Signal Processing 112 (2015) 4-16

Contents lists available at ScienceDirect

Signal Processing

EIL.SEVIER journal homepage: www.elsevier.com/locate/sigpro

Junction-aware shape descriptor for 3D articulated models
using local shape-radius variation

@ CrossMark

Jinlong Feng?, Yu-Shen Liu*”“* Lianjie Gong*®

2 School of Software, Tsinghua University, Beijing 100084, China
b Key Laboratory for Information System Security, Ministry of Education of China, China
¢ Tsinghua National Laboratory for Information Science and Technology, China

ARTICLE INFO

ABSTRACT

Article history:

Received 16 March 2014
Received in revised form

7 May 2014

Accepted 20 May 2014
Available online 27 May 2014

Keywords:

3D articulated shapes
Junction

Shape descriptor
Shape-radius

An articulated model is composed of a set of rigid parts connected by some flexible
junctions. The junction, as a critical local feature, provides valuable information for many
3D semantic analysis applications such as feature recognition, semantic segmentation,
shape matching, motion tracking and functional prediction. However, efficient description
and detection of junctions still remain a research challenge due to high complexity of 3D
articulated deformation. This paper presents a new junction-aware shape descriptor for a
3D articulated model defined by a closed mesh surface. The core idea is to exploit the local
shape-radius variation for encoding junction information on the shape boundary surface,
where the shape-radius at each point on the surface is the radius of corresponding medial
balls within the shape. The presented descriptor is typically computed using a center-
surround filter operator, which calculates the Gaussian-weighted average of shape-radius
in the neighborhood of each point on the surface. Our descriptor is robust to articulation
and can reflect the junction feature well without any explicit shape decomposition or
prior skeleton extraction procedure. The experimental results and several potential
applications are proposed for demonstrating the effectiveness of our method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

based on articulated models [2-5], which assumes that
the non-rigid shape is composed of a set of rigid parts

Non-rigid shape analysis [1,2] has been receiving grow-
ing attention in many applications in computer vision,
computer graphics, pattern recognition, etc. Non-rigid
shapes are ubiquitous in the world and, due to their
physical properties, can undergo variant deformations
[1]. One simplified strategy to non-rigid shape analysis is

* Corresponding author at: School of Software, Tsinghua University,
Beijing 100084, China. Tel.: +86 10 6279 5455, +86 159 1083 1178
(Mobile); fax: +86 10 6279 5460.

E-mail addresses: therealoneisneo@gmail.com (J. Feng),
liuyushen@tsinghua.edu.cn (Y.-S. Liu), lianjiegong@gmail.com (L. Gong).
URL: http://cgcad.thss.tsinghua.edu.cn/liuyushen/ (Y.-S. Liu).

http://dx.doi.org/10.1016/j.sigpro.2014.05.025
0165-1684/© 2014 Elsevier B.V. All rights reserved.

connected by some flexible junctions (or named joints/
hinges in some literature [2,6]). Each of the rigid parts has
a certain degree of freedom to move, and junctions are
relatively small compared with parts connected.

The junction, as a critical local feature, provides valu-
able information for analyzing 3D articulated models.
Many applications of 3D semantic analysis such as feature
recognition, semantic segmentation, shape matching,
motion tracking and functional prediction, can benefit
from automatic detection of junctions. For instance, detec-
tion of junctions and parts can improve the performance
of shape segmentation of 3D articulated models [7,8].
In medical applications, some visual tasks such as vessel

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2014.05.025
http://dx.doi.org/10.1016/j.sigpro.2014.05.025
http://dx.doi.org/10.1016/j.sigpro.2014.05.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.05.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.05.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.05.025&domain=pdf
mailto:therealoneisneo@gmail.com
mailto:liuyushen@tsinghua.edu.cn
mailto:lianjiegong@gmail.com
http://cgcad.thss.tsinghua.edu.cn/liuyushen/
http://dx.doi.org/10.1016/j.sigpro.2014.05.025

J. Feng et al. / Signal Processing 112 (2015) 4-16 5

tracking may rely on junction extraction results, which can
facilitate diagnosis and understanding of pulmonary vas-
cular diseases [9]. In molecular structure analysis, many
flexible molecules can be regarded as 3D articulated
objects with special hinge/junction sites [6], where identi-
fying such hinge sites is a fundamental problem for protein
functional prediction and structure comparison. However,
efficient description and detection of junctions still remain
a research challenge due to the high complexity of 3D
articulated deformation.

To address this issue, this paper presents a new junction-
aware shape descriptor for a 3D articulated model defined by
a closed mesh surface. To encode junction information on
the shape boundary surface, the core idea is to exploit the
local shape-radius variation, where the shape-radius [10,11]
at each point on the boundary surface is the radius of its
corresponding medial balls within the shape. Our algorithm
consists of the following steps. First, the local shape-radius at
each vertex of mesh surface is approximated using the
classical ray-shooting technique, which associates volumetric
information of the shape to the mesh surface. Then we
setup a neighboring range for each vertex on the mesh
and calculate the difference of local shape-radius within this
range to measure the mount of their variance. Finally,
a center-surround filter operator, which calculates the
Gaussian-weighted average of shape-radius variance, assigns
descriptive value to each vertex as its junction-aware des-
criptor value. One advantage of the presented descriptor is
that it is insensitive to articulation deformation and can
reflect the junction feature well without any explicit shape
decomposition or prior skeleton extraction procedure. The
experimental results and several potential applications are
proposed for demonstrating the effectiveness of our method.

The main contributions of our work can be summarized
as follows.

® A junction-aware shape descriptor is presented for 3D
articulated models, which is defined as local shape-
radius variation for encoding junction information at
each point on the boundary surface.

® A center-surround filter operator is designed for quan-
tifying local shape-radius variation, which calculates
the Gaussian-weighted average of shape-radius in the
neighborhood of each point on the surface.

® Several potential applications, such as initial junction
extraction and handle loop approximation, are pro-
posed for demonstrating the capability and effective-
ness of our method.

2. Related work

There are several possible approaches to solve junction
detection/extraction of 3D models. One type of approaches
is based on shape structure analysis [6,12], which is often
used in protein structure analysis. If given a pair of
proteins, their junction positions can be found through
structure alignment of pairwise proteins [6]. If given a
single protein without comparing with others, its junction
positions can be predicted with the help of additional

chemical information [12]. However, protein structures
and additional non-geometric information are not expli-
citly available for general 3D models in computer vision
and computer graphics.

Another type of approaches is based on skeleton
extraction (e.g. [13,14]). Those approaches first extract
the topological skeleton of a 3D model and then identify
its junctions and branches based on further skeleton
analysis. However, skeleton extraction is often sensitive
to perturbation and noise on the object's boundary, while
robust skeleton calculation is not trivial. In addition,
skeleton extraction only induces the rough junction posi-
tions, while indication of final junction regions still needs
to be relocated on the boundary surface. Several robust
skeleton extraction methods [11,13] may provide a prior
reference for the purpose of junction detection, but this
remains a separate research topic. In contrast, our method
directly highlights the junction regions on the boundary
surface without requiring any prior skeleton extraction
procedure.

The third type of approaches is based on shape segmen-
tation. After dividing a 3D model into meaningful parts, the
intersection curves where two or more parts meet (referred
as “cuts” in some literature) can assist to find the candidate
junctions. However, most of segmentation approaches have
to face the same question of how to define parts or part
boundaries [7,11,15]. The classical part-type segmentation
techniques are to analyze the geometric structure of an
individual shape in order to detect its parts or part bound-
aries (e.g. [7,8,11]). In essence, there is a strong connection
between part-partitioning and skeletonizing [8,15]. When
using part-type segmentation to assist junction identifica-
tion, it will be a type of “chicken-or-egg” dilemma, since the
definition of a part implies the identification of clear-cut
junction. In contrast, our method produces a junction-aware
shape descriptor without any explicit shape segmentation
procedure.

The fourth type of approaches is based on shape
descriptor. Our method also falls into this type. A shape
descriptor is a concise representation of the shape that
expresses some specific properties [4,10]. A simple realiza-
tion of junction detection can be based on measuring the
local surface properties of shape boundary, such as curva-
ture [16] and gradient [17]. However, such measurements
are limited by their local surface nature and are very
sensitive to local surface noise. There have been some
extra efforts to develop new shape descriptors for detect-
ing important regions or features on boundary surfaces,
such as distinctive regions [18,19] and salient regions
[16,20]. However, most of the shape descriptors are
surface-based measurements, which do not explicitly
consider the volumetric information inside 3D shapes.
The work most related to ours is the shape diameter
function (SDF) [10,11,15] presented by Shamir et al. The
SDF is a scalar function defined on the boundary surface of
a 3D shape, but it provides a link between the local volume
of the shape and its boundary through mapping volu-
metric information onto the surface boundary. In essence,
the shape diameter is approximated instead of computing
the actual medial axis. As a shape descriptor, the SDF is
pose-invariant. Another existing volume-oriented surface

6 J. Feng et al. / Signal Processing 112 (2015) 4-16

metric is inner distance [3], which measures the length of
the shortest path between a pair of surface points within
the object's volume. Our recent work extended inner
distance [4] and derived some applications [21-23]. As
pairwise point distances, inner distance is pose-invariant
but not junction-aware.

Generally speaking, most existing shape descriptors are
not specifically designed to characterize the junction
features of 3D articulated models. Moreover, many of them
relate to the measurements of local surface convexities or
concavities, but such convex and concave features cannot
completely reflect characteristics of volumetric junctions.
A reasonable junction-aware descriptor should also cap-
ture the local volumetric context of 3D shapes. In contrast,
this paper exploits the volume-oriented measurement (i.e.
shape-radius) and quantifies its variation as a junction-
aware shape descriptor.

3. Computing junction-aware shape descriptor

This section first introduces the definition of articulated
shapes and links it with the local shape-radius. Then we
present an algorithm for computing the junction-aware
shape descriptor of 3D articulated models.

3.1. Articulated shapes and shape-radius

In this paper, the input model is dealt with as a 3D
articulated shape defined by a closed surface of triangular
mesh. Based on several previous bodies of literature [2,3,5],
the articulated shape can be roughly defined as follows.

Definition 1 (Articulated shape). A shape A consisting of K
disjoint rigid parts Ry,...,Rx and L flexible junctions Jy,...J;,
such that

A=Ry U~ UR)U(Jy U UJp, M

is called an articulated shape. Intuitively, the shape A
should satisfy the following conditions:

(1) A can be decomposed into several rigid parts con-
nected by junctions.

(2) Each junction connected by rigid parts is relatively
small when compared to its connected parts.

(3) Let @ be a transformation that changes the pose of A. @
is roughly considered as an articulated transformation
if the transformation of any part of A is rigid (rotation
and translation only) and the transformation of junc-
tions can be non-rigid or flexible.

(4) The new shape A" achieved from articulation of A is
again an articulated object and can articulate back to A.
This preserves the topology between the articulated
shapes after articulated transformation.

Fig. 1 illustrates an articulated shape and its articulated
transformation.

The idea of junction-aware shape descriptor presented
in this paper is to create a type of low pass filtering to
the local shape-radius measurement, which relates to the

Fig. 1. [llustration of an articulated shape and its articulated transforma-
tion. An articulated shape A= (R; U R, U R3) U (J; U J,) consists of three
rigid parts (R, R, and Rs) and two junctions (J; and J,). The shape A can
change its appearance into A'=(R; UR, URj) U (J; UJ,) through an
articulated transformation &, where &~ ! denotes the reverse mapping of .

medial axis transform (MAT). We refer to [10,11] for a
short review as follows. In general, the MAT represents an
object by the distance of each point to the medial axis that
can be intuitively thought of as the skeleton of the object.
The distance from an arbitrary point on the boundary to
the medial axis is the radius of the maximal ball that is
completely contained within the object. This ball is also
called the medial-ball, and its radius can be considered as
the local shape-radius that provides an effective link from
the object’s volume to its boundary surface.

Our work is mainly inspired by Definition 1, especially for
that the junctions between parts are relatively small com-
pared to the parts they connect. It implies that the shape-
radius often changes a lot when an observing boundary
point shifts across the junction portion. This leads to the
realization that junctions can be captured by considering
local shape-radius variation. Fig. 2 illustrates such observa-
tion by an example, where there is a large change of local
shape-radius as the observing point crosses junction portion.

3.2. The algorithm implementation

Starting with a closed mesh model as an input, the
main procedure of our algorithm consists of two steps: (1)
approximating the local shape-radius and (2) computing
the shape-radius variation. The details of each step are
given as follows.

3.2.1. Approximating the local shape-radius

Computing the exact medial axis of a mesh surface is a
complex and expensive task [10,11], and the medial axis
itself is sensitive to perturbation and noise on the object's
boundary. Therefore, we adopt the classical ray-shooting
technique of shape diameter function (SDF) [10,11] to
approximate the local shape-radius instead of computing
the exact medial axis.

The first step of the algorithm can be conducted as
follows. Given a mesh surface A and an arbitrary vertex
p €A, a cone centered around p's inward-normal direction
(the opposite direction of its normal) is created. Then
some rays are shot inside this cone to the opposite side
of the surface (see the green rays in Fig. 3(a)). Next, the
intersection points between the rays and the boundary
surface are collected, and the median or weighted average
length of all intersection rays is defined as the shape

J. Feng et al. / Signal Processing 112 (2015) 4-16 7

€8

Fig. 2. Illustration of the local shape-radius (green) as observed from a boundary point travelling along the articulated shape (from (a) to (h)). Note that
there is a large change in local shape-radius as the observing point crosses the junction portion. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)

diameter of p [10,11]. Finally, the length of local shape-
radius of p, denoted by f(p), is equal to half of its shape
diameter (see the red line segment in Fig. 3(a)).

To accelerate the intersection computation, a spatial
octree is built around the mesh. Moreover, the outliers
removal strategy is also used for removing the rays that
have no intersection with the mesh [10,11], which makes
the shape-radius calculation robust to cracks and holes in
non-watertight meshes.

3.2.2. Computing shape-radius variation

After approximating the local shape-radius of each vertex
on the boundary, the next step is to develop a junction-aware
shape descriptor for a 3D articulated model based on local
shape-radius variation. As discussed in Section 3.1, the pri-
mary problem lies in how to measure the changes of local
shape-radius between a point and its neighborhood. To
address this issue, this section typically uses a center-
surround filter operator to quantify the changes. Our idea is
inspired by Lee et al.'s method [16], in which mesh saliency,
as a measurement of regional importance, is computed using
a center-surround operator on Gaussian-weighted mean cur-
vatures. In this section, we also takes advantage of a center

surround mechanism for computing local shape-radius varia-
tion, which is similar to [16]. The main reason that we use the
center-surround mechanism is that it has the intuitive appeal
of being able to identify these regions which are distinctive
from their surrounding context. The details of the algorithm
are given as follows.

For each vertex p € A, we first find its k-nearest neighbor-
hood using the ANN library.! One can consider to define the
neighborhood based on different distance metrics, such as
the Euclidean distance or geodesic distance. We have tried
both and found that the Euclidean distance yields similar
results to geodesic distance yet faster to compute. Let Ny (p)
denote the set of k-nearest neighborhood vertices of p.

Then we define the junction-aware shape descriptor at
each vertex p as the Gaussian-weighted average of local
shape-radius variation between p and its neighboring
vertices:

Txe N fX) —f(P)lexp[— IXx—pl?/(20%)]
Tx e Np €XP[— IX—pII?/(202)]

Fp)= , @)

1 http://www.cs.umd.edu/ ~ mount/ANN/

http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/

8 J. Feng et al. / Signal Processing 112 (2015) 4-16

c

Fig. 3. Illustration of local shape-radius, shape-radius variation and junction-aware shape descriptor. (a) Teddy model with a demonstration of ray shooting
from a sample vertex on the boundary, where the red line is the shape-radius is shown. (b) The shape-radius values on the model are visualized. (c) The
shape-radius variation is displayed. (d) The junction-aware shape descriptor, where junctions are highlighted by the descriptor is visualized. The high
values are displayed by warmer colors (red and yellow), while the low values are displayed by cooler colors (green and blue). (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

where F(p) denotes the shape descriptor of p, f(p) is the
shape-radius of p computed in Section 3.2.1, [f(X)—f(p)|
denotes the local shape-radius variation between p and its
neighboring vertex X, and ¢ is the standard deviation
of the Gaussian filter. In our implementation, ¢ for each
vertex p is adaptively computed as the average distance
between p and its neighboring vertices. F(p) is insensitive
to shape deformation that does not alter the volu-
metric shape locally, which includes articulated deforma-
tion or skeleton based movements or piecewise rigid
transformation.

The following Algorithm 1, named VertexDescriptor,
gives the pseudo-code of applying Eq. (2) to a single vertex
p, where the algorithm returns the value of junction-aware
descriptor. Fig. 3 illustrates our method by a Teddy model,
in which Fig. 3(b) visualizes the shape-radius values on the
mesh. Fig. 3(c) shows the shape-radius variation, which is
computed by the average difference of the shape-radius
between each vertex and its neighborhood vertices. Fig. 3
(d) displays the values of junction-aware shape descriptor
by applying the Gaussian filter to the shape-radius varia-
tion. Observe that how the junction portions are high-
lighted by our descriptor.

Algorithm 1. VertexDescriptor (Vertex p).

1: Find k-nearest neighborhood vertices {q;} of p;

k=1{q;}l;

Compute ¢ as the average of Euclidean distances between {q;}
and p;

4: normalizer=0;

5: sum=0;

6: fori: =1tokdo

7

8

w N

d=Ilp—ql;
T W=exp(—d’/26%);
9: variation=|f(p) —f(q;)|;
10: sum + =W. variation;
11: normalizer + =W,
12: end for
13: return descriptor=sum/normalizer;

3.2.3. Parameter analysis

This section analyzes the parameters used in our
junction-aware shape method. We do not try to adaptively
optimize the parameters, instead we fixed them at specific
values that we observe to produce fairly good results.

The implementation of Algorithm 1 includes two
important parameters. The first one is the number k of
neighborhood vertices. The descriptor with the small
neighborhood number k highlights the thin junction fea-
tures, while the descriptor with the large k identifies
the thick junction features. Fig. 4 shows the results of
junction indication with different k selections. In Fig. 4(a),
the small k sharpens the junction features, but this may
result a discontinuous feature (see the joint of teapot).
In contrast, in Fig. 4(d), the large k over-smooths the
junction features, but this may introduce some redundant
features. We typically set k=20 for large meshes in our
experiments.

The second important parameter is the standard devia-
tion ¢ of the Gaussian filter. In Eq. (2), we are assuming a
cut-off for the Gaussian filter at a distance ¢ that penalizes
the neighborhood vertices far from p. In practice, one may
choose a large ¢, such as the maximal distances between p
and its neighboring vertices, but this often over-smooths
the junction features.

4. Experimental results and applications

In this section, we apply the junction-aware shape
descriptor to several geometry processing applications
to illustrate its capability and effectiveness. Note that in
each application, the weights, k and ¢ used in Algorithm 1,
of the junction-aware descriptor are fixed. Also, our
goal herein is not to design new algorithms, but to
evaluate the capability and effectiveness induced by our
junction-aware descriptor to existing applications and
algorithms.

J. Feng et al. / Signal Processing 112 (2015) 4-16 9

b

Fig. 4. The junction-aware shape descriptor is relative to the number k of neighborhood vertices. (a) k=10. (b) k=20. (c) k=40. (d) k=70. The small k
sharpens the junction features, while the large k over-smooths the junction features.

4.1. Experimental setting

Our algorithm is implemented in C++ and experi-
mented with adequate 3D articulated models. All the
experiments are run on a PC with an Intel 3.3 GHz
processor and 6 GB memory. The tested models are
selected from two well-known 3D articulated shape data-
bases, including Princeton Segmentation Benchmark (PSB)
[24] and ISDB [10].

® PSB [24] is a benchmark for 3D mesh segmentation,
where some object categories like humans and animals
are selected for our junction identification purpose.

® [SDB[10] is a database of different articulated models of
animals and humans containing about 104 models.

The overall performance of our method is largely
related with the efficiency of ray-shooting process at the
step of approximating the local shape-radius. In the pre-
processing step, we have used an axis-aligned octree at
depth 5 built around the mesh to assist in intersection
finding. In general, this octree construction takes little
time, and consequently, it only takes a few minutes to
compute the shape-radius even on large meshes. As an
example for a mesh with 4k vertices, it takes around 30 s
to calculate the descriptor excluding the time of loading
the model, where 50 rays are shot for ray-shooting at each
vertex. Table 1 lists the computational time of some
examples used in our experiments, where “# Vertices” is
the number of vertices of each mesh model, “T 1” is the

Table 1

Computational time of some models used in our experiments.
Models # Vertices T1%(s) T 2" (s)
Teapot 4k 31 38.7
Deer 4k 21 44.2
Ant 6.5k 19.6 116.5
Octopus 8k 50.9 99
Camel 10k 54.7 168.4
Hand 12k 82.3 193.6
Teddy 13k 94.6 166.1
Horse 15k 99.8 222.8

2“T 1” is the time for octree construction and cell classification
during the preprocessing step.

b «T 2" is the time for shape-radius approximation using the ray-
shooting technique.

time for octree construction and cell classification during
the preprocessing step, and “T 2” is the time for shape-
radius approximation using the ray-shooting technique.

4.2. Testing the robustness of our method

To verify the capability of our method, several articu-
lated models are tested and demonstrated in Fig. 5. The
left column is the original models, the middle column
shows their SDF values and the right column displays the
result of junction-aware descriptor. In these cases, we can
see that the large values of junction-aware descriptor,
highlighted by red and yellow color, appear consistently
at the desired junction regions. For example, the positions

10 J. Feng et al. / Signal Processing 112 (2015) 4-16

Fig. 5. Visualizing the SDF value and our junction-aware shape descriptor. Rows are hand, horse, teapot and camel. The leftmost column shows the original
models, the middle one visualizes the SDF value, and the rightmost one displays our junction-aware shape descriptor. The high values are displayed by
warmer colors (red and yellow), while the low values are displayed by cooler colors (green and blue). (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)

of fingers connected with the palm are highlighted, and
the joints of handle and the body of a teapot are clearly
different. This result shows that the proposed descriptor
can make these junction regions distinct from other places.

The robustness of our method can be recognized by its
insensitivity to the surface noise which may exist in many
scanned models. To test the capability of our method
to handle the noise, we add the uniformly distributed
random noise along the vertex normals with increasing
variances of the diagonal of the bounding box. Fig. 6
shows the result of a vase model, where a series of noisy
models are produced by randomly adding Gaussian noise
to each vertex along the positive normal directions with

increasing variances. The result shows that the values of
our junction-aware shape descriptor in different level
noise are almost consistent with each other.

4.3. Comparison with several relevant methods

We also compare our work with several methods of
surface-based measurements including mean curvature and
mesh saliency [16]. Fig. 7 shows the result of various examples
using mean curvature, mesh saliency and our junction-aware
shape descriptor. The result suggests that mean curvature only
reflects the convexities or concavities of local changes on
boundary surface, and it is very sensitive to local perturbation

J. Feng et al. / Signal Processing 112 (2015) 4-16 1

Cc

Fig. 6. Testing the robustness of our junction-aware shape descriptor for the same model but with different level noise. (a) Our descriptor for the original
vase model without adding any noise is shown. (b)-(d) Our descriptor for the noisy models added the noise along the vertex normals with 1%, 5% and 10%

variances, respectively, is shown.

and noise on surface. Mesh saliency [16,20] is a measurement
of regional importance for 3D meshes using a center-surround
operator on Gaussian-weighted mean curvatures. It is able to
identify the regions that are different from their surrounding
context. Although mesh saliency measurement is superior to
mesh curvature, it does not capture the volumetric context
and structure changes inside 3D shapes. In addition, mesh
saliency has the same drawback with mean curvature during
identifying the junction features, ie. that the convex and
concave features on local surfaces do not completely reflect
the characteristics of junctions. For example, the nose of deer
and the tips of octopus's tentacles are convex portions (see the
middle column of Fig. 7) which are highlighted by both mean
curvature and mesh saliency, but they are not junctions. In
contrast, our junction-aware descriptor ignores such convex
features and distinguishes the junction features well.

4.4. Applications

The junction-aware shape function presented in this
paper is a new powerful geometric measurement, which
encodes junction information on the shape boundary surface
through explicitly considering the volumetric information
inside 3D shapes. It offers a new perspective for under-
standing 3D articulated shapes, which can assist many other
geometry processing applications. Some potential applica-
tions in computer vision and computer graphics may benefit
from our descriptor. This section explores two potential
applications of our descriptor in junction region extraction
and handle loop approximation.

4.4.1. Initial junction region extraction

A direct application of our shape descriptor is for initial
junction region extraction, which can assist on locating the
targets to be deformed during articulated shape deformation.
This can be simply done by using a predefined threshold 1 to

divide the descriptor values of mesh vertices into two types
of regions, i.e. junction regions and rigid parts. Here we mark
these vertices with their descriptor values larger than the
threshold 1 as the candidate vertices of junction regions, and
the remaining vertices are marked as rigid parts. Fig. 8 shows
an example of this application for several models, where the
threshold 1 is typically selected as the median of descriptor
values of all vertices on the mesh.

However, when using such a predefined threshold for
classifying the descriptor values of vertices into junction
portions and rigid parts, the result may be unsatisfactory
somewhere. In practice, because of the influence of local
noise and perturbation, the distribution of computed shape
descriptors may not always be smooth and continuous on
boundary surfaces. This results in that some mesh vertices
located in a presumptive junction region are not included
in this junction, or that some distant vertices with high
descriptor values are misclassified as the junction portion,
leading to a discontinue junction region. As an example,
some vertices on the ant's tail in Fig. 11(c) are wrongly
identified as junction when using a threshold of descriptor
median (see the colored regions on the ant's tail). This also
happens in the bottom of the palm in Fig. 11(a).

Therefore, a more desired junction refinement needs
further processing after extracting the initial junction
region. In addition, a clear cut of curve along the refined
junction region may provide many supports to improve
the performance of articulated shape segmentation, so
how to compute the cut along the junction region is also
an interesting problem. We will introduce an algorithm to
solve the above two issues in the following section.

4.4.2. Junction refinement and handle loop approximation
This section includes two purposes, i.e. how to obtain

a more desired junction region and how to compute a cut

of curve along the junction region. To achieve them, we

12 J. Feng et al. / Signal Processing 112 (2015) 4-16

Fig. 7. Comparing our junction-aware shape descriptor with mean curvature and mesh saliency. Rows are vase, deer, ant and octopus. The leftmost column
shows the values of mean curvature, the middle one visualizes the values of mesh saliency, and the rightmost one displays our junction-aware shape
descriptor.

J. Feng et al. / Signal Processing 112 (2015) 4-16 13

: |

&

/

\
3 ;

N\
&

Fig. 8. Application to initial junction region extraction by using a predefined threshold to divide the descriptor values into two regions, where the colored
regions are identified as the initial junction regions and the remaining ones denote the rigid parts. (For interpretation of the references to color in this

figure caption, the reader is referred to the web version of this article.)

introduce a cluster-based algorithm for refining the initial
junctions and approximating a handle loop as the cut along
each junction. Our algorithm consists of three steps as
follows.

(1) Firstly, we group all the vertices on initial junction
regions into different clusters, one of which denotes a
junction region to be further refined.

(2) Then, we refine the vertices on each clustering junc-
tion through removing some redundant vertices and
adding some missing vertices, which leads to a desired
junction region.

(3) Finally, we compute a handle loop along each junction
region as the cut of shape segmentation.

Fig. 9 illustrates the procedure of our algorithm. The
following gives the details of each step of the algorithm.

In the first step, all vertices of initial junction regions
are first extracted using a predefined threshold, as shown
in Section 4.4.1. Then we group these extracted vertices
into different clusters, one of which denotes a junction
region to be further refined. Here the clustering technique
we use is the K-means+ + algorithm [25] that is an
extension version of K-means algorithm. Compared with
the traditional K-means algorithm that heavily depends on
the initial seeds, the K-means+ + algorithm overcomes
this disadvantage by initializing seed points iteratively.
In Fig. 9(b), our method obtains three clusters on the
horse's leg.

In the second step, we project all vertices of boundary
surface in an inward normal direction to a distance which
is shape-radius value [11]. This creates a set of reference
points inside the shape that lies near its medial axis, as
shown in Fig. 10. For each clustering junction, we find its
junction center, which is one reference point with the
maximum density computed by connecting the vertices
of the cluster. Next, the boundary vertices, whose corre-
sponding reference points are close to the junction center,
are collected as the new vertices and added into the

refined junction region. Meanwhile, some vertices of initial
clusters, whose corresponding reference points are far
from the junction center, are removed from the refined
junction region. In Fig. 9(c), the colored vertices denote the
refined junction regions. In contrast with Fig. 9(b), some
new vertices are added and some old ones are removed at
the refined junction regions on the horse's leg. We can find
that the refined junction regions are smoother and more
continuous than the old ones.

Alternatively, the last step further computes the handle
loop [26,27] which is a critical geometric feature. The
identification of handle loops can benefit a broad range
of applications such as shape segmentation, topology
simplification, surface parameterization and shape recog-
nition [26,27]. Here we first use robust principal compo-
nent analysis [28] for these vertices on each refined
junction region to compute a plane. Then the intersection
curve between the plane and the junction region forms the
handle loop. In Fig. 9(d), the green loops denote the handle
loops. In Fig. 11, the handle loops are displayed as the blue
curves surround junction regions of each model.

4.4.3. Method evaluation

Besides visual inspection of the results of our method as
shown in Fig. 11, we also present a brief statistical evaluation
for our descriptor's performance on some articulated models
selected from PSB [24,29]. PSB is built for testing 3D mesh
segmentation algorithms, which covers a broad set of object
categories (e.g. human, animals, furniture, tools, etc.). For our
application purpose, we only choose some representative
models of object categories, which most resemble articulated
models. In addition, PSB provides segment boundaries (cuts)
made manually by different people for each model, which
are treated as the cuts of the “ground truth” segmentation.
Also, we have discussed about the relationship of part
boundary and junction in Section 2. Therefore, we set the
cuts of meaningful parts of each selected model as the
ground truth of our method evaluation, in which some
non-joint cuts (e.g. nose contour and hairline on the face)
in PSB are discarded since they are not relative to junctions.

14 J. Feng et al. / Signal Processing 112 (2015) 4-16

c

Fig. 9. Application to handle loop approximation for obtaining a desired cut along each junction portion. (a) The initial junction portions extracted with a
predefined threshold of descriptor median. (b) We first group all the candidate vertices on initial junction portions into different clusters (highlighted by
different colors). (c) Then we refine the vertices on each junction portions. (d) The final handle loops computed. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)

a b

Fig. 10. Reference points (red dots) are computed by projecting all vertices of boundary surface inside the shape. Here the boundary surfaces are colored by
their shape-radius values. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

J. Feng et al. / Signal Processing 112 (2015) 4-16 15

b

Fig. 11. Approximating the handle loops (blue curves). (a) Hand. (b) Vase. (c) Ant. (d) Octopus. (e) Teapot. (For interpretation of the references to color in

this figure caption, the reader is referred to the web version of this article.)

Table 2
Evaluation of our method on some models selected from PSB.

Category # # # # Matched Matching
Models® Cuts” Loops® loops! rate®(%)

Teddy 13 91 95 89 97.8

Ant 20 210 197 192 914

Octopus 20 155 166 147 94.8

Vase 17 107 93 90 84.1

2 “# Models” is the number of models in each object category.

b «# Cuts” is the number of cuts in the ground truth of manual
segmentation [29].

€ “# Loops” is the number of handle loops approximated by our
method.

d “# Matched loops” is the number of handle loops matched with the
cuts in ground truth.

€ “Matching rate” is the ratio of the number of matched loops to the
number of cuts in ground truth.

In our test, the database of junction evaluation contains
70 models from four categories (i.e. Teddy, Ant, Octopus
and Vase) in PSB, the evaluation process examines how

many of our approximated handle loops match with the
ground truth cuts of each model. Table 2 shows the result
of method evaluation, where “# Models” is the number of
models in each object category, “# Cuts” is the number of
cuts in the ground truth of manual segmentation, “#
Loops” is the number of handle loops approximated by
our method and “# Matched loops” is the number of
handle loops matched with the cuts in the ground truth.
The evaluation result is typically indicated by “Matching
rate”, which is the ratio of the number of matched loops to
the number of cuts in ground truth. The matching rate is
generally very high (the average is 92%), with a maximum
of 97.8% in the “Teddy” category and a minimum of 84.1%
in the “Vase” category. This suggests that our descriptor
can locate most of the junctions in articulated models
of PSB.

5. Conclusion

This paper considers the problem of junction descrip-
tion and detection for 3D articulated shapes, which only

16 J. Feng et al. / Signal Processing 112 (2015) 4-16

resorts to geometric representation of the given individual
shape without any other reference model. The main
challenge lies in how to encode junction information on
the boundary surface of the shape. By revealing the
relationship of junction locations and shape-radius, we
presented a new method for computing the junction-
aware shape descriptor, which measures the local shape-
radius variation as the Gaussian-weighted average of
shape-radius in the neighborhood of each point on the
surface. Being different with local surface-based measure-
ment, the new descriptor takes account of the volumetric
information within 3D shapes to capture the junction
features. The effectiveness of our method is testified by a
number of examples selected from several well-known 3D
articulated shape databases. Furthermore, we explored
several potential applications including junction region
extraction and handle loop approximation, which could
benefit from our descriptor. In addition, method evaluation
is also introduced to show our descriptor's performance on
some articulated models selected from PSB.

The type of junctions studied in this paper is restricted
to non-rigid shape articulations, and the junction-aware
feature we focused on is the shape-radius (local volume)
variation. For this reason, this method does not involve an
explicit structure of a 3D shape, and its effectiveness may
be ineffective when applied on some artificial shapes with
consistent shape-radius. For instance, as for a bending
cylinder-like shape with nearly consistent shape-radius,
our method will obtain almost identical values of descrip-
tors, leading to indistinctive results. One possible way to
overcome this drawback is to combine more volumetric
information besides considering the shape-radius varia-
tion. On the other hand, the ray-shooting technique relies
heavily on the determination of normal direction of a
vertex, which has significant influence on the final result,
so a more robust method for normal direction generation
(or the normal-free method) is needed to cope with mesh
surface noises such as evident fluctuations and holes.

Acknowledgements

This research is supported by the National Science
Foundation of China (61272229, 61003095), the National
Technological Support Program for the 12th-Five-Year Plan
of China (2012BAJ03B07). The second author is also
supported by Chinese 863 Program (2012AA040902) and
Chinese 973 Program (2010CB328001).

References

[1] A. Bronstein, M. Bronstein, R. Kimmel, Numerical Geometry of Non-
Rigid Shapes, Springer, Berlin, Germany, 2007.

[2] A.Bronstein, M. Bronstein, A. Bruckstein, R. Kimmel, Analysis of two-
dimensional non-rigid shapes, Int. J. Comput. Vis. 78 (1) (2008)
67-88.

[3] H. Ling, D. Jacobs, Shape classification using the inner-distance, IEEE
Trans. Pattern Anal. Mach. Intell. 29 (2) (2007) 286-299.

[4] Y.-S. Liu, K. Ramani, M. Liu, Computing the inner distances of
volumetric models for articulated shape description with a visibility
graph, IEEE Trans. Pattern Anal. Mach. Intell. 23 (12) (2011)
2538-2544.

[5] C. Wang, Y.-S. Liu, M. Liu, J.-H. Yong, J.-C. Paul, Robust shape
normalization of 3D articulated volumetric models, Comput.-Aided
Des. 44 (12) (2012) 1253-1268.

[6] M. Shatsky, R. Nussinov, H.]. Wolfson, Flexible protein alignment and
hinge detection, Proteins 48 (2) (2002) 242-256.

[7] R.Liu, H. Zhang, A. Shamir, D. Cohen-Or, A part-aware surface metric
for shape analysis, Comput. Graphics Forum 28 (2) (2009) 397-406.

[8] D. Reniers, A. Telea, Part-type segmentation of articulated voxel-
shapes using the junction rule, Comput. Graphics Forum 27 (7)
(2008) 1845-1852.

[9] R. Su, C. Sun, T.D. Pham, Junction detection for linear structures
based on Hessian, correlation and shape information, Pattern
Recognit. 45 (10) (2012) 3695-3706.

[10] R. Gal, A. Shamir, D. Cohen-Or, Pose-oblivious shape signature, IEEE
Trans. Vis. Comput. Graphics 13 (2) (2007) 261-271.

[11] L. Shapira, A. Shamir, D. Cohen-Or, Consistent mesh partitioning and
skeletonization using the shape diameter function, Vis. Comput. 24
(4) (2008) 249-259.

[12] U. Emekil, D. Schneidman-Duhovny, H. Wolfson, R. Nussinov,
T. Haliloglu, Hingeprot: automated prediction of hinges in protein
structures, Proteins 70 (4) (2008) 1219-1227.

[13] O.K.-C. Au, C.-L. Tai, H-K. Chu, D. Cohen-Or, T.-Y. Lee, Skeleton
extraction by mesh contraction, ACM Trans. Graphics 27 (3) (2008).
(Article 44).

[14] T. Ju, M. Baker, W. Chiu, Computing a family of skeletons of
volumetric models for shape description, Comput.-Aided Des. 39
(5) (2007) 352-360.

[15] L. Shapira, S. Shalom, A. Shamir, R.H. Zhang, D. Cohen-Or, Contextual
part analogies in 3D objects, Int. J. Comput. Vis. 89 (2-3) (2010)
309-326.

[16] C.-H. Lee, A. Varshney, D. Jacobs, Mesh saliency, ACM Trans. Graphics
24 (3) (2005) 659-666.

[17] O.K.-C. Au, Y. Zheng, M. Chen, P. Xu, C.-L. Tai, Mesh segmentation
with concavity-aware fields, IEEE Trans. Vis. Comput. Graphics 18 (7)
(2012) 1125-1134.

[18] P. Shilane, T. Funkhouser, Distinctive regions of 3D surfaces, ACM
Trans. Graphics 26 (2) (2007). (Article 7).

[19] T. Funkhouser, P. Shilane, Partial matching of 3D shapes with
priority-driven search, in: Symposium on Geometry Processing
(SGP'06), 2006, pp. 131-142.

[20] Y.-S. Liu, M. Liu, D. Kihara, K. Ramani, Salient critical points for
meshes, in: ACM Symposium on Solid and Physical Modeling
(SPM'07), 2007, pp. 277-282.

[21] Y.-S. Liu, Y. Fang, K. Ramani, IDSS: deformation invariant signatures
for molecular shape comparison, BMC Bioinf. 10 (157) (2009) 1-14.

[22] Y.-S. Liu, M. Wang, J.-C. Paul, K. Ramani, 3DMolNavi: a web-based
retrieval and navigation tool for flexible molecular shape compar-
ison, BMC Bioinf. 13 (95) (2012) 1-7.

[23] Y.-S. Liu, Q. Li, G.-Q. Zheng, K. Ramani, W. Benjamin, Using diffusion
distances for flexible molecular shape comparison, BMC Bioinf. 11
(480) (2010) 1-15.

[24] X. Chen, A. Golovinskiy, T. Funkhouser, A benchmark for 3D mesh
segmentation, ACM Trans. Graphics 28 (3) (2009). (Article 73).

[25] K-means+ + Clustering, Available from: http://rosettacode.org/
wiki/K-means+ + _clustering.

[26] T.K. Dey, K. Li,]. Sun, D. Cohen-Steiner, Computing geometry-aware
handle and tunnel loops in 3D models, ACM Trans. Graphics 27 (3)
(2008). (Article 45).

[27] TK. Dey, F. Fan, Y. Wang, An efficient computation of handle and
tunnel loops via reeb graphs, ACM Trans. Graphics 32 (4) (2013).
(Article 32).

[28] Y.-S. Liu, K. Ramani, Robust principal axes determination for point-
based shapes using least median of squares, Comput.-Aided Des. 41
(4) (2009) 293-305.

[29] A Benchmark for 3D Mesh Segmentation, Available from: (http://
segeval.cs.princeton.edu/).

http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref1
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref1
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref2
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref2
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref2
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref3
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref3
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref4
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref4
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref4
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref4
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref5
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref5
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref5
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref6
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref6
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref7
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref7
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref8
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref8
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref8
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref9
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref9
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref9
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref10
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref10
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref11
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref11
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref11
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref12
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref12
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref12
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref13
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref13
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref13
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref14
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref14
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref14
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref15
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref16
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref16
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref17
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref17
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref17
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref18
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref18
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref21
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref21
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref22
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref22
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref22
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref23
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref23
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref23
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref24
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref24
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref26
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref26
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref26
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref27
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref27
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref27
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref28
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref28
http://refhub.elsevier.com/S0165-1684(14)00243-6/sbref28
http://segeval.cs.princeton.edu/
http://segeval.cs.princeton.edu/

	Junction-aware shape descriptor for 3D articulated models using local shape-radius variation
	Introduction
	Related work
	Computing junction-aware shape descriptor
	Articulated shapes and shape-radius
	The algorithm implementation
	Approximating the local shape-radius
	Computing shape-radius variation
	Parameter analysis

	Experimental results and applications
	Experimental setting
	Testing the robustness of our method
	Comparison with several relevant methods
	Applications
	Initial junction region extraction
	Junction refinement and handle loop approximation
	Method evaluation

	Conclusion
	Acknowledgements
	References

