
Neural Gradient Learning and Optimization for Oriented Point
Normal Estimation

Qing Li
School of Software, Tsinghua

University
Beijing, China

leoqli@tsinghua.edu.cn

Huifang Feng
School of Informatics, Xiamen

University
Xiamen, China

fenghuifang@stu.xmu.edu.cn

Kanle Shi
Kuaishou Technology

Beijing, China
shikanle@kuaishou.com

Yi Fang
Center for Artificial Intelligence and

Robotics, New York University
Abu Dhabi, UAE
yfang@nyu.edu

Yu-Shen Liu∗
School of Software, Tsinghua

University
Beijing, China

liuyushen@tsinghua.edu.cn

Zhizhong Han
Department of Computer Science,

Wayne State University
Detroit, USA

h312h@wayne.edu

ABSTRACT
We propose Neural Gradient Learning (NGL), a deep learning ap-
proach to learn gradient vectors with consistent orientation from
3D point clouds for normal estimation. It has excellent gradient
approximation properties for the underlying geometry of the data.
We utilize a simple neural network to parameterize the objective
function to produce gradients at points using a global implicit rep-
resentation. However, the derived gradients usually drift away from
the ground-truth oriented normals due to the lack of local detail
descriptions. Therefore, we introduce Gradient Vector Optimiza-
tion (GVO) to learn an angular distance field based on local plane
geometry to refine the coarse gradient vectors. Finally, we formu-
late our method with a two-phase pipeline of coarse estimation
followed by refinement. Moreover, we integrate two weighting
functions, i.e., anisotropic kernel and inlier score, into the optimiza-
tion to improve the robust and detail-preserving performance. Our
method efficiently conducts global gradient approximation while
achieving better accuracy and generalization ability of local feature
description. This leads to a state-of-the-art normal estimator that
is robust to noise, outliers and point density variations. Extensive
evaluations show that our method outperforms previous works in
both unoriented and oriented normal estimation on widely used
benchmarks. The source code and pre-trained models are available
at https://github.com/LeoQLi/NGLO.

CCS CONCEPTS
• Computing methodologies → Point-based models; Mesh
models; Reconstruction.

∗The corresponding author is Yu-Shen Liu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12. . . $15.00
https://doi.org/10.1145/3610548.3618253

KEYWORDS
Geometric Deep Learning, Point Clouds, Normal Estimation, Neural
Gradient, Surface Reconstruction
ACM Reference Format:
Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han.
2023. Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation. In SIGGRAPH Asia 2023 Conference Papers (SA Conference Papers
’23), December 12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY,
USA, 21 pages. https://doi.org/10.1145/3610548.3618253

1 INTRODUCTION
Normal estimation is a fundamental task in computer vision and
computer graphics. Oriented normal with consistent orientation
is a prerequisite for many downstream tasks, such as graphics
rendering [Blinn 1978; Gouraud 1971; Phong 1975] and surface
reconstruction [Kazhdan 2005; Kazhdan et al. 2006; Kazhdan and
Hoppe 2013]. Due to noise levels, uneven sampling densities, and
various complex geometries, estimating oriented normals from
3D point clouds still remains challenging. As shown in Fig. 1, the
paradigm of oriented normal estimation usually includes: unori-
ented normal estimation that provides vectors perpendicular to
the surfaces defined by local neighborhoods; normal orientation
that aligns the directions of adjacent vectors for global consistency.
Over the past few years, many excellent algorithms [Ben-Shabat
and Gould 2020; Lenssen et al. 2020; Li et al. 2022b,a, 2023b; Zhu
et al. 2021] have been proposed for unoriented normal estimation.
However, their estimated normals are randomly oriented on both
sides of the surface and cannot be directly used in downstream
applications without normal orientation. Most normal orientation
approaches are based on a propagation strategy [Hoppe et al. 1992;
Jakob et al. 2019; König and Gumhold 2009; Metzer et al. 2021;
Schertler et al. 2017; Xu et al. 2018]. These methods are mainly
based on the assumption of smooth and clean points, and carefully
tune data-specific parameters, such as the neighborhood size of
the propagation. Moreover, the issue of error propagation in the
orientation process may let errors in local areas overflow into the
subsequent steps.

The two-stage architecture of existing oriented normal estima-
tion paradigms needs to combine two independent algorithms, and
requires a lot of work to tune the parameters of the two algorithms.

ar
X

iv
:2

30
9.

09
21

1v
1 

 [
cs

.C
V

] 
 1

7 
Se

p 
20

23

https://github.com/LeoQLi/NGLO
https://doi.org/10.1145/3610548.3618253
https://doi.org/10.1145/3610548.3618253


SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

Normal
Estimation:

PCA
AdaFit

HSurf-Net

Normal
Orientation:

MST
SNO
ODP

Unoriented Normal

Oriented Normal

Point
Cloud

Neural Gradient Field 

Gradient Vector
Optimization

Neural Gradient
Learning

... ...

1 2

Ours
Previous

Figure 1: For oriented normal estimation, previous methods
usually conduct a two-stage pipeline, i.e., (1) unoriented nor-
mal estimation and (2) normal orientation, while ourmethod
achieves this through Neural Gradient Learning (NGL) and
Gradient Vector Optimization (GVO). We introduce effective
novel designs into our method that enable it to improve the
SOTA results.

More importantly, the stability and effectiveness of the integrated
algorithm cannot be guaranteed. In our experiments, we evaluate
the combinations of different algorithms for unoriented normal es-
timation and normal orientation. A key observation is that, for the
same normal orientation algorithm, integrating a better unoriented
normal estimation algorithm does not lead to better orientation
results. That is, using higher precision unoriented normals does
not necessarily result in more accurate oriented normals using
existing propagation strategies. In Fig. 2, we use a simple exam-
ple to illustrate that judging whether to invert the direction of
neighborhood normals based on a propagation rule will lead to
unreasonable results. The propagation strategy is affected by the
direction distribution of the unoriented normal vectors. Therefore,
it is necessary to design a complete and unified pipeline for oriented
normal estimation.

In a data-driven manner, the workflow of our proposed method
is an inversion of the traditional pipeline (see Fig. 1). We start by
solving normals with consistent orientation but possibly moderate
accuracy, and then we further refine the normals. We introduce
Neural Gradient Learning (NGL) and Gradient Vector Optimization
(GVO), defined by a family of loss functions that can be used with
point cloud data with noise, outliers and point density variations,
and efficiently produce high accurate oriented normals for each
point. Specifically, the NGL learns gradient vectors from global
geometry representation, while the GVO optimizes vectors based
on an insight into the local property. A series of qualitative and
quantitative evaluation experiments are conducted to demonstrate
the effectiveness of the proposed method.

To summarize, our main contributions include:
• A technique of neural gradient learning, which can derive gradi-
ent vectors with consistent orientations from implicit represen-
tations of point cloud data.

• A gradient vector optimization strategy, which learns an angular
distance field based on local geometry to further optimize the
gradient vectors.

Figure 2: Different cases of flipping (or not) vector 𝒏2 based
on vector 𝒏1. Given a reference vector 𝒏1, we propagate its
orientation to vector 𝒏2. The classic criteria is that we flip
the sign of 𝒏2 if 𝒏1·𝒏2 <0. We can observe that there are many
wrong cases according to this naive rule. The blue semicircle
denotes the angle range, and any vector 𝒏𝑖 within it satisfies
𝒏1 · 𝒏𝑖 >0. The surface is shown as a gray line and its ground-
truth normal as a red arrow. We let two normal vectors be
on the same point for better illustration. We only change 𝒏2
in each row and 𝒏1 in each column.

• We report the state-of-the-art performance for both unoriented
and oriented normal estimation on point clouds with noise, den-
sity variations and complex geometries.

2 RELATEDWORK
2.1 Unoriented Normal Estimation
The most widely used unoriented normal estimation method for
point clouds is Principle Component Analysis (PCA) [Hoppe et al.
1992]. Later, PCA variants [Alexa et al. 2001; Huang et al. 2009;
Lange and Polthier 2005; Mitra and Nguyen 2003; Pauly et al. 2002],
Voronoi-based paradigms [Alliez et al. 2007; Amenta and Bern 1999;
Dey and Goswami 2006; Mérigot et al. 2010], and methods based
on complex surfaces [Aroudj et al. 2017; Cazals and Pouget 2005;
Guennebaud and Gross 2007; Levin 1998; Öztireli et al. 2009] have
been proposed to improve the performance. These traditional meth-
ods [Cazals and Pouget 2005; Hoppe et al. 1992] are usually based on
geometric prior of point cloud data itself, and require complex pre-
processing and parameter fine-tuning according to different types
of data. Recently, some studies proposed to use neural networks to
directly or indirectly map high-dimensional features of point clouds
into 3D normal vectors. For example, the regression-based methods
directly estimate normals from structured data [Boulch and Mar-
let 2016; Lu et al. 2020; Roveri et al. 2018] or unstructured point
clouds [Ben-Shabat et al. 2019; Guerrero et al. 2018; Hashimoto and
Saito 2019; Li et al. 2022a, 2023b; Zhou et al. 2020a, 2022, 2020b]. In
contrast, the surface fitting-based methods first employ a neural
network to predict point weights, then they derive normal vectors
through weighted plane fitting [Cao et al. 2021; Lenssen et al. 2020]
or polynomial surface fitting [Ben-Shabat and Gould 2020; Li et al.
2022b; Zhang et al. 2022; Zhou et al. 2023; Zhu et al. 2021] on local
neighborhoods. In our experiments, we observe that regression-
based methods train models more stably and perform optimization



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

more efficiently without coupling the fitting step used in fitting-
based methods. In contrast, our method finds the optimal point
normal through a classification strategy.

2.2 Consistent Normal Orientation
The normals estimated by the above methods do not preserve a
consistent orientation since they only look for lines perpendicular
to the surface. Based on local consistency strategy, the pioneer-
ing work [Hoppe et al. 1992] and its improved methods [Jakob
et al. 2019; Schertler et al. 2017; Seversky et al. 2011; Wang et al.
2012; Xu et al. 2018] propagate seed point’s normal orientation
to its adjacent points via a Minimum Spanning Tree (MST). More
recent work [Metzer et al. 2021] introduces a dipole propagation
strategy across the partitioned patches to achieve global consis-
tency. However, these methods are limited by error propagation
during the orientation process. Some other methods show that
normal orientation can benefit from reconstructing surfaces from
unoriented points. They usually adopt different volumetric rep-
resentation techniques, such as signed distance functions [Mello
et al. 2003; Mullen et al. 2010], variational formulations [Alliez et al.
2007; Huang et al. 2019; Walder et al. 2005], visibility [Chen et al.
2010; Katz et al. 2007], isovalue constraints [Xiao et al. 2023], active
contours [Xie et al. 2004] and winding-number field [Xu et al. 2023].
The correctly-oriented normals can be achieved from their solved
representations, but their normals are not accurate in the vertical
direction. Furthermore, a few approaches [Guerrero et al. 2018;
Hashimoto and Saito 2019; Li et al. 2023a; Wang et al. 2022] focus
on using neural networks to directly learn a general mapping from
point clouds to oriented normals. Different from the above methods,
we solve the oriented normal estimation by first determining the
global orientation and then improving its direction accuracy based
on local geometry.

3 PRELIMINARY
In general, the gradient of a real-valued function 𝑓 (𝑥,𝑦, 𝑧) in a 3D
Cartesian coordinate system (also called gradient field) is given by
a vector whose components are the first partial derivatives of 𝑓 , i.e.,
∇𝑓 (𝑥,𝑦, 𝑧)= 𝑓𝑥 𝒊 + 𝑓𝑦𝒋 + 𝑓𝑧𝒌 , where 𝒊, 𝒋 and 𝒌 are the standard unit
vectors in the directions of the 𝑥,𝑦 and 𝑧 coordinates, respectively.
If the function 𝑓 is differentiable at a point 𝒑 and suppose that
∇𝑓 (𝒑)≠0, then there are two important properties of the gradient
field: (1) The maximum value of the directional derivative, i.e.,
the maximum rate of change of the function 𝑓 , is defined by the
magnitude of the gradient ∥∇𝑓 ∥ and occurs in the direction given
by ∇𝑓 . (2) The gradient vector ∇𝑓 is perpendicular to the level
surface 𝑓 (𝒑)=0.

Recently, deep neural networks have been used to reconstruct
surfaces from point cloud data by learning implicit functions. These
approaches represent a surface as the zero level-set of an implicit
function 𝑓 , i.e.,

S =
{
𝒙 ∈ R3 | 𝑓 (𝒙 ;𝜽 ) = 0

}
, (1)

where 𝑓 : R3 →R is a neural network with parameter 𝜽 , such as
multi-layer perceptron (MLP). Implicit function learning methods
adopt either signed distance function [Park et al. 2019] or binary
occupancy [Mescheder et al. 2019] as the shape representation.

(a) (c) (d) (e) (f)

Gradient Vector Output Normal Target Normal

P

(b)

Vector Samples Distance Field

Figure 3: (a-c): The neural gradient learning function 𝑓 takes
a point cloud 𝑷 as input and derives point-wise gradient ∇𝑓
within the network based on neighboring regions of the sur-
face. (d-f): The gradient vector optimization function𝑔 selects
the optimal vector sample according to angular distance as
the normal 𝒏.

If the function 𝑓 is continuous and differentiable, the formula
of normal vector (perpendicular to the surface) at a point 𝒑 is
𝒏𝒑 =∇𝑓 (𝒑)/∥∇𝑓 (𝒑)∥, where ∥·∥ means vector norm. Using neural
networks as implicit representations of surfaces can benefit from
their adaptability and approximation capability [Atzmon et al. 2019].
Meanwhile, we can obtain the gradient ∇𝑓 in the back-propagation
process of training 𝑓 .

4 METHOD
As shown in Fig. 3, our method consists of two parts: (1) the neu-
ral gradient learning (𝑷 → 𝑓 → ∇𝑓 ) to estimate inaccurate but
correctly-oriented gradients, and (2) the gradient vector optimiza-
tion (∇𝑓 →𝑔→𝒏) to refine the coarse gradients to obtain accurate
normals, which will be introduced in the following sections.

4.1 Neural Gradient Learning
Consider a point set 𝑿 = {𝒙𝑖 }𝑀1

𝑖=1 that is sampled from raw point
cloud 𝑷 (possibly distorted) through certain probability distribution
D, we explore training a neural network 𝑓 with parameter 𝜽 to
derive the gradient during the optimization. First, we introduce a
loss function defined by the form of

L(𝜽 ) = E𝒙∼D T (
𝐹 (𝒙 ;𝜽 ), F𝑿 (𝒙)) , (2)

where T : R×R→ R is a differentiable similarity function. 𝐹 (𝒙 ;𝜽 )
is the learning objective to be optimized and F𝑿 (𝒙) is the distance
measure with respect to 𝑿 . In this work, our insight is that incorpo-
rating neural gradients in a manner similar to [Atzmon and Lipman
2020, 2021] can learn neural gradient fields with consistent orienta-
tions from various point clouds. To this end, we add the derivative
data of 𝑓 , i.e.,

𝐹 (𝒙 ;𝜽 ) = 𝑓 (𝒙 ;𝜽 ) · 𝒗 , (3)
where 𝒗 = ∇𝑓 (𝒙;𝜽 )/∥∇𝑓 (𝒙 ;𝜽 )∥ is the normalized neural gradi-
ent. Eq. (3) incorporates an implicit representation and a gradient
approximation with respect to the underlying geometry of 𝑿 .

We first show a special case of Eq. (2), which is given by
L(𝜽 ) = E𝒙∼D T (

𝒙 − 𝑓 (𝒙 ;𝜽 ) · 𝒗, 𝒑) . (4)
Such definition of training objective has been used by surface re-
construction methods [Chibane et al. 2020; Ma et al. 2021] to learn



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

signed or unsigned distance functions from noise-free data. Recall
that the gradient will be the direction in which the distance value
increases the fastest. These methods exploit this property to move
a query position 𝒙 by distance 𝑓 (𝒙;𝜽 ) along or against the gra-
dient direction 𝒗 to its closest point 𝒑 sampled on the manifold.
Specifically, 𝑓 (𝒙;𝜽 ) is interpreted as a signed distance [Ma et al.
2021] or unsigned distance [Chibane et al. 2020]. This way they can
learn reasonable signed/unsigned distance functions from the input
noise-free point clouds. In contrast, we are not looking to learn an
accurate distance field to approximate the underlying surface, but
to learn a neural gradient field with a consistent orientation from a
variety of data, even in the presence of noise.

Next, we will extend Eq. (2) to a more general case for neural
gradient learning. Given a point 𝒙 , instead of using the unsigned
distance in [Atzmon and Lipman 2020] or its nearest sampling
point [Chibane et al. 2020; Ma et al. 2021], we consider the mean
vector of its neighborhood, that is

F𝑿 (𝒙) = 1
𝑘

𝑘∑︁
𝑖=1

(
𝒙 − N𝑘

𝑖 (𝒙, 𝑷 )), 𝒙 ∈ 𝑿 , (5)

where N𝑘
𝑖 (𝒙, 𝑷 ) denotes the 𝑘 nearest points of 𝒙 in 𝑷 . Intuitively,

F𝑿 (𝒙) ∈ R3 is a vector from the averaged point position 𝒙 =∑𝑘
𝑖=1 N𝑘

𝑖 (𝒙, 𝑷 )/𝑘 to 𝒙 .
For the similarity measure T of vector-valued functions, we

adopt the standard Euclidean distance. Then, the loss in Eq. (2) for
Neural Gradient Learning (NGL) has the format

L(𝜽 ) =





𝑓 (𝒙 ;𝜽 ) · 𝒗 − 1

𝑘

𝑘∑︁
𝑖=1

(
𝒙 − N𝑘

𝑖 (𝒙, 𝑷 ))





 . (6)

As illustrated in Fig. 3(b), ourmethod not onlymatches the predicted
gradient on the position of 𝒙 , but also matches the gradient on the
neighboring regions of 𝒙 . This is important because our input point
cloud is noisy and individual points may not lie on the underlying
surface. Finally, the training loss is an aggregation of the objective
for each neural gradient learning function L(𝜽 ) |𝒙𝑖 of 𝒙𝑖 , i.e.,

LNGL =
1
𝑀1

𝑀1∑︁
𝑖=1

L(𝜽 ) |𝒙𝑖 , 𝒙𝑖 ∈ 𝑿 . (7)

For the distribution D, we make it concentrate in the neighbor-
hood of 𝒙 in 3D space. Specifically, D is set by uniform sampling
points 𝒙 from 𝑷 and placing an isotropic Gaussian 𝑁 (𝒙, 𝜎2) for
each 𝒙 . The distribution parameter 𝜎 depends on each point 𝒙 and
is adaptively set to the distance from the 50th nearest point to
𝒙 [Atzmon and Lipman 2020, 2021].

Our network architecture for neural gradient learning is based
on the one used in [Atzmon and Lipman 2020; Ma et al. 2021], which
is composed of eight linear layers with ReLU activation functions
(except the last layer) and a skip connection. After training, the
network can derive pointwise gradients from the raw data 𝑷 (see
2D examples in Fig. 4).
Extension. If we assume the raw data 𝑷 is noise-free, that is, the
neighborsN𝑘 (𝒙, 𝑷 ) are located on the surface, then the formula of
Eq. (6) can take another form

L(𝜽 ) =





(𝑓 (𝒙 ;𝜽 ) · 𝒗 − 𝒙

) + 1
𝑘

𝑘∑︁
𝑖=1

N𝑘
𝑖 (𝒙, 𝑷 )






 . (8)

Clean Low Medium High

Figure 4: Our method can estimate gradient vectors (green
rays) from point clouds (black dots) with different noise lev-
els.

More particularly, if we set 𝑘 =1 and the nearest point of 𝒙 in 𝑷 be
𝒑, i.e., N𝑘=1 (𝒙, 𝑷 ) =𝒑, then the above formula is turned into the
special case in Eq. (4). Specifically, the derived formula in Eq. (8)
also distinguishes our method from the methods [Atzmon and
Lipman 2020, 2021; Chibane et al. 2020; Ma et al. 2021], since their
objectives only consider the location of each clean point, while our
proposed objective covers the neighborhood of each noisy point to
approximate the surface gradients.

4.2 Gradient Vector Optimization
A notable shortcoming of neural gradient learning is that the de-
rived gradient vectors are inaccurate because the implicit function
tries to approximate the whole shape surface instead of focusing
on fitting local regions. Therefore, the learned gradient vectors are
inadequate to be used as surface normals and need to be further
refined. Inspired by the implicit surface representations, we define
the expected normal as the zero level-set of a function

V =
{
𝒙 ∈ R3, 𝒗 ∈ R3 | 𝑔(𝒙, 𝒗; 𝝑) = 0

}
, (9)

where 𝑔 : R3 × R3 → R is a neural network with parameter 𝝑 that
predicts (unsigned) angular distance field between the normalized
gradient vector 𝒗 and the ground-truth normal vector 𝒏̂ (see Fig. 5).
Given appropriate training objectives, the zero level-set of 𝑔 can
be a vector cluster describing the normals of point cloud 𝑷 . To this
end, we introduce Gradient Vector Optimization (GVO) defined by
the form of a loss function

L(𝝑) = E𝒗∼D′ T (
𝑔(𝒙, 𝒗; 𝝑), ⟨𝒗, 𝒏̂⟩), (10)

where D′ is a probability distribution based on an initial vector
𝒗 ∈R3. ⟨·⟩ ∈ [0, 𝜋] means the angular difference between two unit
vectors. In contrast to the previous method [Li et al. 2023b], we
regress angles using weighted features of the approximated local
plane instead of point features from PointNet [Qi et al. 2017]. The
motivation is that simple angle regression with 𝑔 fails to be robust
to noise or produce high-quality normals.

Given a neighborhood size𝑚, we can construct the input data
as the nearest neighbor graph 𝐺 = (N , E), where (𝒙, 𝒙 𝑗 ) ∈ E is
a directed edge if 𝒙 𝑗 is one of the 𝑚 nearest neighbors of 𝒙 . Let
N𝑚 (𝒙) = {𝒙 𝑗 − 𝒙}𝑚𝑗=1 be the centered coordinates of the points
in the neighborhood. The standard way to solve for unoriented
normal at a point is to fit a plane to its local neighborhood [Levin



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Figure 5: Left: illustration of the angular distance field of
a vector 𝒏. Right: given an initial vector 𝒗0 and its vector
samples in the unit sphere (black dots with a Gaussian dis-
tribution), our method will select vector 𝒗1 rather than 𝒗2 as
a candidate since 𝒗1 has a smaller angular distance 𝜙 with
respect to the target vector 𝒏.

1998], which is described as

𝒏∗𝑖 = argmin
𝒏

∑︁
𝒙′
𝑗
∈N𝑚 (𝒙𝑖 )




𝒙′𝑗 · 𝒏



2

. (11)

In practice, there are two main issues about the utilizing of Eq. (11)
[Lenssen et al. 2020]: (i) it acts as a low-pass filter for the data
and eliminates sharp details, (ii) it is unreliable if there is noise or
outliers in the data. We will show that both issues can be resolved
by integrating weighting functions into our optimization pipeline.
In short, the preservation of detailed features is achieved by an
anisotropic kernel that infers weights of point pairs based on their
relative positions, while the robustness to outliers is achieved by a
scoring mechanism that weights points according to inlier scores.
Anisotropic Kernel. For feature encoding, our extraction layer is
formulated as

𝒙′𝑙 =𝛾
(
𝒙𝑙 , 𝛽

(
MAX

{
𝛼 (𝑤 𝑗 · 𝒙 𝑗 )

}𝑚
𝑗=1

))
, 𝑙 =1, · · · ,𝑚′, (12)

whereMAX{·} indicates the feature maxpooling over the neighbors
N𝑚 (𝒙)= {𝒙𝒋 − 𝒙}𝑚𝑗=1 of a center point 𝒙 .𝑚′ ⩽𝑚 means that fewer
neighbors are used in the next layer, and we usually set 𝑚′ to
𝑚/2. 𝛼, 𝛽 and 𝛾 are MLPs. They compose an anisotropic kernel
that considers the full geometric relationship between neighboring
points, not just their positions, thus providing features with richer
contextual information. Specifically,𝑤 is a weight given by

𝑤 𝑗 =
𝑑 𝑗∑𝑚
𝑖=1 𝑑𝑖

, 𝑑𝑖 = sigmoid
(
𝜗1 − 𝜗2∥𝒙𝑖 − 𝒙 ∥), (13)

where 𝜗1 and 𝜗2 are learnable parameters with the initial value
set to 1. The weight 𝑤 lets the kernel concentrate on the points
𝒙𝑖 ∈ N𝑚 (𝒙) that are closer to its center 𝒙 .
Inlier Score. Based on the neighbors N𝑚 (𝒙) of 𝒙 , the inlier score
function 𝑠 (𝒙, 𝒗; 𝝑) is optimized by

L1 (𝝑) = E𝒗∼D′ T1
(
𝑠 (𝒙𝑖 , 𝒗; 𝝑), 𝛿 (𝒙𝑖 , 𝒏̂)

)
, 𝒙𝑖 ∈ N𝑚 (𝒙) , (14)

where T1 is mean squared error. The function 𝑠 assigns low scores
to outliers and high scores to inliers. Correspondingly, 𝛿 generates
scores based on the distance between neighboring points 𝒙𝑖 and
the local plane determined by the normal vector 𝒏̂ at point 𝒙 , that

0.6

0.7

0.8

0.9

1.0

PG
P

No Noise Low Noise

0.6

0.7

0.8

0.9

1.0

PG
P

Medium Noise High Noise

0 30 60 90
Threshold(degree)

0.6

0.7

0.8

0.9

1.0
PG

P
Density: Stripe

0 30 60 90
Threshold(degree)

Density: Gradient

AdaFit+MST
AdaFit+SNO
AdaFit+ODP
HSurf-Net+MST
HSurf-Net+SNO
HSurf-Net+ODP

PCA+MST
PCA+SNO
PCA+ODP
SHS-Net
PCPNet
Ours

Figure 6: The PGP curves of oriented normal on the Fa-
mousShape dataset. It depicts the percentage of good points
(PGP) for a given angle threshold. Our method achieves the
best value at most of the thresholds.

is
𝛿 (𝒙𝑖 , 𝒏̂) = exp

(
− (𝒙𝑖 · 𝒏̂)2

𝜌2

)
, 𝒙𝑖 ∈ N𝑚 (𝒙) , (15)

where 𝜌 =max(0.052, 0.3
∑𝑚
𝑖=1 (𝒙𝑖 · 𝒏̂)2/𝑚) [Li et al. 2022a]. The

function 𝑠 regresses the score of each point in the neighbor graph,
and these scores are used to find the vector angles based on score-
weighted gradient vector optimization

L2 (𝝑) = E𝒗∼D′ T2
(
𝑠 ⊙ 𝑔(𝒙, 𝒗; 𝝑), ⟨𝒗, 𝒏̂⟩), (16)

where T2 is mean absolute error. ⊙ denotes that the score function 𝑠
is integrated into the feature encoding of learning angular distance
field. The score and angle are jointly regressed by MLP layers based
on the neighbor graph. In summary, our final training loss is

LGVO = L1 (𝝑) + 𝜆L2 (𝝑) , (17)
where 𝜆=0.5 is a weighting factor.
Distribution D′. This distribution is different during the training
and testing phases. During training, we first uniformly sample𝑀2
random vectors in 3D space for each point of the input point cloud.



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

Table 1: RMSE of oriented normals on datasets PCPNet and FamousShape. ∗means the source code is uncompleted.

Category
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

PCA+MST [Hoppe et al. 1992] 19.05 30.20 31.76 39.64 27.11 23.38 28.52 35.88 41.67 38.09 60.16 31.69 35.40 40.48
PCA+SNO [Schertler et al. 2017] 18.55 21.61 30.94 39.54 23.00 25.46 26.52 32.25 39.39 41.80 61.91 36.69 35.82 41.31
PCA+ODP [Metzer et al. 2021] 28.96 25.86 34.91 51.52 28.70 23.00 32.16 30.47 31.29 41.65 84.00 39.41 30.72 42.92
AdaFit [Zhu et al. 2021]+MST 27.67 43.69 48.83 54.39 36.18 40.46 41.87 43.12 39.33 62.28 60.27 45.57 42.00 48.76
AdaFit [Zhu et al. 2021]+SNO 26.41 24.17 40.31 48.76 27.74 31.56 33.16 27.55 37.60 69.56 62.77 27.86 29.19 42.42
AdaFit [Zhu et al. 2021]+ODP 26.37 24.86 35.44 51.88 26.45 20.57 30.93 41.75 39.19 44.31 72.91 45.09 42.37 47.60
HSurf-Net [Li et al. 2022a]+MST 29.82 44.49 50.47 55.47 40.54 43.15 43.99 54.02 42.67 68.37 65.91 52.52 53.96 56.24
HSurf-Net [Li et al. 2022a]+SNO 30.34 32.34 44.08 51.71 33.46 40.49 38.74 41.62 41.06 67.41 62.04 45.59 43.83 50.26
HSurf-Net [Li et al. 2022a]+ODP 26.91 24.85 35.87 51.75 26.91 20.16 31.07 43.77 43.74 46.91 72.70 45.09 43.98 49.37
PCPNet [Guerrero et al. 2018] 33.34 34.22 40.54 44.46 37.95 35.44 37.66 40.51 41.09 46.67 54.36 40.54 44.26 44.57
DPGO∗ [Wang et al. 2022] 23.79 25.19 35.66 43.89 28.99 29.33 31.14 - - - - - - -
SHS-Net [Li et al. 2023a] 10.28 13.23 25.40 35.51 16.40 17.92 19.79 21.63 25.96 41.14 52.67 26.39 28.97 32.79
Ours 12.52 12.97 25.94 33.25 16.81 9.47 18.49 13.22 18.66 39.70 51.96 31.32 11.30 27.69

Table 2: RMSE of unoriented normal on datasets PCPNet and FamousShape. ∗ means the source code is uncompleted or
unavailable.

Category
PCPNet Dataset FamousShape Dataset

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

Jet [Cazals and Pouget 2005] 12.35 12.84 18.33 27.68 13.39 13.13 16.29 20.11 20.57 31.34 45.19 18.82 18.69 25.79
PCA [Hoppe et al. 1992] 12.29 12.87 18.38 27.52 13.66 12.81 16.25 19.90 20.60 31.33 45.00 19.84 18.54 25.87
PCPNet [Guerrero et al. 2018] 9.64 11.51 18.27 22.84 11.73 13.46 14.58 18.47 21.07 32.60 39.93 18.14 19.50 24.95
Zhou et al.∗ [Zhou et al. 2020b] 8.67 10.49 17.62 24.14 10.29 10.66 13.62 - - - - - - -
Nesti-Net [Ben-Shabat et al. 2019] 7.06 10.24 17.77 22.31 8.64 8.95 12.49 11.60 16.80 31.61 39.22 12.33 11.77 20.55
Lenssen et al. [Lenssen et al. 2020] 6.72 9.95 17.18 21.96 7.73 7.51 11.84 11.62 16.97 30.62 39.43 11.21 10.76 20.10
DeepFit [Ben-Shabat and Gould 2020] 6.51 9.21 16.73 23.12 7.92 7.31 11.80 11.21 16.39 29.84 39.95 11.84 10.54 19.96
MTRNet∗ [Cao et al. 2021] 6.43 9.69 17.08 22.23 8.39 6.89 11.78 - - - - - - -
Refine-Net [Zhou et al. 2022] 5.92 9.04 16.52 22.19 7.70 7.20 11.43 - - - - - - -
Zhang et al.∗ [Zhang et al. 2022] 5.65 9.19 16.78 22.93 6.68 6.29 11.25 9.83 16.13 29.81 39.81 9.72 9.19 19.08
Zhou et al.∗ [Zhou et al. 2023] 5.90 9.10 16.50 22.08 6.79 6.40 11.13 - - - - - - -
AdaFit [Zhu et al. 2021] 5.19 9.05 16.45 21.94 6.01 5.90 10.76 9.09 15.78 29.78 38.74 8.52 8.57 18.41
GraphFit [Li et al. 2022b] 5.21 8.96 16.12 21.71 6.30 5.86 10.69 8.91 15.73 29.37 38.67 9.10 8.62 18.40
NeAF [Li et al. 2023b] 4.20 9.25 16.35 21.74 4.89 4.88 10.22 7.67 15.67 29.75 38.76 7.22 7.47 17.76
HSurf-Net [Li et al. 2022a] 4.17 8.78 16.25 21.61 4.98 4.86 10.11 7.59 15.64 29.43 38.54 7.63 7.40 17.70
SHS-Net [Li et al. 2023a] 3.95 8.55 16.13 21.53 4.91 4.67 9.96 7.41 15.34 29.33 38.56 7.74 7.28 17.61
Ours 4.06 8.70 16.12 21.65 4.80 4.56 9.98 7.25 15.60 29.35 38.74 7.60 7.20 17.62

Table 3: Comparison of the RMSE, number of learnable net-
work parameters (million), and test runtime (seconds per
100k points) for learning-based oriented normal estimation
methods.

HSurf-Net+ODP AdaFit+ODP PCPNet SHS-Net Ours

RMSE 31.07 30.93 37.66 19.79 18.49
Param. 2.59 5.30 22.36 3.27 2.38
Time 308.82 304.77 63.02 65.89 71.29

Then the network is trained to predict the angle of each vector with
respect to the ground-truth normal. At test time, we establish an
isotropic Gaussian 𝑁

(
𝒗, (𝜂 · 45◦)2) that forms a distribution about

the initial gradient vector 𝒗 in the unit sphere, and then we obtain
a set of𝑀3 vector samples around 𝒗. As shown in Fig. 5, the trained
network tries to find an optimal candidate as output from the vector
samples according to the predicted angle.

5 EXPERIMENTS
Implementation. For NGL, the 𝑘 in Eq. (5) is set to 𝑘 = 64 and
we select 𝑀1 = 5000 points from distribution D as the input dur-
ing training. For GVO, we train it only on the PCPNet training

set [Guerrero et al. 2018] and use the provided normals to calculate
vector angles. We select𝑚=700 neighboring points for each query
point. For the distribution D′, we set 𝑀2 = 500, 𝑀3 = 4000 and
𝜂=0.4.
Metrics. We use the Root Mean Squared Error (RMSE) to evaluate
the estimated normals and use the Percentage of Good Points (PGP)
to show the error distribution [Li et al. 2022a; Zhu et al. 2021].

5.1 Evaluation
Evaluation of Oriented Normal. The baseline methods include
PCPNet [Guerrero et al. 2018], DPGO [Wang et al. 2022], SHS-
Net [Li et al. 2023a] and different two-stage pipelines, which are
built by combining unoriented normal estimation methods (PCA
[Hoppe et al. 1992], AdaFit [Zhu et al. 2021], HSurf-Net [Li et al.
2022a]) and normal orientation methods (MST [Hoppe et al. 1992],
SNO [Schertler et al. 2017], ODP [Metzer et al. 2021]). We choose
them as they are representative algorithms in this research field
at present. The quantitative comparison results on datasets PCP-
Net [Guerrero et al. 2018] and FamousShape [Li et al. 2023a] are
shown in Table 1. It is clear that our method achieves large per-
formance improvements over the vast majority of noise levels and
density variations on both datasets. Through this experiment, we



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Table 4: Ablation studies with the metric of unoriented and oriented normal on the PCPNet dataset. Please see the text for
more details.

Category
Unoriented Normal Oriented Normal

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

(a)

w/o NGL 4.20 8.78 16.16 21.67 4.88 4.64 10.06 124.53 123.11 120.35 117.44 123.57 118.80 121.30
w/o GVO 12.24 12.74 17.89 23.88 15.16 13.75 15.94 18.39 15.32 25.20 32.57 22.91 15.73 21.69
w/o inlier score 4.26 8.94 16.11 21.70 5.26 5.00 10.21 12.78 13.25 25.99 33.43 17.30 9.82 18.76
w/o 𝑤 in kernel 4.11 8.71 16.14 21.63 5.11 4.80 10.08 12.38 12.94 25.88 33.30 16.87 9.47 18.47

(b)

LNGL (L1) 4.09 8.69 16.13 21.65 4.80 4.57 9.99 17.27 12.27 35.58 37.95 11.26 9.28 20.60
LNGL (MSE) 4.08 8.70 16.13 21.64 4.82 4.58 9.99 21.71 18.82 27.81 33.38 13.29 11.68 21.12
LGVO(𝜆=0.2) 4.12 8.75 16.16 21.74 5.09 4.71 10.10 12.60 12.99 25.98 33.34 16.90 9.57 18.56
LGVO(𝜆=0.8) 4.14 8.82 16.18 21.64 4.96 4.74 10.08 12.58 13.09 26.04 33.33 16.87 9.45 18.56

(c)
𝑘 =1 4.07 8.70 16.13 21.65 4.79 4.55 9.98 13.57 18.24 38.29 47.23 9.27 8.99 22.60
𝑘 =32 4.06 8.69 16.13 21.65 4.79 4.56 9.98 13.64 24.31 29.83 33.93 17.37 8.51 21.27
𝑘 =128 4.08 8.70 16.13 21.64 4.84 4.58 9.99 12.84 23.65 34.96 33.03 37.64 18.42 26.76

(d) 𝑑𝜎 =32th 4.07 8.69 16.12 21.66 4.83 4.56 9.99 12.86 23.75 29.68 36.67 10.97 8.92 20.47
𝑑𝜎 =64th 4.08 8.70 16.13 21.64 4.81 4.57 9.99 13.77 18.98 29.84 33.25 18.41 8.87 20.52

(e)

𝜂=0.3 4.10 8.70 16.14 21.64 4.87 4.62 10.01 12.46 13.01 25.85 33.18 16.78 9.47 18.46
𝜂=0.5 4.06 8.69 16.12 21.64 4.80 4.55 9.98 12.54 13.04 25.91 33.26 16.77 9.39 18.49
𝑀2 =3000 4.07 8.70 16.13 21.65 4.82 4.57 9.99 12.55 13.05 25.90 33.23 16.79 9.40 18.49
𝑀2 =5000 4.06 8.70 16.12 21.65 4.81 4.56 9.98 12.47 13.01 25.90 33.22 16.72 9.30 18.44
Full 4.06 8.70 16.12 21.65 4.80 4.56 9.98 12.52 12.97 25.94 33.25 16.81 9.47 18.49

Ours

PCA+MSTAdaFit+SNO

HSurf-Net+ODPHSurf-Net+MST

AdaFit+MST

HSurf-Net+SNO

PCPNet

Point Cloud

Figure 7: The top row shows the scene reconstructed from
LiDAR data using our estimated normals, and below is a local
region comparison of the different methods.

also find that combining a better unoriented normal estimation
algorithm with the same normal orientation algorithm does not
necessarily lead to better orientation results, e.g., PCA+MST vs.
AdaFit+MST and PCA+SNO vs. HSurf-Net+SNO. The error distri-
butions in Fig. 6 show that our method has the best performance at
most of the angle thresholds.

We provide more experimental results on different datasets in the
supplementary material, including comparisons with GCNO [Xu
et al. 2023] on sparse data and more applications to surface recon-
struction.
Evaluation of Unoriented Normal. In this evaluation, we ignore
the orientation of normals and compare our method with baselines

0

180

NGL NGL+GVONGL+NeAF PCPNet+GVOPCPNetNeAF

28.30 10.7012.10 21.1133.42123.56

Figure 8: Error maps of oriented normals. We integrate our
NGL and GVO into other methods to estimate oriented nor-
mals. The mean value of RMSE is provided above each shape.

that are used for estimating unoriented normals, such as the tradi-
tional methods PCA [Hoppe et al. 1992] and Jet [Cazals and Pouget
2005], the learning-based surface fitting methods AdaFit [Zhu et al.
2021] and GraphFit [Li et al. 2022b], and the learning-based regres-
sion methods NeAF [Li et al. 2023b] and HSurf-Net [Li et al. 2022a].
The quantitative comparison results on datasets PCPNet [Guerrero
et al. 2018] and FamousShape [Li et al. 2023a] are reported in Ta-
ble 2. We can see that our method has the best performance under
most point cloud categories and achieves the best average result.
Application. We employ the Poisson reconstruction algorithm
[Kazhdan and Hoppe 2013] to generate surfaces from the estimated
oriented normals on the Paris-rue-Madame dataset [Serna et al.
2014], acquired from the real-world using laser scanners. The re-
constructed surfaces are shown in Fig. 7, where ours exhibits more
complete and clear car shapes.
Complexity and Efficiency. We evaluate the learning-based ori-
ented normal estimation methods on a machine equipped with
NVIDIA 2080 Ti GPU. In Table 3, we report the RMSE, number of
learnable network parameters, and test runtime for each method on
the PCPNet dataset. Our method achieves significant performance
improvement with minimal parameters and relatively less runtime.



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

5.2 Ablation Studies
Our method seeks to achieve better performance in both unoriented
and oriented normal estimation. We provide the ablation results of
our method in Table 4 (a)-(e), which are discussed as follows.
(a) Component. We remove NGL, GVO, inlier score and weight
𝑤 of the anisotropic kernel, respectively. If NGL is not used, we
optimize a randomly sampled set of vectors in the unit sphere for
each point, but the optimized normal vectors face both sides of
the surface, resulting in the worst orientations. Gradient vectors
from NGL are inaccurate when used as normals without being opti-
mized by GVO. The score and weight are important for improving
performance, especially in unoriented normal evaluation.
(b) Loss. Replacing L2 distance in LNGL with L1 distance or MSE is
not a good choice. We also alternatively set 𝜆 in LGVO to 0.2 or 0.8,
both of which lead to worse results.
(c) Size 𝑘 . For the neighborhood size in Eq. (5), we alternatively set
𝑘 to 1, 32 or 128, however, all of which do not bring better oriented
normal results.
(d) Distribution D. We change the distribution parameter 𝜎 as
the distance 𝑑𝜎 of the 32th or 64th nearest point to 𝒙 , whereas the
results get worse.
(e) DistributionD′. We change the distribution parameter 𝜂 to 0.3
or 0.5 and the vector sample size𝑀2 to 3000 or 5000, respectively.
The influence of these parameters on the results is relatively small.
The larger size gives better results, but requires more time and
memory consumption.
(f) Modularity. In Fig. 8, we show that our NGL and GVO can
be integrated into some other methods (PCPNet [Guerrero et al.
2018] and NeAF [Li et al. 2023b]) to estimate more accurate oriented
normals. Note that NeAF can not estimate oriented normals. We
can see that our NGL+GVO gives the best results.

6 CONCLUSION
In this work, we propose to learn neural gradient from point cloud
for oriented normal estimation. We introduce Neural Gradient
Learning (NGL) and Gradient Vector Optimization (GVO), defined by
a family of loss functions. Specifically, we minimize the correspond-
ing loss to let the NGL learn gradient vectors from global geometry
representation, and the GVO optimizes vectors based on an in-
sight into the local property. Moreover, we integrate two weighting
functions, including anisotropic kernel and inlier score, into the
optimization to improve robust and detail-preserving performance.
We provide extensive evaluation and ablation experiments that
demonstrate the state-of-the-art performance of our method and
the effectiveness of our designs. Future work includes improving the
performance under high noise and density variation, and exploring
more application scenarios of our algorithm.

ACKNOWLEDGMENTS
This work was supported by National Key R&D Program of China
(2022YFC3800600), the National Natural Science Foundation of
China (62272263, 62072268), and in part by Tsinghua-Kuaishou
Institute of Future Media Data.

REFERENCES
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T Silva. 2001. Point set surfaces. In Proceedings Visualization, 2001. VIS’01.
IEEE, 21–29.

Pierre Alliez, David Cohen-Steiner, Yiying Tong, and Mathieu Desbrun. 2007. Voronoi-
based variational reconstruction of unoriented point sets. In Symposium on Geome-
try Processing, Vol. 7. 39–48.

Nina Amenta and Marshall Bern. 1999. Surface reconstruction by Voronoi filtering.
Discrete & Computational Geometry 22, 4 (1999), 481–504.

Samir Aroudj, Patrick Seemann, Fabian Langguth, Stefan Guthe, and Michael Goesele.
2017. Visibility-consistent thin surface reconstruction using multi-scale kernels.
ACM Transactions on Graphics 36, 6 (2017), 1–13.

Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai Maron, and Yaron Lipman.
2019. Controlling neural level sets. Advances in Neural Information Processing
Systems 32 (2019).

Matan Atzmon and Yaron Lipman. 2020. SAL: Sign agnostic learning of shapes from
raw data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2565–2574.

Matan Atzmon and Yaron Lipman. 2021. SALD: Sign Agnostic Learning with Deriva-
tives. In International Conference on Learning Representations.

Yizhak Ben-Shabat and Stephen Gould. 2020. DeepFit: 3D Surface Fitting via Neural
Network Weighted Least Squares. In European Conference on Computer Vision.
Springer, 20–34.

Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fischer. 2019. Nesti-Net: Normal
estimation for unstructured 3D point clouds using convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
10112–10120.

James F Blinn. 1978. Simulation of wrinkled surfaces. ACM SIGGRAPH Computer
Graphics 12, 3 (1978), 286–292.

Alexandre Boulch and RenaudMarlet. 2016. Deep learning for robust normal estimation
in unstructured point clouds. In Computer Graphics Forum, Vol. 35. Wiley Online
Library, 281–290.

Junjie Cao, Hairui Zhu, Yunpeng Bai, Jun Zhou, Jinshan Pan, and Zhixun Su. 2021.
Latent tangent space representation for normal estimation. IEEE Transactions on
Industrial Electronics 69, 1 (2021), 921–929.

Frédéric Cazals and Marc Pouget. 2005. Estimating differential quantities using poly-
nomial fitting of osculating jets. Computer Aided Geometric Design 22, 2 (2005),
121–146.

Yi-Ling Chen, Bing-Yu Chen, Shang-Hong Lai, and Tomoyuki Nishita. 2010. Binary
orientation trees for volume and surface reconstruction from unoriented point
clouds. In Computer Graphics Forum, Vol. 29. Wiley Online Library, 2011–2019.

Julian Chibane, Gerard Pons-Moll, et al. 2020. Neural unsigned distance fields for
implicit function learning. Advances in Neural Information Processing Systems 33
(2020), 21638–21652.

Tamal K Dey and Samrat Goswami. 2006. Provable surface reconstruction from noisy
samples. Computational Geometry 35, 1-2 (2006), 124–141.

Henri Gouraud. 1971. Continuous shading of curved surfaces. IEEE Trans. Comput.
100, 6 (1971), 623–629.

Gaël Guennebaud and Markus Gross. 2007. Algebraic point set surfaces. In ACM
SIGGRAPH 2007 papers.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. 2018. PCPNet:
learning local shape properties from raw point clouds. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 75–85.

Taisuke Hashimoto and Masaki Saito. 2019. Normal Estimation for Accurate 3D Mesh
Reconstruction with Point Cloud Model Incorporating Spatial Structure.. In CVPR
Workshops. 54–63.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1992. Surface reconstruction from unorganized points. In Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques. 71–78.

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or. 2009. Consolidation
of unorganized point clouds for surface reconstruction. ACM Transactions on
Graphics 28, 5 (2009), 1–7.

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational implicit point set surfaces.
ACM Transactions on Graphics 38, 4 (2019), 1–13.

Johannes Jakob, Christoph Buchenau, and Michael Guthe. 2019. Parallel globally con-
sistent normal orientation of raw unorganized point clouds. In Computer Graphics
Forum, Vol. 38. Wiley Online Library, 163–173.

Sagi Katz, Ayellet Tal, and Ronen Basri. 2007. Direct visibility of point sets. In ACM
SIGGRAPH. 24–es.

Michael Kazhdan. 2005. Reconstruction of solid models from oriented point sets. In
Proceedings of the third Eurographics Symposium on Geometry Processing.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson surface re-
construction. In Proceedings of the fourth Eurographics Symposium on Geometry
Processing, Vol. 7.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
ACM Transactions on Graphics 32, 3 (2013), 1–13.



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Sören König and Stefan Gumhold. 2009. Consistent Propagation of Normal Orientations
in Point Clouds. In VMV. 83–92.

Carsten Lange and Konrad Polthier. 2005. Anisotropic smoothing of point sets. Com-
puter Aided Geometric Design 22, 7 (2005), 680–692.

Jan Eric Lenssen, Christian Osendorfer, and Jonathan Masci. 2020. Deep Iterative
Surface Normal Estimation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11247–11256.

David Levin. 1998. The approximation power of moving least-squares. Math. Comp.
67, 224 (1998), 1517–1531.

Keqiang Li, Mingyang Zhao, Huaiyu Wu, Dong-Ming Yan, Zhen Shen, Fei-Yue Wang,
and Gang Xiong. 2022b. GraphFit: Learning Multi-scale Graph-Convolutional
Representation for Point Cloud Normal Estimation. In 17th European Conference
Computer Vision. Springer, 651–667.

Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, and Zhizhong Han.
2023a. SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation
of Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
13591–13600. https://doi.org/10.1109/CVPR52729.2023.01306

Qing Li, Yu-Shen Liu, Jin-San Cheng, Cheng Wang, Yi Fang, and Zhizhong Han. 2022a.
HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces.
In Advances in Neural Information Processing Systems (NeurIPS), Vol. 35. Curran
Associates, Inc., 4218–4230. https://proceedings.neurips.cc/paper_files/paper/2022/
hash/1b115b1feab2198dd0881c57b869ddb7-Abstract-Conference.html

Shujuan Li, Junsheng Zhou, Baorui Ma, Yu-Shen Liu, and Zhizhong Han. 2023b. NeAF:
Learning Neural Angle Fields for Point Normal Estimation. In Proceedings of the
AAAI Conference on Artificial Intelligence.

Dening Lu, Xuequan Lu, Yangxing Sun, and Jun Wang. 2020. Deep feature-preserving
normal estimation for point cloud filtering. Computer-Aided Design 125 (2020),
102860.

Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. 2021. Neural-Pull:
Learning signed distance functions from point clouds by learning to pull space
onto surfaces. International Conference on Machine Learning (2021).

Viní cius Mello, Luiz Velho, and Gabriel Taubin. 2003. Estimating the in/out function
of a surface represented by points. In Proceedings of the Eighth ACM Symposium on
Solid Modeling and Applications. 108–114.

Quentin Mérigot, Maks Ovsjanikov, and Leonidas J Guibas. 2010. Voronoi-based cur-
vature and feature estimation from point clouds. IEEE Transactions on Visualization
and Computer Graphics 17, 6 (2010), 743–756.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. OccupancyNetworks: Learning 3D reconstruction in function space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4460–4470.

Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel
Cohen-Or. 2021. Orienting point clouds with dipole propagation. ACM Transactions
on Graphics 40, 4 (2021), 1–14.

Niloy J Mitra and An Nguyen. 2003. Estimating surface normals in noisy point
cloud data. In Proceedings of the Nineteenth Annual Symposium on Computational
Geometry. 322–328.

Patrick Mullen, Fernando De Goes, Mathieu Desbrun, David Cohen-Steiner, and Pierre
Alliez. 2010. Signing the unsigned: Robust surface reconstruction from raw pointsets.
In Computer Graphics Forum, Vol. 29. Wiley Online Library, 1733–1741.

A Cengiz Öztireli, Gael Guennebaud, and Markus Gross. 2009. Feature preserving
point set surfaces based on non-linear kernel regression. In Computer Graphics
Forum, Vol. 28. Wiley Online Library, 493–501.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 165–174.

Mark Pauly, Markus Gross, and Leif P Kobbelt. 2002. Efficient simplification of point-
sampled surfaces. In IEEE Visualization, 2002. VIS 2002. IEEE, 163–170.

Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM
18, 6 (1975), 311–317.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. PointNet: Deep
learning on point sets for 3D classification and segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 652–660.

Riccardo Roveri, A Cengiz Öztireli, Ioana Pandele, and Markus Gross. 2018. Point-
ProNets: Consolidation of point clouds with convolutional neural networks. In
Computer Graphics Forum, Vol. 37. Wiley Online Library, 87–99.

Nico Schertler, Bogdan Savchynskyy, and Stefan Gumhold. 2017. Towards globally
optimal normal orientations for large point clouds. In Computer Graphics Forum,
Vol. 36. Wiley Online Library, 197–208.

Andrés Serna, Beatriz Marcotegui, François Goulette, and Jean-Emmanuel Deschaud.
2014. Paris-rue-Madame database: a 3D mobile laser scanner dataset for bench-
marking urban detection, segmentation and classification methods. In International
Conference on Pattern Recognition, Applications and Methods.

Lee M Seversky, Matt S Berger, and Lijun Yin. 2011. Harmonic point cloud orientation.
Computers & Graphics 35, 3 (2011), 492–499.

ChristianWalder, Olivier Chapelle, and Bernhard Schölkopf. 2005. Implicit surfacemod-
elling as an eigenvalue problem. In Proceedings of the 22nd International Conference
on Machine Learning. 936–939.

Jun Wang, Zhouwang Yang, and Falai Chen. 2012. A variational model for normal
computation of point clouds. The Visual Computer 28, 2 (2012), 163–174.

Shiyao Wang, Xiuping Liu, Jian Liu, Shuhua Li, and Junjie Cao. 2022. Deep patch-based
global normal orientation. Computer-Aided Design (2022), 103281.

Dong Xiao, Zuoqiang Shi, Siyu Li, Bailin Deng, and Bin Wang. 2023. Point normal
orientation and surface reconstruction by incorporating isovalue constraints to
Poisson equation. Computer Aided Geometric Design (2023), 102195.

Hui Xie, Kevin T McDonnell, and Hong Qin. 2004. Surface reconstruction of noisy
and defective data sets. In IEEE Visualization. IEEE, 259–266.

Minfeng Xu, Shiqing Xin, and Changhe Tu. 2018. Towards globally optimal normal
orientations for thin surfaces. Computers & Graphics 75 (2018), 36–43.

Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuangmin Chen, Mingyan Jiang,
Xiaohu Guo, Wenping Wang, and Changhe Tu. 2023. Globally Consistent Normal
Orientation for Point Clouds by Regularizing the Winding-Number Field. ACM
Transactions on Graphics (TOG) (2023). https://doi.org/10.1145/3592129

Jie Zhang, Jun-Jie Cao, Hai-Rui Zhu, Dong-Ming Yan, and Xiu-Ping Liu. 2022. Geome-
try Guided Deep Surface Normal Estimation. Computer-Aided Design 142 (2022),
103119.

Haoran Zhou, Honghua Chen, Yidan Feng, Qiong Wang, Jing Qin, Haoran Xie, Fu Lee
Wang, MingqiangWei, and JunWang. 2020a. Geometry and Learning Co-Supported
Normal Estimation for Unstructured Point Cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13238–13247.

Haoran Zhou, Honghua Chen, Yingkui Zhang, Mingqiang Wei, Haoran Xie, Jun Wang,
Tong Lu, Jing Qin, and Xiao-Ping Zhang. 2022. Refine-Net: Normal refinement
neural network for noisy point clouds. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 1 (2022), 946–963.

Jun Zhou, Hua Huang, Bin Liu, and Xiuping Liu. 2020b. Normal estimation for 3D
point clouds via local plane constraint and multi-scale selection. Computer-Aided
Design 129 (2020), 102916.

Jun Zhou, Wei Jin, Mingjie Wang, Xiuping Liu, Zhiyang Li, and Zhaobin Liu. 2023.
Improvement of normal estimation for point clouds via simplifying surface fitting.
Computer-Aided Design (2023), 103533.

Runsong Zhu, Yuan Liu, Zhen Dong, Yuan Wang, Tengping Jiang, Wenping Wang,
and Bisheng Yang. 2021. AdaFit: Rethinking Learning-based Normal Estimation on
Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 6118–6127.

https://doi.org/10.1109/CVPR52729.2023.01306
https://proceedings.neurips.cc/paper_files/paper/2022/hash/1b115b1feab2198dd0881c57b869ddb7-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/1b115b1feab2198dd0881c57b869ddb7-Abstract-Conference.html
https://doi.org/10.1145/3592129


Neural Gradient Learning and Optimization for Oriented Point
Normal Estimation —— Supplementary Material
Qing Li

School of Software, Tsinghua
University

Beijing, China
leoqli@tsinghua.edu.cn

Huifang Feng
School of Informatics, Xiamen

University
Xiamen, China

fenghuifang@stu.xmu.edu.cn

Kanle Shi
Kuaishou Technology

Beijing, China
shikanle@kuaishou.com

Yi Fang
Center for Artificial Intelligence and

Robotics, New York University
Abu Dhabi, UAE
yfang@nyu.edu

Yu-Shen Liu∗
School of Software, Tsinghua

University
Beijing, China

liuyushen@tsinghua.edu.cn

Zhizhong Han
Department of Computer Science,

Wayne State University
Detroit, USA

h312h@wayne.edu

1 EVALUATION METRICS
As in [Ben-Shabat and Gould 2020; Guerrero et al. 2018; Li et al.
2022; Zhu et al. 2021], in order to evaluate the estimated normal
vectors, we use the Root Mean Squared Error (RMSE) of vector
angles between the ground-truth normals n̂𝑖 and the estimated
normals n𝑖 , i.e.,

RMSE𝑈 =

√√√
1
𝑀

𝑀∑︁
𝑖=1

(
arccos( |n̂𝑖 ⊙ n𝑖 |)

)2 , (1)

RMSE𝑂 =

√√√
1
𝑀

𝑀∑︁
𝑖=1

(
arccos(n̂𝑖 ⊙ n𝑖 )

)2 , (2)

where RMSE𝑈 and RMSE𝑂 are evaluation metrics for unoriented
and oriented normals, respectively.𝑀 is the number of evaluated
point normals. | · | means the absolute value of the inner product ⊙
of two normal vectors. The range of normal angle errors is bounded
between 0◦ and 90◦ in unoriented normal evaluation, and between
0◦ and 180◦ in oriented normal evaluation.

Furthermore, we also employ the Percentage of Good Points
(PGP) to analyze the distribution of normal errors. It depicts the
percentage of good points whose normal angle errors are less than
the given angle thresholds. Specifically, the PGP is calculated by

PGP𝑈 (𝜏) = 1
𝑀

𝑀∑︁
𝑖=1

J (
arccos( |n̂𝑖 ⊙ n𝑖 |) < 𝜏

)
, (3)

PGP𝑂 (𝜏) = 1
𝑀

𝑀∑︁
𝑖=1

J (
arccos(n̂𝑖 ⊙ n𝑖 ) < 𝜏

)
, (4)

where PGP𝑈 (𝜏) and PGP𝑂 (𝜏) are metrics for unoriented and ori-
ented normal evaluation, respectively. J denotes an indicator func-
tion used to measure whether the angle error is less than a given
threshold 𝜏 .

2 MORE ANALYSIS ON NGL AND GVO
2.1 NGL
Ablations about 𝑘 . We provide more ablation results about the
parameter 𝑘 in our NGL. As shown in Table 1 and Fig. 1, we report
∗The corresponding author is Yu-Shen Liu.

 1  32  64  128

0

180

Figure 1: Error visualization of gradients from NGL with
different 𝑘 . For noise-free point clouds, smaller values of 𝑘
can provide more accurate normals, but may bring wrong
orientations in some noisy cases.

quantitative and qualitative results of the learned gradients (initial
oriented normals) by NGL. In Table 1, we can see that smaller values
of 𝑘 give better unoriented normals, and these better results mainly
come from the noise-free point clouds, such as the categories of
none noise, stripe density and gradient density. For oriented normal
estimation, a relatively large value can lead to better results, and
𝑘 = 64 gives the best oriented normal results. A large value is
more robust to high noise (such as 0.6% and 1.2%) and improves
the performance, but a too large value, e.g., 𝑘 = 128, degrades the
performance. Furthermore, we can observe from Table 1 that the
advantage of smaller 𝑘 values in unoriented normal estimation
vanishes after optimizing the initial normals using our GVO. For
NGL+GVO, values 1, 32 and 64 of 𝑘 all have the same average RMSE
for unoriented normals, but 𝑘 = 64 still has the best oriented normal
results. Thus, we set 𝑘 to 64 in our algorithm. In Fig. 2, we show the
oriented normal errors of NGL on different categories of shapes. It
shows that our NGL can provide oriented normals with consistent
orientations on various point cloud data.



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

Table 1: Ablation studies of 𝑘 in our NGL under the metric of unoriented and oriented normal on the PCPNet dataset.

Category
Unoriented Normal Oriented Normal

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

NGL
𝑘 =1 9.51 11.49 21.79 27.53 10.25 9.80 15.06 16.51 19.05 38.31 46.53 13.09 12.81 24.38
𝑘 =32 11.18 11.87 18.35 25.50 13.15 12.10 15.36 18.31 25.50 29.42 34.32 22.48 14.05 24.01
𝑘 =64 12.24 12.74 17.89 23.88 15.16 13.75 15.94 18.39 15.32 25.20 32.57 22.91 15.73 21.69
𝑘 =128 13.98 14.44 18.09 22.99 20.04 16.23 17.63 20.06 27.12 34.44 31.91 40.74 25.02 29.88

NGL
+GVO

𝑘 =1 4.07 8.70 16.13 21.65 4.79 4.55 9.98 13.57 18.24 38.29 47.23 9.27 8.99 22.60
𝑘 =32 4.06 8.69 16.13 21.65 4.79 4.56 9.98 13.64 24.31 29.83 33.93 17.37 8.51 21.27
𝑘 =64 4.06 8.70 16.12 21.65 4.80 4.56 9.98 12.52 12.97 25.94 33.25 16.81 9.47 18.49
𝑘 =128 4.08 8.70 16.13 21.64 4.84 4.58 9.99 12.84 23.65 34.96 33.03 37.64 18.42 26.76

Table 2: Comparison of the learned gradients under the metric of unoriented and oriented normal on the PCPNet dataset

Category
Unoriented Normal Oriented Normal

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

NGL 𝑘 =1 9.51 11.49 21.79 27.53 10.25 9.80 15.06 16.51 19.05 38.31 46.53 13.09 12.81 24.38
𝑘 =64 12.24 12.74 17.89 23.88 15.16 13.75 15.94 18.39 15.32 25.20 32.57 22.91 15.73 21.69

NP [Ma et al. 2021] - 9.29 13.75 21.47 26.17 10.77 9.87 15.22 16.54 28.84 33.69 38.95 18.42 12.72 24.86

Table 3: We integrate our NGL and GVO into other methods (PCPNet [Guerrero et al. 2018] and NeAF [Li et al. 2023b]) to
estimate oriented normals. Note that NeAF can not estimate oriented normals.

Category
Unoriented Normal Oriented Normal

Noise Density Noise Density
None 0.12% 0.6% 1.2% Stripe Gradient Average None 0.12% 0.6% 1.2% Stripe Gradient Average

(a)
NeAF 4.20 9.25 16.35 21.74 4.89 4.88 10.22 125.21 122.71 119.69 117.22 125.01 124.25 122.35
PCPNet 14.07 15.01 21.14 25.59 16.42 17.27 18.25 33.34 34.22 40.54 44.46 37.95 35.44 37.66
NGL 12.24 12.74 17.89 23.88 15.16 13.75 15.94 18.39 15.32 25.20 32.57 22.91 15.73 21.69

(b)
NGL+NeAF 4.26 9.27 16.35 21.73 4.95 4.93 10.25 12.59 13.57 26.10 33.30 16.88 9.26 18.62
PCPNet+GVO 4.08 8.71 16.13 21.65 4.81 4.61 10.00 30.42 33.18 41.34 45.34 35.27 32.16 36.29
NGL+GVO 4.06 8.70 16.12 21.65 4.80 4.56 9.98 12.52 12.97 25.94 33.25 16.81 9.47 18.49

Table 4: Comparison of oriented normal estimation on sparse point clouds. The algorithms of GCNO and PCA+MST run on the
CPU, and the test runtime (seconds per 5000 points) of GCNO is much longer than other methods. Our method has the lowest
RMSE and relatively high efficiency.

PCA+MST
[Hoppe et al. 1992]

HSurf-Net [Li et al. 2022]
+ODP [Metzer et al. 2021]

PCPNet
[Guerrero et al. 2018]

GCNO
[Xu et al. 2023]

SHS-Net
[Li et al. 2023a] Ours

RMSE 45.40 62.51 48.48 41.24 32.64 28.34
Time 0.01+0.71 3.87+31.75 3.34 822.60 3.54 2.53

Comparison of gradients. As we describe in our paper, in implicit
function learning, the gradient is the direction in which the distance
value increases the fastest. Some surface reconstruction methods
exploit this property to move a query position 𝒙 by distance 𝑓 (𝒙 ;𝜽 )
along or against the gradient direction 𝒗 to its closest point 𝒑
sampled from the manifold. Specifically, 𝑓 (𝒙;𝜽 ) is interpreted as
a signed distance in NP [Ma et al. 2021], which can learn highly
accurate signed distance functions directly from the input noise-
free point clouds. Here we compare the learned gradients in NPwith
our method. As shown in Table 2 and Fig. 3, we provide quantitative
and qualitative comparison results of our NGL and NP, respectively.
Our NGL can deliver more accurate results when directly using
the learned gradients as surface normals. Our method is good at
learning a neural gradient field with a consistent orientation from
a variety of point cloud data, even in the presence of noise. In

contrast, NP tries to learn an accurate distance field to approximate
the underlying surface of point cloud data.

2.2 GVO
In our algorithm, the learned gradients from NGL are further opti-
mized by GVO to predict oriented normals. From the quantitative
and qualitative results shown in Table 1 and Fig. 4, we can easily
conclude that GVO largely improves the accuracy of the oriented
normals based on the learned gradients from NGL.

In our experiments, we use the model trained in 800 epochs.
Here we evaluate our GVO on the PCPNet test set using models
trained for 100 to 1000 epochs. The estimated normals are measured
using the evaluation metrics RMSE𝑈 and RMSE𝑂 . As shown in
Fig. 5, we plot the average evaluation results at different noise
levels and different density variations. It can be seen from the



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation —— Supplementary Material

Noise
None Low Medium High Stripe Gradient

Density

0

180

Figure 2: Error maps of gradients (i.e., the coarse normals)
from our NGL on different categories of shapes. Our NGL
can provide gradients with consistent orientations.

0

180

NP

Ours

Figure 3: Comparison of the learned gradients from our NGL
and NP [Ma et al. 2021]. Our method has clear advantages
over NP, especially in the presence of noise.

curves in Fig. 5 that the errors in unoriented normal evaluation
keep decreasing, while there are some fluctuations in the errors of
oriented normal evaluation. After about 800 epochs of training, the
errors of both unoriented and oriented normal evaluations have no
obvious change.

2.3 Modularity of NGL and GVO
As we describe in the paper, our NGL and GVO can be integrated
into some other methods (such as PCPNet [Guerrero et al. 2018] and
NeAF [Li et al. 2023b]) to estimate more accurate oriented normals.
In Table 3 and Fig. 6, we show more quantitative and qualitative
results to further demonstrate this advantage of our approach. We
can see that our NGL lets the NeAF have the capability of estimating
oriented normals, and our GVO largely improves the accuracy of
unoriented normals from PCPNet. In summary, our NGL+GVO
leads to the best results for both unoriented and oriented normal
estimations.

0

180

NGL NGL+GVO NGL NGL+GVO

Figure 4: Error maps of oriented normals from different
stages of our method, namely NGL and NGL+GVO. NGL can
solve initial normals with consistent orientation but possi-
bly moderate accuracy, and GVO can further improve the
accuracy of initial normals to a higher level.

3 COMPARISONWITH SURFACE
RECONSTRUCTION METHODS

In our experiments, we have shown the results of utilizing a Poisson
reconstruction algorithm [Kazhdan and Hoppe 2013] to reconstruct
surfaces from the estimated normals. To further evaluate the recon-
structed surfaces, we compare our method with baseline algorithms
that are specifically designed for surface reconstruction, including
IGR [Gropp et al. 2020], SAP [Peng et al. 2021], SAL [Atzmon and
Lipman 2020], Neural-Pull (NP) [Ma et al. 2021], OSP [Ma et al.
2022a] and PCP [Ma et al. 2022b]. As shown in Fig. 7 and Fig. 14, we
employ these methods to reconstruct surfaces from point clouds
with different noise levels. Based on the accurate normals estimated
by our method, the Poisson algorithm can reconstruct more com-
plete detailed geometry than baseline methods from various point
cloud data.

4 MORE DISCUSSIONS
4.1 Discussion on technical contribution and

novelty
The two-stage architectures of existing oriented normal estimation
paradigms combine two independent algorithms, i.e., unoriented
normal estimation and normal orientation, such as PCA+MST. They
require a lot of work to tune the parameters of the two algorithms.
Our observation is that higher-precision unoriented normals do
not necessarily result in more accurate oriented normals using a
normal orientation algorithm based on propagation strategy (see
Table 1 of the paper). This means that even if we develop better
unoriented normal estimation algorithms, utilizing existing normal
orientation algorithms will not lead to better orientation results.

Different from most previous works, which first infer unoriented
normals based on local geometry and then try to find a consistent
orientation of these normals, our proposed approach first learns
a signed distance field that provides noisy but correctly-oriented
normals (the Neural Gradient Learning module), and then fitting
these approximate normals to local surface features by learning an



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

22

23

16

17

9

10

11

12

4

5

6

7

200 400 600 800 1000
0

Train  Epoch

Te
st

  R
M

SE

No Noise
Low Noise

Medium Noise
High Noise

Stripe
Gradient

# Average

(a) Unoriented normal evaluation

33

34

26

17

18

19

13

10

200 400 600 800 1000
0

Train  Epoch

Te
st

  R
M

SE

No Noise
Low Noise

Medium Noise
High Noise

Stripe
Gradient

# Average

(b) Oriented normal evaluation

Figure 5: Unoriented and oriented normal evaluation results on the PCPNet test set using network models trained for 100 to
1000 epochs. We plot the results for different noise levels and density variations, and plot the average values of all categories.
The estimated normals are evaluated using metrics RMSE𝑈 and RMSE𝑂 .

NGL NGL+GVONGL+NeAF PCPNet+GVOPCPNetNeAF

28.31 12.2713.56 13.8030.05122.64

0

180

(Ours)

Figure 6: We integrate our NGL and GVO into other methods
to estimate oriented normals. Average values of RMSE are
provided. Note that NeAF can not estimate oriented normals.
Please zoom in to see the difference.

angular distance field from weighted features of a neighborhood of
each point cloud (the Gradient Vector Optimization module). Our
method achieves the state-of-the-art performance in both unori-
ented and oriented normal estimation of point clouds.

4.2 The differences between the proposed
method and SHS-Net

Concurrent work SHS-Net [Li et al. 2023a], published at CVPR 2023,
estimates normal in a different way than ours. SHS-Net utilizes the
learning of signed hyper surface in the feature space to directly
regress oriented normals. It extracts features from local patches
and global sampling points in parallel and fuses the two features.
In particular, in order to determine the normal orientation of a

IGRInput Neural-Pull

SALSAP Ours

Figure 7: Comparison with the implicit representation meth-
ods in surface reconstruction task. Baseline methods include
IGR [Gropp et al. 2020], SAP [Peng et al. 2021], SAL [Atzmon
and Lipman 2020] and Neural-Pull [Ma et al. 2021].

query point, its corresponding global sampling point set needs
to be found from the entire point cloud. This is time-consuming,
especially when dealing with large-scale point cloud data.

In contrast, our method is to first use the implicit representation
and the signed distance field to directly learn the coarse correctly-
oriented normal from the entire point cloud, and then use the local
information to refine the coarse normal and improve the accuracy
of direction based on the angular distance field. Our method does
not need to perform the global sampling for the query point like
SHS-Net dose.

As shown in Tables 1 and 2 of the main paper, our method has
the best performance for oriented normal estimation, and has com-
parable performance for unoriented normal estimation compared



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation —— Supplementary Material

Point Cloud PCPNetMST OursGCNO SHS-NetSNO ODP

Figure 8: Oriented normal estimation for wireframe-type point clouds. MST, SNO and ODP use the unoriented normals estimated
by the PCA algorithm as input. Surfaces are reconstructed using the Poisson reconstruction algorithm based on the final
estimated normals, and the ground-truth is not available.

0

180

PCA+MST PCA+SNOPCA+ODPPoint CloudPCA+SNOPCA+ODPPoint Cloud PCA+MST

AdaFit+MST AdaFit+ODP AdaFit+SNOPCPNetAdaFit+ODP AdaFit+SNOPCPNet AdaFit+MST

HSurf-Net+MST HSurf-Net+ODP HSurf-Net+SNOOursHSurf-Net+MST HSurf-Net+ODP HSurf-Net+SNOOurs

Figure 9: Visual comparison of oriented normal errors. We map RMSEs to a heatmap, where red (180◦) indicates the opposite
direction.

with the method SHS-Net. The results in Table 4 also show that our
method has a clear advantage over SHS-Net on sparse point clouds.

5 MORE RESULTS
Sparse data and comparison with GCNO. The running time of
GCNO [Xu et al. 2023] increases so dramatically with the number
of points in the point cloud that we were unable to fully test it
on existing benchmark datasets. We conduct an evaluation on a



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

Point Cloud OursSHS-NetMST ODPSNO PCPNet

Figure 10: Oriented normal estimation for point clouds with complex topology. MST, SNO and ODP use the unoriented normals
estimated by the PCA algorithm as input. Surfaces are reconstructed using the Poisson reconstruction algorithm based on the
final estimated normals.

dataset that has the same shapes as the FamousShape dataset but
each shape in this dataset contains only 5000 points. We report
quantitative comparison results of oriented normal estimation in
Table 4. The traditional algorithms, such as GCNO and PCA+MST,
are implemented in C++ on the Windows platform and run on an
Intel i9-11900K CPU. The deep learning-based methods, such as
PCPNet, SHS-Net, HSurf-Net+ODP and ours, are implemented in
Python on the Ubuntu platform and run on an NVIDIA 2080 Ti
GPU. The time is the average number of seconds to process a point
cloud with 5000 points, and GCNO takes much longer to run than
other methods. Our method has the lowest RMSE result, and this
evaluation also demonstrates the good performance of our method
on sparse point clouds. Additionally, we provide a comparison
on wireframe-type point clouds, which are extremely sparse and
unevenly sampled. The experimental results in Fig. 8 show that our
method is able to handle wireframe-type data.
Shape data. As shown in Fig. 10, we provide two nest-like point
clouds with complex topology and geometry. The shape in the top
row has 100K points while the shape in the bottom row has 70K
points. The results show that our method can handle data with com-
plex topology and accurately estimate oriented normals. In Fig. 9
and Fig. 16, we provide visual comparisons of the oriented normal
RMSE on datasets PCPNet and FamousShape, and the results show
the clear advantage of our method. We render the point clouds
with RGB colors generated from the error values. In Fig. 11, we
show the oriented normal PGP curves on different data categories
of the PCPNet dataset. It can be seen that our method achieves
significant performance improvements at most of the thresholds
compared to the baseline methods. In Fig. 17, we show the unori-
ented normal PGP curves of various methods on datasets PCPNet
and FamousShape. We can see that our method has a performance
advantage at the vast majority of thresholds. These results demon-
strate that our method has clear advantages over existing methods
on the task of oriented normal estimation.
Paris-rue-Madame dataset. As shown in Fig. 13, we provide more
surface reconstruction results on the Paris-rue-Madame dataset [Serna
et al. 2014], which is acquired from real-world street scenes using
laser scanners. We show a top view of the scene and compare the

reconstructed cars on the street. We can see that the reconstruction
algorithm can benefit from the oriented normals estimated by our
method to generate better car shapes. The evaluation results on
the real-world datasets, including SceneNN and Paris-rue-Madame,
demonstrate the good generalization ability of our method.
SceneNN dataset. To test the generalization ability of our method,
we also evaluate our methods on the SceneNN dataset [Hua et al.
2016], which is acquired from real-world room scenes using RGB-D
cameras. As shown in Fig. 15, we visualize the surface reconstruc-
tion results based on the oriented normals estimated by different
methods. The results show that our method gives better shapes of
objects in the kitchen room.

6 LIMITATION AND FAILURE CASES
The task of estimating oriented normals with consistent orienta-
tions is more challenging than finding the perpendicular lines of
planes/surfaces, i.e., unoriented normals. As we introduce in the
paper, our method determines the normal orientation based on the
gradients learned by NGL. In our experiments, we observe that our
GVO can always deliver good normal results from various point
clouds in unoriented normal evaluation. However, our NGL may
fail to learn the normal orientations for oriented normal estimation.
This will lead to poor evaluation results for oriented normals even
though their corresponding unoriented normals are very accurate.
As encountered in existing oriented normal estimation methods,
the bottleneck of estimating high-precision oriented normals is
correctly determining the normal orientation. As shown in Fig. 12,
we provide some failure cases of our method in oriented normal
estimation. In these cases, the unoriented normals are accurate, and
the normal orientations of most points are also correct.

REFERENCES
Matan Atzmon and Yaron Lipman. 2020. SAL: Sign agnostic learning of shapes from

raw data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2565–2574.

Yizhak Ben-Shabat and Stephen Gould. 2020. DeepFit: 3D Surface Fitting via Neural
Network Weighted Least Squares. In European Conference on Computer Vision.
Springer, 20–34.



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation —— Supplementary Material

0.6

0.7

0.8

0.9

1.0

PG
P

No Noise Low Noise

0.6

0.7

0.8

0.9

1.0

PG
P

Medium Noise High Noise

0 30 60 90
Threshold(degree)

0.6

0.7

0.8

0.9

1.0

PG
P

Density: Stripe

0 30 60 90
Threshold(degree)

Density: Gradient

AdaFit+MST
AdaFit+SNO
AdaFit+ODP
HSurf-Net+MST
HSurf-Net+SNO
HSurf-Net+ODP

PCA+MST
PCA+SNO
PCA+ODP
SHS-Net
PCPNet
Ours

Figure 11: Oriented normal PGP curves on the PCPNet
dataset. Our method achieves significant performance im-
provements at most of the thresholds. The X-axis is the angle
threshold and the Y-axis is the percentage of good point nor-
mals (PGP) whose errors are less than the given threshold.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. 2020. Im-
plicit Geometric Regularization for Learning Shapes. In International Conference on
Machine Learning. PMLR, 3789–3799.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J Mitra. 2018. PCPNet:
learning local shape properties from raw point clouds. In Computer Graphics Forum,
Vol. 37. Wiley Online Library, 75–85.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1992. Surface reconstruction from unorganized points. In Proceedings of the 19th
Annual Conference on Computer Graphics and Interactive Techniques. 71–78.

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-Fai Yu,
and Sai-Kit Yeung. 2016. SceneNN: A scene meshes dataset with annotations. In
2016 Fourth International Conference on 3D Vision. IEEE, 92–101.

Michael Kazhdan and Hugues Hoppe. 2013. Screened poisson surface reconstruction.
ACM Transactions on Graphics 32, 3 (2013), 1–13.

Qing Li, Huifang Feng, Kanle Shi, Yue Gao, Yi Fang, Yu-Shen Liu, and Zhizhong Han.
2023a. SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation
of Point Clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA,
13591–13600. https://doi.org/10.1109/CVPR52729.2023.01306

Qing Li, Yu-Shen Liu, Jin-San Cheng, Cheng Wang, Yi Fang, and Zhizhong Han. 2022.
HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper Surfaces.
In Advances in Neural Information Processing Systems (NeurIPS), Vol. 35. Curran

U
no

rie
nt

ed
 E

rr
or

O
rie

nt
ed

 E
rr

or

0

40

0

180

Figure 12: Visualization of some failure cases. Our method
can estimate unoriented normals with high accuracy (top
row). However, the normal orientations, i.e., gradients from
NGL, in some local areas are not correctly learned (bottom
row). RMSE𝑈 and RMSE𝑂 of point cloud normals are mapped
to different heatmaps for visualization.

Associates, Inc., 4218–4230. https://proceedings.neurips.cc/paper_files/paper/2022/
hash/1b115b1feab2198dd0881c57b869ddb7-Abstract-Conference.html

Shujuan Li, Junsheng Zhou, Baorui Ma, Yu-Shen Liu, and Zhizhong Han. 2023b. NeAF:
Learning Neural Angle Fields for Point Normal Estimation. In Proceedings of the
AAAI Conference on Artificial Intelligence.

Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. 2021. Neural-Pull:
Learning signed distance functions from point clouds by learning to pull space
onto surfaces. International Conference on Machine Learning (2021).

Baorui Ma, Yu-Shen Liu, and Zhizhong Han. 2022a. Reconstructing surfaces for sparse
point clouds with on-surface priors. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 6315–6325.

Baorui Ma, Yu-Shen Liu, Matthias Zwicker, and Zhizhong Han. 2022b. Surface recon-
struction from point clouds by learning predictive context priors. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6326–6337.

Gal Metzer, Rana Hanocka, Denis Zorin, Raja Giryes, Daniele Panozzo, and Daniel
Cohen-Or. 2021. Orienting point clouds with dipole propagation. ACM Transactions
on Graphics 40, 4 (2021), 1–14.

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas
Geiger. 2021. Shape as points: A differentiable poisson solver. Advances in Neural
Information Processing Systems 34 (2021), 13032–13044.

Andrés Serna, Beatriz Marcotegui, François Goulette, and Jean-Emmanuel Deschaud.
2014. Paris-rue-Madame database: a 3D mobile laser scanner dataset for bench-
marking urban detection, segmentation and classification methods. In International
Conference on Pattern Recognition, Applications and Methods.

Rui Xu, Zhiyang Dou, Ningna Wang, Shiqing Xin, Shuangmin Chen, Mingyan Jiang,
Xiaohu Guo, Wenping Wang, and Changhe Tu. 2023. Globally Consistent Normal
Orientation for Point Clouds by Regularizing the Winding-Number Field. ACM
Transactions on Graphics (TOG) (2023). https://doi.org/10.1145/3592129

Runsong Zhu, Yuan Liu, Zhen Dong, Yuan Wang, Tengping Jiang, Wenping Wang,
and Bisheng Yang. 2021. AdaFit: Rethinking Learning-based Normal Estimation on
Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 6118–6127.



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

Point Cloud

PCA+MST

PCA+SNO

PCPNet

AdaFit+MST

AdaFit+SNO

Ours

HSurf-Net+MST

HSurf-Net+ODP

HSurf-Net+SNO

Figure 13: The reconstructed surfaces using oriented normals estimated by different methods on the Paris-rue-Madame dataset.
Our method can provide more complete and clear car shapes. We mark those less obvious differences with red dots to help
distinguish them. The colored point cloud is obtained by coloring it with our estimated normals.



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation —— Supplementary Material

NP

OSP

Ours

PCP

Clean Low Medium High

Point

Cloud

Figure 14: Comparison with surface reconstruction methods that use point pulling strategy, including Neural-Pull (NP) [Ma
et al. 2021], OSP [Ma et al. 2022a] and PCP [Ma et al. 2022b], on point clouds with different noise levels.



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

PCA+SNO

AdaFit+SNO

HSurf-Net+SNO

PCA+ODP

AdaFit+ODP

HSurf-Net+ODP

PCA+MST

AdaFit+MST

HSurf-Net+MST

Point Cloud

PCPNet

Ours

Figure 15: The reconstructed surfaces using oriented normals estimated by different methods on the SceneNN dataset. The
differences are mainly concentrated in the area inside the red circle.



Neural Gradient Learning and Optimization for Oriented Point Normal Estimation —— Supplementary Material

PCA+MST PCA+SNOPCA+ODPPoint Cloud

AdaFit+MST AdaFit+ODP AdaFit+SNOPCPNet

HSurf-Net+MST HSurf-Net+ODP HSurf-Net+SNOOurs

Point Cloud

Ours

PCPNet

PCA+MST

HSurf-Net+MST

AdaFit+MST

PCA+ODP

HSurf-Net+ODP

AdaFit+ODP

PCA+SNO

HSurf-Net+SNO

AdaFit+SNO

Point Cloud PCA+MST PCA+ODP PCA+SNO Point Cloud PCA+MST PCA+ODP PCA+SNO

PCPNet AdaFit+MST AdaFit+ODP AdaFit+SNOPCPNet AdaFit+MST AdaFit+ODP AdaFit+SNO

Ours HSurf-Net+MST HSurf-Net+ODP HSurf-Net+SNOOurs HSurf-Net+MST HSurf-Net+ODP HSurf-Net+SNO

0

180

Figure 16: Visualization of the oriented normal error on datasets PCPNet (left) and FamousShape (right). The angle error is
mapped to a heatmap ranging from 0◦ to 180◦. The purple color indicates the same direction as the ground-truth, while the red
color is the opposite.



Qing Li, Huifang Feng, Kanle Shi, Yi Fang, Yu-Shen Liu, and Zhizhong Han

0 10 20 30
Threshold(degree)

0.7

0.8

0.9

1.0

PG
P

No Noise

0 10 20 30
Threshold(degree)

Low Noise

0 10 20 30
Threshold(degree)

Density: Stripe

0 10 20 30
Threshold(degree)

Density: Gradient

DeepFit
Zhang et al.
Lenssen et al.
Nesti-Net
AdaFit
Jet
PCA

NeAF
GraphFit
HSurf-Net
SHS-Net
PCPNet
Ours

(a) Unoriented normal PGP curves on the PCPNet dataset.

10 20 30
Threshold(degree)

0.7

0.8

0.9

1.0

PG
P

No Noise

10 20 30
Threshold(degree)

Low Noise

10 20 30
Threshold(degree)

Density: Stripe

10 20 30
Threshold(degree)

Density: Gradient

DeepFit
Zhang et al.
Lenssen et al.
Nesti-Net
AdaFit
Jet
PCA

NeAF
GraphFit
HSurf-Net
SHS-Net
PCPNet
Ours

(b) Unoriented normal PGP curves on the FamousShape dataset.

10 20 30
Threshold(degree)

0.7

0.8

0.9

PG
P

Medium Noise

10 20 30
Threshold(degree)

High Noise
DeepFit
Zhang et al.
Lenssen et al.
Nesti-Net
AdaFit
Jet
PCA

NeAF
GraphFit
HSurf-Net
SHS-Net
PCPNet
Ours

(c) Unoriented normal PGP curves on the PCPNet dataset.

10 20 30
Threshold(degree)

0.3

0.4

0.5

0.6

0.7

PG
P

Medium Noise

10 20 30
Threshold(degree)

High Noise
DeepFit
Zhang et al.
Lenssen et al.
Nesti-Net
AdaFit
Jet
PCA

NeAF
GraphFit
HSurf-Net
SHS-Net
PCPNet
Ours

(d) Unoriented normal PGP curves on the FamousShape dataset.

Figure 17: Unoriented normal PGP curves of different methods on datasets PCPNet (a)(c) and FamousShape (b)(d). Our method
maintains a performance advantage at the vast majority of thresholds. The axis scale of (a) and (b) is different from that of (c)
and (d) as we enlarge it in (c) and (d) for better presentation. The X-axis is the angle threshold and the Y-axis is the percentage
of good point normals (PGP) whose errors are less than the given threshold.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Unoriented Normal Estimation
	2.2 Consistent Normal Orientation

	3 Preliminary
	4 Method
	4.1 Neural Gradient Learning
	4.2 Gradient Vector Optimization

	5 Experiments
	5.1 Evaluation
	5.2 Ablation Studies

	6 Conclusion
	Acknowledgments
	References

