowitz, A. Bruckstein, Design of perimeter estimators for digitized
planar shapes, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 11 (6) (1989) 611–622.

[21] D. Legland, K. Kien, M. Devaux, Computation of Minkowski measures on 2D
and 3D binary images, Image Analysis and Stereology 26 (2) (2007) 83–92.

[22] X. Li, W. Wang, R.R. Martin, A. Bowyer, Using low-discrepancy sequences and
the Crofton formula to compute surface areas of geometric models,
Computer-Aided Design 35 (9) (2003) 771–782.

[23] J. Lindblad, Surface area estimation of digitized planes using weighted local
configurations, Proceedings of the 11th International Conference on Discrete
Geometry for Computer Imagery (DGCI), Lecture Notes in Computer Science,
vol. 2886, , 2003, pp. 348–357.

[24] J. Lindblad, Surface area estimation of digitized 3D objects using weighted
local configurations, Image and Vision Computing 23 (2005) 111–122.

[25] Y.-S. Liu, Y. Fang, K. Ramani, IDSS: deformation invariant signatures for
molecular shape comparison, BMC Bioinformatics 10 (157) (2009).

[26] Y.-S. Liu, J.-H. Yong, H. Zhang, D.-M. Yan, J.-G. Sun, A quasi-Monte Carlo
method for computing areas of point-sampled surfaces, Computer-Aided
Design 38 (1) (2006) 55–68.

[27] W.E. Lorensen, H.E. Cline, Marching cubes: a high resolution 3D surface
construction algorithm, Computer Graphics (SIGGRAPH’87) 21 (4) (1987)
163–169.

[28] P. Min, binvox: 3D mesh voxelizer /http://www.cs.princeton.edu/�min/
binvox/S.

[29] J.C. Mullikin, P.W. Verbeek, Surface area estimation of digitized planes,
Bioimaging 1 (1) (1993) 6–16.

[30] B.K. Natarajan, On generating topologically consistent isosurfaces from
uniform samples, The Visual Computer 11 (1) (1994) 52–62.

[31] H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers,
Bulletin of the American Mathematical Society 84 (6) (1978) 957–1041.

[32] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, SIAM Philadelphia, Philadelphia, 1992.

[33] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes
in C, second ed., Cambridge University Press, 1992.

[34] G. Schaufler, H.W. Jensen, Ray tracing point sampled geometry, in:
Proceedings of the 11th Eurographics Workshop on Rendering, , 2000, pp.
319–328.

[35] K. Schladitz, J. Ohser, W. Nagel, Measuring intrinsic volumes in digital 3d
images, Proceedings of the 13th International Conference on Discrete
Geometry for Computer Imagery (DGCI), Lecture Notes in Computer Science,
vol. 4245, , 2006, pp. 247–258.

[36] N. Sladoje, I. Nyström, P.K. Saha, Measurements of digitized objects with
fuzzy borders in 2D and 3D, Image and Vision Computing 23 (2005) 123–132.

[37] P. Verbeek, L.J. van Vliet, An estimator of edge length and surface area in
digitized 2D and 3D images, in: Proceedings of 11th IAPR International
Conference on Pattern Recognition (ICPR), , 1992, pp. 749–753.

[38] G. Windreich, N. Kiryati, G. Lohmann, Voxel-based surface area estimation:
from theory to practice, Pattern Recognition 36 (11) (2003) 2531–2541.

[39] G. Wyvill, C. McPheeters, B. Wyvill, Data structures for soft objects, The Visual
Computer 2 (4) (1986) 227–234.

[40] X. Zeng, L.H. Staib, R.T. Schultz, J.S. Duncan, Segmentation and measurement
of the cortex from 3D MR images using coupled-surfaces propagation, IEEE
Transactions on Medical Imaging 18 (10) (1999) 927–937.

[41] J. Ziegel, M. Kiderlen, Estimation of surface area and surface area measure of
three-dimensional sets from digitizations, Image and Vision Computing 28
(1) (2010) 64–77.
Yu-Shen Liu is an Associate Professor in School of Software at Tsinghua University, PR China. He received his BS in Mathematics from Jilin University, China, in 2000. He
earned his PhD in the Department of Computer Science and Technology at Tsinghua University, China, in 2006. He spent three years as a Post Doctoral Researcher in Purdue
University from 2006 to 2009. His current research interests include in 3D shape description and comparison, volumetric object processing, computer aided design &
computer graphics. Dr. Liu is the author of nine international journal papers. He received the Best Student Paper Award of the international conference of CAD/Graphics
2005 hosted at Hong Kong University of Science & Technology. In 2006, he received the Excellent Doctoral Dissertation Award from Tsinghua University.

http://www.cs.princeton.edu/∼min/binvox/
http://www.cs.princeton.edu/∼min/binvox/
http://www.cs.princeton.edu/∼min/binvox/

	Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods
	Introduction
	Preliminaries
	Formula for surface area estimation
	Digitized 3D objects

	Algorithm overview
	The smallest enclosing ball
	Generating uniformly distributed lines using low-discrepancy sequences
	The intersection algorithm
	Computational complexity

	Results and discussions
	Implementation and parameters
	Performance evaluation
	Four simple models for the surface area measure
	Simulation results for complex models

	Comparison with other works
	Discussions

	Conclusions
	Acknowledgments
	References

