
Anisotropic filtering on normal field and curvature tensor field using optimal
estimation theory

Min Liu Yushen Liu and Karthik Ramani
Purdue University, West Lafayette, Indiana, USA

Email: {liu66| liu28| ramani}@purdue.edu

Abstract

In this paper, we study the problem of mesh denoising
for improving the single pass surface estimation on normals
and curvature tensors. We focus mainly on the engineering
objects represented as dense triangle meshes. In particular,
a two run non-linear diffusion algorithm based on optimal
estimation theory is proposed to adaptively filter out the un-
desired discontinuities introduced by noise while preserving
the underlying features. We show that the proposed filter
can successfully improve the local surface estimates while
preserving the desired features in terms of tangential and
curvature discontinuities.

1. Introduction

Smoothness refers to the mathematical notion of contin-
uous differentiability, or continuity. When a smooth sur-
face is approximated as a triangle mesh, it maintains only
the positional continuity (no gaps) of the underlying sur-
face, while the tangential continuity (no sharp angles) and
the curvature continuity (no sharp radius changes) are lost
due to the discrete nature of the mesh. This brings about
the problem of estimating the discrete surface differential
properties for the meshed objects. Discrete estimation of
surface differential parameters is essential for many mesh
based applications, but the problem is difficult if the under-
lying geometry contains natural surface discontinuities. The
problem gets even harder when a mesh is constructed from
scanned data since they carry measurement and quantiza-
tion errors. The differential properties such as principal cur-
vatures and directions are very sensitive [13] to those errors.
A single pass estimation, based on either local surface fit-
ting using the polynomial [15, 4, 7, 20] or the estimation of
a curvature tensor in the local neighborhood [17, 11, 1, 14]
are error prone, due to the presence of the natural discon-
tinuities as well as the noise in the data. In practice, this
means that the estimates computed on a local basis must be
improved at a later stage.

The techniques related to isotropic denoising assume that
there are no underlying surface discontinuities, therefore
the errors in the estimates result from only noise which
is randomly and uniformly distributed. Representative
isotropic denoising methods includes Laplacian smoothing
[18], mean curvature flow [3], and curvature consistency
framework [15]. The first two methods [18, 3] achieve
smoother surfaces by changing the vertex positions to relax
all the curvature peaks, with improvements in the surface
normal and curvature estimations as a byproduct; while the
last method [15] improves the curvature estimation by min-
imizing a functional form related to a minimum variation of
curvature estimates.

In real case, a typical mesh contains random noise as
well as surface discontinuities. Anisotropic denoising meth-
ods, first introduced in image processing and later extended
to geometric problems, were developed to preserve or en-
hance features like sharp edges or corners. Some methods
smoothen height fields by controlling the weights in mean
curvature flow [2, 5, 8]. Other methods [19, 16, 12] use dif-
fusion filter to smoothen the normal field and then integrate
this to height field to get the smoother surface.

In this work, we study the problem of mesh denoising
for improving the single pass surface estimates. We tar-
get mainly the scanned engineering objects which are rep-
resented as dense triangle meshes, though it can be applied
for general shapes too. Our proposed method, derived from
a signal filter, originates from the optimal estimation the-
ory [6]. In stead of modifying the vertex positions, we im-
prove the normals and curvatures estimates by arguing that
those differential properties are more important than remov-
ing noise in the geometry because, the typical two stages in
reverse engineering: segmentation and surface fitting relies
more on the good estimates of surface differential proper-
ties.

The focus of our work targets three problems:

• An estimation of discrete shape operator.

We propose a simple per-face discrete curvature esti-
mation method in term of curvature tensor. It benefits
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the edge-based mesh processing since the sharp vari-
ation of differential properties between the two neigh-
boring triangles potentially defines a feature edge.

• An anisotropic filter on the normal and curvature
fields.

We adapt the optimal estimation theory into a two run
non-linear diffusion process; one for normal consis-
tency in which the filter is applied on a vector field
(normals). And the other is for curvature consistency
in which the filter is applied on a matrix field (curva-
ture tensors). Each stage tries to preserve the underly-
ing discontinuities (features) while smoothing the sin-
gle pass normal and curvature estimates.

• A general framework for extending the diffusion pro-
cess into the differential parameter fields with higher
orders.

We apply the non-linear diffusion filter both on the nor-
mal field and on the curvature field to handle engineer-
ing objects. We also show that it can be generalized to
handle higher order differential properties.

2. The local geometry estimation for per-face

For each triangle f in a mesh, its normal direction n f is
well defined. The normal direction at each vertex p in the
mesh is estimated by the weighted average of the normals
of faces adjacent to p (1-ring neighborhood faces). We use
the Nelson Max’s weighting method [10] for weights (area
of f divided by the squares of the lengths of the two edges
that touch vertex p) as this produces more accurate normal
estimates than other weighting approaches.

We estimate the per-face curvature by observing the
normal variations along its three edges. For each triangle
f , there is an associated shape operator in matrix format
called curvature tensor Λ:

Λ f =
(

Dun Dvn
)

=

(

∂n f
∂u ·u ∂n f

∂v ·u
∂n f
∂u · v ∂n f

∂v · v

)

,

where (u,v) is a pair of orthogonal unit vectors describing
an orthonormal coordinate system in the tangent frame of f .
Multiplying a curvature tensor by any vector in the tangent
plane gives the directional derivative of the normal in that
direction: Λ · t = Dtn.

The curvature tensor for each facet is constructed us-
ing method introduced in [14]. For a facet f , there are
three well-defined directions (the edges) together with the
differences in normals along those directions (computed
from the per-vertex normal), refer Figure 1. In this figure,
ni(i = 0,1,2) are the estimated normals on three vertices of
the triangle f . The equations in Figure 1 provide a set of

linear constraints on the elements of the second fundamen-
tal tensor, which may then be determined using least square
fitting. Notice that the principal curvatures (k1, k2), and the
principle directions (e1, e2) of the triangle f correspond to
the eigenvalues and eigenvectors of Λ f , while the determi-
nant of the tensor Det(Λ f ) and the half trace of the tensor
Tr(Λ f )/2 can be considered as a local estimation of Gaus-
sian curvature K f and Mean curvature H f .
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Figure 1. Estimate per-face curvature tensors

3 Anisotropic filtering based on the optimal
estimation theory

The local differential properties estimated so far (refer
Section 2) are error-prone due to the existence of surface
discontinuities which violates the smoothness assumption
for the underlying geometries. The general objective of an
anisotropic filtering is to smooth out the surface discontinu-
ities introduced by the random noise and preserve the true
surface continuities.

The optimal estimation theory, originally introduced in
[6] for signal processing and adapted by [9] in a curvature
consistency framework for the edge detection on a range
image, offers a good method for integrating measurements
from multiple sources with different noise to predict a con-
stant quantity. The main idea is that, given a noisy source,
its contribution to predict the behavior of a target in the
next iteration is dependent on the variance of its prediction
error in the past. A source with a lower variance of esti-
mation error is considered to have better fitness and will be
given higher weight in the next prediction. This mechanism
works elegantly for our purpose of anisotropic filtering on
the initially estimated surface parameters. We use the prop-
erties of neighboring facets to redefine the properties of a
target facet. At the beginning of optimal estimation flow,
the full variational relaxation takes place. This relaxation
smoothes out random noise and starts to distort the true sur-
face discontinuities meanwhile. However, as the iteration
progresses, the real nature of the local surface is learned
by recording the estimation error variances in each step. In
subsequent iterations, neighbors believed to be in the same
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continuous region (i.e. the neighbor with low estimation
error variance) will dominate the relaxation process. The
relaxation across discontinuous regions will be penalized
since they introduce large variances of estimation error.

Now we reformulate the above idea to our per-face ge-
ometry estimator. For each triangle f , consider its 1-ring
neighborhood N( f ) (which are triangles sharing common
edges or vertices with f ) as a noisy prediction source. Dur-
ing the optimal estimation flow, differential properties of f ,
at a new iteration l+1 (4 f l+1) is estimated by the weighted
average of predictions from its neighbors. Each of its neigh-
boring facet s, casts a vote 4̃s on f . 4 f l+1 is given by the
following equation;

4 f l+1 =
∑s∈N( f ) wl

s4̃s

∑s∈N( f ) wl
s

, (1)

where wl
s is the weight assigned to a neighbor s for measur-

ing how much the prediction of s will contribute to the be-
havior of the target. 4̃s can be equal to 4s but it is not nec-
essary. If equal weights are assigned to each of f ’s neigh-
bors, the above iterative process (Equation (1)) provides an
isotropic filtering which is not desired for preserving under-
lying features in our case. For assigning weights to adjust
the contribution of prediction from each neighbor, we use
the following functions that are based on the optimal esti-
mation theory [9];

wl
s = exp(−

σ 2
s

l

γ l ), (2)

σ 2
s

l
=

1
k

l

∑
l=0

ε2
s

l
, (3)

γ l =
2

|N( f )| ∑
s∈N( f )

σ 2
s

l
, (4)

where σ 2
s

l is the variance of prediction error in lth iteration
and γ l is the smoothing control parameter which is set by
taking the mean of the error variance value among all the
triangles in N( f ). εs measures the prediction error, i.e. dif-
ference between 4̃s and 4 f .

In equation (2), the weight is defined as a function of
prediction error variance (σ 2

s
l), which is normalized by the

mean variance (γ l) among all neighbors who participate
in current prediction. The exponential function is chosen
to avoid a single neighbor from taking over the relaxation
process by bonding the weights as the error variances ap-
proach zero. As desired by the optimal estimation theory,
this weighting function gives higher weights to the neigh-
bors with low error variances. In addition, it provides sim-
ilar weights to the neighbors which are correlated with the
target facet in the same subregion.

A key problem is, how to estimate the error so that the
weights can be correctly adjusted. In the curvature con-

sistency framework [15, 9], this iterative process is con-
ducted in a single pass on the Augmented Darboux frame
[15] (contains the normal and the curvature elements) of a
vertex p, the diffusion is applied on both the normal and the
curvature parameters and the error metric ε simply com-
bines the estimation error of all elements:

ε2
s

l
= |nl

f − ñs
l |2 + |e1

l
f − ẽ1

l
s|

2 + |k1
l
f − k̃1

l
s|

2 + |k2
l
f − k̃2

l
s|

2
.

(5)
This error metric causes a major problem since it simul-

taneously fuses on two scalar properties (k1 and k2), and
two vector properties (n, e1). Cases exist where the scalar
element dominates the error function so that the vector el-
ements never contribute in this optimal estimation frame-
work.

We apply the diffusion process to different runs corre-
sponding to different order of differential parameter estima-
tions so that in each run, the error variance can be measured
in the same field.

We first apply the optimal estimation process on surface
normals. Equation (1) in this run becomes;

nl+1
f =

∑s∈N( f ) wl
sn

l
s

∑s∈N( f ) wl
s

. (6)

and the error metric is given by the angular distance be-
tween estimated normal of f and the normal of neighboring
facet s:

εs
l = 1−

n f
l ·nl

s

|n f
l ·nl

s|
. (7)

In the second run, the curvature tensor Λ estimated on f ,
is considered for the optimal estimation. Since the tensor
Λ f is defined on a local parameter space associated with
three orthogonal directions (n f ,u f ,v f ), the tensor Λs of its
neighboring facet s, which is defined on (ns,us,vs), cannot
directly cast the vote on f . Therefore, a neighboring tensor
has to be aligned in the space of the target facet (refer to
Figure 2). For each Λs, this alignment forms a rotated tensor
Λ′

s, which will be used for prediction.

Λl+1
f =

∑s∈N( f ) wl
sΛ′l

s

∑s∈N( f ) wl
s

. (8)

Two error metrics can be used for calculating variances
and weights. One is the variation between principal curva-
tures of f and those of its neighbor s and the other is the de-
terminant of difference matrix between the estimated tensor
Λ f and Λ′

s.
Variation between principal curvatures contains two ele-

ments;

ε1
l =
√

(kl
1 f − kl

1s)
2 +(kl

2 f − kl
2s)

2 and ε2
l = sinθ l

e. (9)

The first element in Equation (9) is the Euclidean dis-
tance between (k1 f , k2 f ) and (k1s ,k2s), and the other is the
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Figure 2. Rotate local space of tensor Λs to
the space of neighbor triangle’s tensor Λ f ,.
This forms a rotated tensor Λ′

s .

angular distance between one of the principal directions e1 f

and e1s. θ l
e is the angle between e1 f and e1s in the lth it-

eration. We use sinθ l
e to treat the acute angle the same as

the obtuse angle because the principal direction is actually
a line field rather than a vector field. The above two error
metrics are not on the same scales and therefore should not
be summed up directly into one error function. The variance
of each element will be calculated separately to get two cor-
responding σ 2

s
l
1, γ l

1 and σ 2
s

l
2, γ l

2 which corresponds to the
variance of principal curvature variations and the variance
of principle direction variations. The final weight function
(Equation (2)) is:

wl
s = exp(−

σ 2
s

l
1

γ l
1

−
σ 2

s
l
2

γ l
2

). (10)

Another option for the error metric for curvature tensor dif-
fusion is a simpler uniformed metric which is defined by the
determinant of the tensor difference,

εs
l = ‖Λ f

l −Λ′l
s ‖ (11)

Generally speaking, the first error metric (Equation (10))
captures the distances of principal curvatures and principal
directions among neighboring triangles. The second one
(Equation (11)) can be considered as a measurement of to-
tal variation of curvatures along all the directions in the pa-
rameter space of triangle f . Both the error metrics have
their own disadvantages. The first metric will have prob-
lems in the vicinity of umbilical points, since the estimation
of the principal curvature directions gets unstable on um-
bilical point. The second error metric vanishes for singular
differences matrices. Consequently, different curvature ten-
sors may have a zero distance. We leave the improvements
of the error metrics for curvature tensor as a future work.

4 Results

We have implemented the anisotropic mesh denoising
algorithm as described in the previous section, and com-
pared our results to that of two popular anisotropic denois-
ing methods, bilateral mesh denoising algorithm [5] and
adaptive smoothing algorithm [12]. We also compared our
results of curvature denoising to the methods based on cur-
vature consistency framework; isotropic denoising method
proposed in [15], and the anisotropic scheme proposed in
[9]. These two methods denoise the mesh on both the nor-
mal and the curvature field in a single pass. We use the fol-
lowing color map (see Figure 3) to show the two estimated
principal curvatures through all the results.
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Figure 3. The color map of the curvature
value.

Figure 4 shows the result of applying our anisotropic fil-
ter for denoising the Fandisk model (with 23964 triangles,
11984 vertices, 35946 edges). This model contains noise
near the feature regions as well as global gaussian noise
(Figure 4(a)). After applying five iterations of our denoising
filter for normals, the estimated normals are smoothed while
the underlying sharp variations on the normals are kept (see
Figure 4(b) for the rendering effect of this smoothing). Fig-
ures 4(c) and 4(d) show the normal distributions (normals
are rendered as red lines) of a small region (rectangle region
in Figure 4(a)) before and after applying our normal filter.
The sharp edges (colored as light blue) behave more regu-
larly and directionally as the result of anisotropic denoising
on normal field. Figures 4(e) and 4(f) show the curvature
distributions of the model before and after applying our fil-
ter on the curvature tensor field, the small line strokes de-
note the minimum curvature directions. Figure 6 gives the
results of two other anisotropic denoising algorithms, Fig-
ures 6(a) and 6(b) are the results of applying five iterations
of bilateral mesh denoising proposed in [5], Figure 6(c) and
6(d) are the results of applying same number of iterations
using the adaptive mesh denoising proposed in [12]. For
this model, the bilateral denoising does not produce very
good denoising results. Denoising effects on the curvature
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estimates, as the byproducts of denoising the height field
are shown in Figures 6(b) and 6(d). Notice the differences
in the curvature distributions compared to the result of our
method in Figure 4(f).

Figure 5 shows how our algorithm works on a noisy
rocker arm model (Figure 5(a)). After applying our filter on
the normal field, the smoothing result on the surface normal
is shown in Figure 5(b). Figure 5(c) is the initial estimation
of curvatures, denoising on the normal field will improve
the curvature estimation too, see the result in Figure 5(d).
Figures 5(e) and 5(f) show the results of applying five iter-
ations of our filter on the curvature tensor field, using two
error metrics proposed in Section 3, (Equation (11) and (9)
respectively). They both work well and result in similar de-
noising effect (refer to Figure 5(e) and 5(f)). Since Equation
(11) gives a simpler computation for error metric, we rec-
ommend the readers to use it.

We compared our result using anisotropic denoising
on curvature tensor field to the following methods that
improve the curvature estimates; one is the anisotropic
scheme proposed in [9] (Figure 7(a)) and the other is the
isotropic scheme proposed in [15] (Figure 7(b)). Our
method achieves better results of smoothing curvature esti-
mations while preserving the underlying discontinuities (re-
fer to Figure 5(f)). Observe the difference in the curvature
distribution along the flat region on the rocker arm model.

We also tested our method on some general shapes (see
Figure 8 for example). The tests show that our anisotropic
filter works well for the general shapes too.

5 A general anisotropic filtering framework

In theory, the framework of our anisotropic diffusion al-
gorithm can be generalized for treating higher order fea-
tures. The first step is to extend the per-face local geometry
estimation to higher order differential properties. We show
here how to extend it to third order differential properties.
The third order differential properties can be defined as a
“derivative of curvature” tensor that gives the changes in
curvature along the surface. It is a 2× 2× 2 rank-3 tensor
with four unique entries:

C = (DuΛ,DvΛ) =

( (

a b
b c

)(

b c
c d

) )

.

To compute the above tensor, we need to estimate the
curvature tensor Λp at each vertex p on the mesh. This can
be done by the weighted average of the curvature tensors of
its triangle neighbors:

Λp =
∑m

i=1 wiΛ′
i

‖∑m
i=1 wini‖

,

where the Λ′
i are the rotated tensor (see Figure 2) of the tri-

angles in the 1-ring neighborhood of p, The tensor is rotated

to align with the parameter space of vertex p. Weights wi
denote how much of the curvature tensor should be accu-
mulated at each vertex p. The “Voronoi area” weighting
scheme that takes the weight be proportion of the area of f
that lies close to vertex p [11] is a good choice.

The “derivative of curvature tensor” of a triangle can
then be estimated with a least-squares fit to the differences
in the curvature tensors along three edges of each triangle,
in the same manner as we did for curvature tensor estima-
tion. For the anisotropic diffusion filter for the third order
tensor, the iteration equation can be defined as,

C
l+1
f =

∑s∈N( f ) wl
sC

′l
s

∑s∈N( f ) wl
s

, (12)

where C ′l
s denotes the rotated “derivative of curvature ten-

sor”, and the error metrics can then be defined as:

εs
l = ‖C f

l −C
′l
s ‖. (13)

6 Conclusions and future directions

We have presented a feature-preserving filter for the nor-
mals and the curvatures estimated on the dense mesh mod-
els. For some reverse engineering applications, the pro-
posed filter is generally a sufficient preprocessing step for
further geometric operations such as segmentation and sur-
face fitting. We also showed that this anisotropic filter can
be extended to improve higher order differential parameters.
In future, testing the method for denoising on higher order
fields will be carried out.

Our anisotropic filter of normals and curvatures can be
used for stable extraction of feature edges corresponding to
C1 discontinuities and C2 discontinuities that can help in
segmenting dense meshes.

The current implementation of the iterative diffusion
process simply specifies the number of iterations as a user
defined parameter. In future, the iteration will be controlled
by tracking the convergence of the differential properties.
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(a) Input noisy model (23964 triangles, 11984 vertices,
35946 edges)

(b) Five iterations of our filter applied on the normal field

(c) Initially estimated of surface normals (d) Normal estimates after anisotropic filtering on normal
field

(e) Initial estimation of curvature values and directions, the small
line strokes show the minimum curvature directions

(f) Curvature estimates after applying 5 iterations of our
anisotropic filter on curvature tensor field

Figure 4. Our anisotropic filter applied on the normal field and the curvature tensor field for the fan
disk model.
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(a) The original model(80354 triangle, 40177 vertices and 120531
edges)

(b) Five iterations of our filter applied on the normal field

(c) Initial estimated curvature values and minimum curvature direc-
tions

(d) The curvature distribution after applying five iterations of normal
diffusion

(e) The curvature distribution after applying five iterations of curva-
ture tensor diffusion using error metrics in equation 11

(f) The curvature distribution after applying five iterations of curva-
ture tensor diffusion using error metrics in equation 9

Figure 5. Five iterations of our filter applied on the normal field and then the curvature tensor field
of a noisy rocker arm model (model courtesy of Leif Kobbelt)
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(a) Denoising results using the bilateral filter [5] (5 itera-
tions, σ f = 4, σg = 4 )

(b) Curvature distribution after applying the bilateral fil-
ter

(c) Denoising results using the adaptive smoothing [12]
(5 iterations or normal diffusion + 5 iterations on the hight
field, c = 2)

(d) Curvature distribution after applying the adaptive
smoothing filter

Figure 6. Comparisons to the result two other methods for the hight field denoising applied on the
Fandisk model.

(a) Anisotropic denoising on the Augmented Darboux frame using
the error metrics in Equation 5 [9]

(b) Isotropic denoising on the Augmented Darboux frame under the
curvature consistency framework [15]

Figure 7. Comparisons to the results of two other methods for the curvature field denoising applied
on the rocker arm model.
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(a) The input noisy model (b) The result of two itera-
tions of our filter applied on
normal field

(c) The curvature value es-
timated using initial per-
face curvature estimation

(d) The byproduct of cur-
vature value distribution
after applying 2 iterations
of our filter on the facet
normals

(e) The curvature value
distribution after applying
2 iterations of our filter on
curvature tensor field

Figure 8. Illustration of our anisotropic filter applied on a general shape (data courtesy of Alexander
Belyaev).
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