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CMPD: Using Cross Memory Network With Pair
Discrimination for Image-Text Retrieval

Xin Wen , Graduate Student Member, IEEE, Zhizhong Han, and Yu-Shen Liu , Member, IEEE

Abstract— Cross-modal retrieval using deep neural networks
aims to retrieve relevant data between the two different modali-
ties. The performance of cross-modal retrieval is still unsatisfac-
tory for two problems. First, most of the previous methods failed
to incorporate the common knowledge among modalities when
predicting the item representations. Second, the semantic rela-
tionships indicated by class label are still insufficiently utilized,
which is an important clue for inferring similarities between the
cross modal items. To address the above issues, we propose a
novel cross memory network with pair discrimination (CMPD)
for image-text cross modal retrieval, where the main contri-
butions lie in two-folds. First, we propose the cross memory
as a set of latent concepts to capture the common knowledge
among different modalities. It is learnable and can be fused
into each modality through attention mechanism, which aims
to discriminatively predict representations. Second, we propose
the pair discrimination loss to discriminate modality labels
and class labels of item pairs, which can efficiently capture
the semantic relationships among these modality labels and
class labels. Comprehensive experimental results show that our
method outperforms the state-of-the-art approaches in image-text
retrieval.

Index Terms— Retrieval, cross-modal retrieval, adversarial
learning.

I. INTRODUCTION

CROSS-MODAL retrieval aims at mining the semantic
relationships between the items of multiple modalities

from different multimedia sources [1]. It is a basic and impor-
tant task related to many real-world multimedia applications
such as image-text retrieval [2]–[4], image-video retrieval [5],
and image-3D retrieval [6]. This task is challenging because
the items from different modalities usually have different
distributions in the latent feature subspace [7]. Such modality
gap impedes directly assessing the semantic similarity between
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the items across modalities. Generally speaking, one common
solution is to learn a common representation subspace for
different modalities, where the similarities among the items
from different modalities can be measured directly. Most
previous studies [7], [8] focus on constructing a good common
subspace so that the similar items from different modalities
are close to each other in the common space. Without loosing
generality, in this paper, we follow the previous work [2], [9]
to mainly address the problem by focusing on learning the
common representation subspace for the items from image
and text modalities. Because it is the widely used multimedia
forms and is adopted as the typical cross-modal resources in
many previous multimedia studies [10], [11].

Although a lot progress has been achieved in this area,
the performance of image-text retrieval still remains unsat-
isfactory. The problems lie in two-folds. The first one is the
absence of common knowledge when predicting the represen-
tation for single modality. Usually, it is naturally desirable for
network to notice the common information across modalities,
when predicting the representation for certain one of these
modalities. However, current approaches only establish the
link to share information at the end of the network, where
the element-wise spatial constraints (e.g. Euclidean or cosine
distance) are used for describing the common information
between the semantically similar items. As a result, such
practice limits the representation learning ability of the net-
work. The second one is the insufficient utilization of class
relationship, where two items with the same class should be
kept close, no matter which modalities they come from. The
class relationships between pair of items (i.e. from the same
class, or not from the same class) can be a helpful signal to
decide the semantic similarity between items. However, only
few work considers such relationship. Both SSAH [12] and
DSCMR [13] try to preserve the class relationships in a latent
label space. The problem is, such kind of method suffers
from the information loss by indirectly measuring the class
relationship between different modalities.

Therefore, in this paper, we propose a cross memory
network with pair discrimination (CMPD) to address the
above-mentioned issues. In order to share the learned common
information across modalities when predicting representations
for certain modality, we maintain a set of learnable latent
concept representations called cross memory. For each item
from image or sentence modality, we enable its visual or
semantic feature to interact with these memories via atten-
tion mechanism. Benefit from the capability of attention in
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Fig. 1. The comparison of our pair discrimination in (b) with the element-
wise constraints in (a). In (a), the element-wise constraints only attend to the
paired relationships represented by the solid line. On the other hand, in (b),
the proposed CMPD preserves the semantic structure of the entire distribution
in the modality level (black dotted cloud) and the class level (orange dotted
cloud) by considering the modal-pair and class-pair divergence in the subspace
of paired items.

modeling relationships among items, we can explicitly share
the representation learned from the relatedness between the
modalities through the cross memory, which can further pro-
vide the evidence for deciding the similarity between item
pairs.

Meanwhile, in order to construct a class-relationship-aware
common representation subspace, we propose the pair dis-
crimination method, where we incorporate the class rela-
tionships between a pair of items by means of adversarial
learning. Specifically, we design two discriminators on top
of the common representation subspace. One discriminator
aims to distinguish whether the input pair of items come
from the same modality or not. And the other discriminator
is used to distinguish whether there exists a class relation-
ship between them, i.e., whether they belong to the same
class.

In CMPD, we propose two pair discrimination divergences
for the discriminators. (1) The modal-pair divergence distin-
guishes the modality label of input pairs, in which the items of
a pair have the same class labels. We minimize the modal-pair
divergence in order to merge the text and image distribution
together. (2) The class-pair divergence distinguishes the class
label of input pairs, in which the discriminator should judge
whether the items in the input pair have the same label. We
optimize the class-pair divergence in order to separate the
pairs containing different class labels away from the pairs
containing the same class labels. Note that we use the term
“divergence” instead of “loss” because we incorporate our
CMPD with the WGAN [14] framework, and leverage the pair
discrimination as minimizing or maximizing the divergences
between different distributions, as shown in Fig. 1.

The proposed CMPD is evaluated on four widely used
benchmarks. The main purpose of our work concerns the
representation learning component in image-text retrieval task,
and in particular regarding the effectiveness of the process and
the objectives for learning a well structured common subspace.
The contributions can be summarized as follows.

• In CMPD, the cross memory is proposed to capture the
common knowledge between two modalities. By inter-
acting with the representation from various modali-
ties through attention mechanism, the model can effi-
ciently learn the common knowledge among modalities,
and refer to it when predicting the representations for
items.

• By combing with adversarial learning framework,
we design two discriminators on top of the common rep-
resentation subspace, which can effectively integrate both
the modality-level and class-level semantic relationships
between the items across all modalities.

• Two pair discrimination divergences are proposed in
CMPD to capture the semantic relationships between
unpaired image and text items. Compared with element-
wise spatial constraints, pair discrimination divergences
can leverage the modality-level and class-level semantic
relationships as a whole, which preserves a more discrim-
inative structure of common space.

II. RELATED WORK

The research for image-text retrieval task is a specific
problem of cross-modal retrieval, which can be roughly
divided into two mainstreams. The first is the cross-modal
hashing methods that mainly focus on the retrieval efficiency
by mapping the items of different modalities into a com-
mon binary Hamming space [12], [15]–[19]. The second is
the joint representation learning methods, where four sub-
classes can be further distinguished as unsupervised methods
[20]–[23], pairwise methods [24], [25], ranking-based meth-
ods [26] and supervised [7], [27] methods. Our model belongs
to the subclass of supervised cross-modal retrieval methods,
where the class labels of items are provided during training.

On the other hand, our model is also related to the gen-
erative adversarial networks (GANs) [28] in terms of joint
distribution matching. Recently, several studies have been
proposed to introduce the adversarial learning into cross-
modal retrieval tasks. For instances, both ACMR [7] and
UCAL [29] introduce a modality classifier to distinguish the
modality of the input items. By applying an additional label
prediction loss and triplet loss to preserve the cross-modal
semantic structure in the common representation subspace,
ACMR achieves the state-of-the-art performance on super-
vised cross-modal retrieval task. CM-GANs [30] introduces
an intra-modal discriminator to judge original features apart
from the reconstructed features. For unsupervised learning,
the CM-GANs proposed a two-way convolutional autoencoder
structure with weight sharing constraints for the generator.
It is one of the few work in this area that explores the way
to share the learned common semantic features between two
generators. By combining the modality discriminator and the
transfer learning strategy, the MHTN [31] method takes one
step further to support the cross-modal learning of more than
two modalities at the same time. Different from the previous
work, the CMPD focuses more on exploring the adversarial
learning framework’s ability of learning the diverse semantic
relationships between distributions both in modalities level and
classes level.
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Fig. 2. The framework of our proposed CMPD. Our model consists of three parts. The first part is the representation generator, in which two feed-forward
networks are applied to transfer the input images and texts feature vectors into the representation vectors. The second part is the discriminator, where the
representation vectors are transferred from the common representation subspace into the joint distribution subspace by the concatenation mapping φ. Two
divergences are calculated and optimized by two feed-forward networks. The third part is the supervised loss, where the label loss and triplet loss are adopted
by following [7].

Our work is theoretically inspired by the WGAN [14],
in which the Wasserstein distance (WD) is introduced to stabi-
lize the training of GANs. The WD’s property to measure two
completely disjoint distributions is crucial for the joint distri-
bution matching, where the situations of handling the disjoint
distributions occur frequently. For discriminator, WGAN pro-
vides a reliable framework and training methodology to force
the discriminators to constantly approach the WD between
two distributions during training. Therefore, the optimization
goal of the generator is then simplified by minimizing or
maximizing the distance between two distributions.

III. THE CMPD MODEL

In this section, we first introduce some important notations
and background. Then, we detail the framework of our pro-
posed CMPD. An overview of our model is shown in Fig. 2.

A. Background

1) Problem Formulation: Without losing generality, in this
paper we formulate our description for cross modal retrieval
problem, where the dataset consists of a collection of image-
text pairs. Let {(vc

i , tc
i )}ni=1 ∼ D denote the discrete distrib-

ution of n image-text pairs with m classes, where vc
i is the

image feature vector and tc
i is the text feature vector in class

c ∈ {1, . . . , m}, respectively. Then, the image feature vector
distribution and the text feature vector distribution can be
written as {vc

i } ∼ V and {tc
i } ∼ T , respectively.

Then, the problem of cross-modal retrieval is to find two
projections v′c

i = fV (vc
i ) and t ′ci = fT (tc

i ) that map the image
and text feature vectors into a common representation subspace

S, where the similarities between the cross-modal items can
be directly assessed. The distributions of image and text
representation vectors in the common representation subspace
are denoted as {v′c

i } ∼ V ′ and {t ′ci } ∼ T ′, respectively.
2) Wassertein Distance and WGAN: In most of the previous

studies, the discriminator D is adopted as the modality clas-
sifier and takes the cross entropy loss of binary predictions as
the optimization goal, which can be formulated as below

LD = Ev∼V log D( fV (v))+ Et∼T log[1− D( fT (t))]. (1)

According to [14], the optimization of LD is equivalent to
approach the Jesen-Shannon Divergence (JSD) between the
image representation distribution V and the text representation
distribution T . However, the JSD will raise a constant value
for distributions that have no overlap with each other, which
is usually the case in the training process of GAN. This
will cause the problem of gradient diminishing and hinder
the optimization of discriminator. Therefore, the discriminator
could not be fully optimized to approach the actual value of the
JSD. This situation deviates from the discriminator’s training
goal of our model, which is to obtain a precise estimation
of the divergence between two distributions. Compared with
JSD, the Wasserstein distance (WD) introduced in WGAN [14]
theoretically avoids the problem of raising constant value when
measuring two non-overlap distributions. Therefore, it can
be adopted as the divergence measurement in our model.
According to [32], the optimization can force the discriminator
constantly approach the WD of two distributions by simply
applying a gradient penalty term in the discriminator’s loss.
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B. Cross Memory Networks

In this paper, the feed-forward network is adopted as
the basic framework for both image generator fV and text
generator fT . Note that, since the model focuses on learning
the common representation of image and text items, the pre-
trained feature vectors for both images and texts are used as
the input of generators. The overall structure of cross memory
network consists of three feed-forward layers with one cross
memory block (CMB) between two top layers, as shown in
left half of Fig. 2. For simplicity, we only introduce the image
generator. The structure of text generator is the same as image
generator except for the input dimensions of the first feed-
forward layer.

Let v′
l ∈ R

dl denote the output of the l-th layer for image
generator. For the bottom two layers, the output is given as

v′
l = f (W v′

l v′
l−1 + bv ′

l ), (2)

where W v′
l ∈ R

dl−1×dl and bv ′
l ∈ R

dl are exclusive parameters
for image generator.

Between the top two layers, the cross memory block (CMB)
maintains a set of cross memory units (CMUs) M = {m1,
m2, m3, . . . , mk}, in which mi ∈ R

dl−1 represents the learned
common feature between image and text items, as shown in
the left bottom part of Fig. 2. For each input v′

l−1 from
the previous layer, the cross memory block determines the
importance of each cross memory unit to the input vectors,
by assigning a weight factor wi for each unit mi according
to the current input v′

l−1. The importance is calculated as
a probability between 0 and 1 through sigmoid function as
below

wi = sigmoid(mT
i v′

l−1). (3)

Then the shared feature representation ms is obtained by the
weighted sum of all the units in the cross memory block

ms =
i=k∑

i=1

wi · mi . (4)

To integrate the information of original input v′
l−1 and the

shared feature representation m, the cross memory block uses
a gate structure to determine how much information of m
is remained for combination and how much information is
removed from the input v′

l−1, and the ratio of remaining
information is calculated but sigmoid function as a logit
between 0 and 1, as shown in Eq. (5).

p = sigmoid([ms : v′
l−1]Wg), (5)

where Wg ∈ R
2dl−1×1 and “:” denotes the concatenation of

two matrixes. Then the combination representation of shared
and modality-specific features v̂′

l is given as

v̂′
l = (1− p) · v′

l−1 + p · ms . (6)

The output of the l-th feed-forward layer is formulated as
follow

v′
l = relu(W v̂′

l v̂′
l + bv ′

l ), (7)

where W v̂′
l ∈ R

dl−1×dl and bv̂ ′
l ∈ R

dl .

Before training, the cross memory units are first initialized
as a set of random vectors sampled from a random distrib-
ution. We maintain these cross memory units by regarding
them as trainable weights and updating them along with the
other weights in the network during training. The common
representation in the cross memory units is learned through
the attention mechanism, where the mechanism calculates the
importance (which is the weight) of each unit to the input data.
These units are fixed during testing phase but not in training
phase. During testing, these units are treated as ordinary
network parameters to calculate representations.

For representation learning, L2 normalization (L2-norm) has
been proved to be efficient for improving the performance of
image classification [33], [34]. And for text classification and
retrieval, cosine similarity is more generally used as a metric
for measuring the distance when working with text feature
vectors represented by word counts. Inspired by the above
two aspects, we follow [34] to introduce L2-constraint on the
generated representation vectors and use cosine similarity as
distance measurement. Specifically, for generated image and
text representation vector v′ and t ′, we regularize them to the
unit hypersphere in the common representation subspace as
ṽ = v′

‖v′‖ and t̃ = t ′
‖t ′‖ . Then the cosine similarity between ṽ

and t̃ can be formulated as

sim(ṽ, t̃) = ṽ · t̃
‖ṽ‖‖ t̃‖ . (8)

Note that the similarity function is actually redundant, since
the representations are eventually normalized to the unit length
in our model. In practice, we only use the dot product
for triplet loss during training and the retrieval task during
evaluation.

C. Joint Distribution Divergences

The joint distribution matching is a variant of adversarial
learning, but focusing more on exploring the discriminator’s
ability of measuring divergence between distributions. Solu-
tions label prediction loss and triplet loss [7] may help to
relief the problem of preserve the inter-class structure of
the items. However, label prediction loss cannot disperse the
distributions of different classes far away in the common
representation subspace, which we will discuss in Fig. 4, while
the triplets sampled from mini-batch data cannot traverse the
entire collection of triplets for its expensive computational
cost [7], both of the two methods cannot fully preserve the
inter-class structure of the items in practice.

In the view above, we propose to solve the problem in a
joint distribution subspace, where the item’s modality and class
information can be considered simultaneously. Before further
discussion, we first introduce some complementary notations
for convenience. Given the regularized representation vectors
distribution {ṽc

i }ni=1 and { t̃c
i }ni=1, we consider the following

three joint distributions that contain both the modality and
class information of the data, which are text-text pairs with
texts have the same class label in each pair as Eq. (9), image-
image pairs with images have the same class label in each pair
as Eq. (10), and image-text pairs with the items have different
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label in each pair as Eq. (11).

P1 = {(ṽc
i , ṽ

c
j )}c=m

c=1,i �= j , (9)

P2 = {( t̃
c
i , t̃

c
j )}c=m

c=1,i �= j , (10)

P3 = {(ṽc
i , t̃

d
j )}c �=d,i �= j . (11)

By introducing the above three distributions, we transform the
simple modality matching problem into a joint representation
space, where both the inter-modal and inter-class structure of
the items can be fully preserved during adversarial training.

1) Inter-Modal Divergence: In order to preserve the inter-
modal structure, we consider to minimize the following inter-
modal divergence (Limd ) based on Wasserstein distance (W ).
When this divergence takes the minimum value, the distribu-
tions of P1 and P2 are completely overlapped with each other,
which means the modality distributions of image and text
representation vectors overlap in the common representation
subspace. Besides, since the image and text pairs of P1 and
P2 consist of items that have the same class label, minimizing
this divergence will bring representation vectors with the same
class labels close to each other.

To stabilize the training, following the practice of [32],
we use the gradient penalty (Pimd ) as the constraints and
formulate objective function for discriminator and generator
as follow:

Limd (D)=Ex∼P1[Dimd (x)]−Ex∼P2[Dimd (x)]+λgpPimd ,

(12)

Pimd =
∑

i∈{1,2}
Ex∼Pi [(‖�x Dimd (x)‖2 − 1)2], (13)

Limd (G)=−Ex∼P1[Dimd (x)] + Ex∼P2[Dimd (x)], (14)

where λgp is the preset weight of gradient penalty term.
Note that the generator G in the above function consists
of text representation generator fT and image representation
generator fV .

2) Inter-Class Divergences: The main purpose of inter-class
divergence is to pull items of different classes away from
each other in the common representation subspace. Solutions
like directly measuring the divergence between every class
pairs in the common representation subspace may also achieve
the same effect. However, it usually comes at the expense of
the training time, especially for dataset with large number of
classes.

Same as the inter-modal divergence, we have the following
objective functions for discriminator and generator, where
Licd (D) in Eq. (15) aims to measure the divergence between
P1 and P3, and Licd (G) in Eq. (17) aims to minimize the
divergence between P1 and P3.

Licd (D) = Ex∼P1[Dicd (x)] − Ex∼P3[Dicd (x)] + λgpPicd ,

(15)

Picd =
∑

i∈{1,3}
Ex∼Pi [(‖�x Dicd (x)‖2 − 1)2], (16)

Licd (G) = Ex∼P1[Dicd (x)] − Ex∼P2[Dicd (x)]. (17)

The total adversarial training objective functions for gener-
ator and discriminator are formulated as

Ladv(G) = Limd (G)+ λicdLicd (G), (18)

Ladv(D) = Limd (D)+ Licd (D). (19)

3) Simplified Gradient Penalty: The gradient penalty per-
formed between the input distributions is used to force the
discriminator to meet the Lipschiz constraint [14]. It is usu-
ally performed in the space between the input distributions
according to WGAN-GP [32]. In CMPD, there are three joint
distributions for two discriminator networks, which yield four
time-consuming penalty terms to be calculated over P1, P2
and P3 during training. Therefore, we consider to combine
the DRAGAN [44] and the L2-norm to reduce the calculation
redundance. To reduce the computation redundance, by apply-
ing L2-norm, we project all the vectors to a unit hyper-sphere
in the common representation subspace, restricting all the
distributions close to each other. Under such circumstances,
one gradient penalty for one discriminator can cover all the
distributions on the hypersphere. In practice, gradient penalty
is applied over P1, which is shared in both Limd and Licd .
Then, Eq. ((13)) and Eq. ((16)) are reformulated according to
DRAGAN [44] as

Pimd = Ex∼P1[(‖�x Dimd (x)‖2 − 1)2], (20)

Picd = Ex∼P1[(‖�x Dicd (x)‖2 − 1)2]. (21)

D. Supervised Loss and Total Loss Function

1) Supervised Loss: Since the joint distribution matching
is mainly proposed for mining the semantic relationships
between unpaired items, constraints between paired items are
still necessary for constructing the semantic structure in the
common representation subspace. In this paper, we follow [7]
to adopt the class prediction loss and the triplet loss as the
supervised optimization goals for generator.

For class prediction, we add a classifier consisting of
the feed-forward network activated by softmax on top of
the representation generators fV and fT , respectively. The
corresponding objective function is

Lcla(G) = 1

m

m∑

i=1

(yi · (log pi(ṽi )+ log pi( t̃ i ))), (22)

where yi is 1 for correct class label and 0 for wrong class
label, respectively.

For triplet loss, we follow [7] to sample negative items that
have different class label with a given text-image pair from the
mini-batch to construct the triplets (ṽc

i , t̃c
i , t̃d

j ) and ( t̃c
i , ṽ

c
i , ṽ

d
j ).

The objective function is formulated as

Ltri,T (G) =
∑

i, j,c,k

(ṽc
i · t̃c

i +max(0, μ− ṽc
i · t̃k

j )), (23)

Ltri,V (G) =
∑

i, j,c,k

( t̃
c
i · ṽc

i +max(0, μ− t̃
c
i · ṽk

j )), (24)

where μ is a preset threshold for training.
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Algorithm 1 CMPD, Our Proposed Algorithm. All Experi-
ments in the Paper Used the Default Values Learning Rate
αD = 0.0005 for Discriminator and αG = 0.0001 for
Generators, Batch Size N = 64, and Iteration Steps for
Discrminator nD = 3
Require: Pre-trained image feature vectors {vc

i }ni=1, text fea-
ture vectors {tc

i }ni=1 and hyperparameters λadv , λicd , λgp

and λtri for objective functions;
1: while model has not converged do
2: for t = 0, . . . , nD do
3: update the discriminator’s parameters θD to obtain the

estimation of the inter-modal and inter-class divergence:
4: grad D ← ∇D

1
N L(D)

5: w← θD + αD · Adam(θD, grad D)
6: end for
7: update the generator’s parameters θG according to the

estimation of the discriminator and the supervised opti-
mization goals:

8: gradG ← ∇G
1
N λ(G)

9: θG ← θG + αG ·Adam(θG , gradG)
10: end while

Thus, we have the total supervised objective functions for
generator as

Lsup(G) = Lcla(G)+ λtri [Ltri,V (G)+ Ltri,T (G)]. (25)

The optimization of our proposed model basically consists
of two parts. First, the discriminator is optimized for several
steps to obtain the estimation of divergences between dis-
tributions, then the generator is optimized according to the
estimated divergence along with the supervised optimization
goals. The total optimization goals for generator and discrim-
inator are given below

L(G) = λadvLadv(G)+ Lsup(G), (26)

L(D) = Ladv(D). (27)

The pseudo code of the training process is shown in
Algorithm 1.

IV. EXPERIMENTS AND EVALUATION

In this section, we first evaluate the performance of our
proposed CMPD on four widely-used cross-modal datasets:
Wikipedia dataset [45], NUS-WIDE-10k dataset [46], Pascal
Sentence dataset [47], and MSCOCO dataset [48]. Then,
we further conduct a visualization analysis on our proposed
model and discuss the effect of some key parameters.

A. Experiment Setup

We compare the performance of our model with other exist-
ing methods in terms of the mean average precision (mAP).
The evaluation is conducted on both directions, i.e. retrieving
text using image query (Img2txt) and retrieving image using
text query (Txt2img). For fair comparison, we follow [7], [22]
to compute top-50 mAP for the results on each dataset.

For the representation generators, relu activation is applied
to the bottom two layers and tanh activation is applied to the

top layer. The learning rate is fixed to 10−4 for both text and
image generators in all the experiments. The number of feature
representations maintained in cross memory unit is set to 128.
The label classifier contains only one fully-connected layer
with no activation function. The weight factor λadv and λtri

are set to 1 and 0.01 for all the experiments, respectively.
The discriminator consists of three feed-forward layers with

tanh activation for the bottom two layers and no activation for
the output layer. The number of the output units from the
bottom to the top layer is set to 64, 32 and 1, respectively.
The learning rate for discriminator is fixed to 5×10−4 and the
weight factor λgp for gradient penalty is set to 10. To train the
model, we use Adam Optimizer [49] with hyper parameters
β1 = 0.5 and β2 = 0.999.

B. Quantitative Comparison

In this subsection, we comprehensively compare our pro-
posed CMPD with three kinds of retrieval methods: (1)
traditional methods including CCA [35], CCA-3V [36],
LSFS [37], JRL [38] and JFSSL [27]; (2) DNN-based methods
including Multi-DBN [39], Bimodal-AE [40], Corr-AE [21],
DCML [41] and CMDN [42]; (3) GAN-based methods includ-
ing UCAL [29], CM-GAN [30], MHTN [31], ACMR [7],
CMST [43] and DSCMR [13]. Note that CMPD(Ours) is
the results obtained under the above-mentioned circumstances,
while CMPD(Ours-textcnn) is an additional version for fair
comparison with DSCMR [13], which will be detailed later.
The experimental results are shown in Table I, and the observa-
tions can be concluded as follows. The experiments are carried
out on four widely-used cross-modal retrieval datasets, which
are listed in below.

• Wikipedia dataset [45] has 2866 image-text pairs
labelled by 10 categories. For fair comparison, the dataset
is split into 2 subsets, which are training set with
1300 pairs and testing set with 1566 pairs, following [7].

• Pascal Sentence dataset [47] consists of 1000 image-text
pairs with 20 categories. For each image in the dataset,
there are 5 corresponding short sentence descriptions. The
whole dataset is divided into 2 groups, namely 800 for
training and 200 for testing.

• NUS-WIDE-10K dataset [46] is a dataset that contains
9000 image-text pairs with 350 categories. We select
8000 pairs from the dataset for training and leaving the
1000 pairs for testing.

• MSCOCO dataset [48] is a large scale dataset compared
to the previous three datasets. It contains 123,000 images,
with each images annotated by 5 descriptions. Follow-
ing [7], we use the 66,226 image-text pairs for training,
and 16,557 image-text pairs for testing, which all come
from the training set of MSCOCO.

In experiments, we exactly follow the partition and feature
extraction strategies of [7] for fair comparison. Image features
are taken from the fc7 layer of a pre-trained VGGNet-19
(VGG19) model while text features are computed by the
classical Bag-of-Words features with tf-idf weighting. The
experiments results are shown in Table I, and the observations
can be concluded as follows.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 03,2021 at 23:57:27 UTC from IEEE Xplore.  Restrictions apply. 



WEN et al.: CMPD: USING CROSS MEMORY NETWORK WITH PAIR DISCRIMINATION FOR IMAGE-TEXT RETRIEVAL 2433

TABLE I

COMPARISON WITH EXISTING IMAGE-TEXT RETRIEVAL METHODS IN ASPECT OF MEAN AVERAGE PRECISION (MAP)

TABLE II

COMPARISON WITH EXISTING METHODS ON

MSCOCO IN ASPECT OF MAP

On Wikipedia dataset, the proposed CMPD outperforms the
state-of-the-art method ACMR by 1.3% and 1.2% in Img2txt
and Txt2Img retrieval tasks, and it achieves a more convincing
improvement (9.2% in Img2txt and 3.7% in Txt2Img) on the
NUS-WIDE-10K dataset. We believe there are two reasons
for that CMPD achieves a better results on NUS-Wide-10K.
First, because NUS-WIDE-10K contains a larger scale of
data, CMPD can be fully optimized during training. Second,
benefited from the larger number of classes contained in the
NUD-WIDE-10K, joint distribution matching’s advantage of
learning the semantic relationships between unpaired items
is further magnified. On Wikipedia and NUS-Wide-10K,
the effectiveness of ACMR model comes from the element-
wise triplet loss and the adversarial learning framework.
Compared to CMPD, the adversarial learning in ACMR only
learns the semantic relationships of unpaired items between
modalities. It fails to capture the more detailed relationship
between classes, which is the advantage of joint distribution
matching.

For Pascal Sentence dataset, our model outperforms the
state-of-the-art method of CM-GANs by 0.3% and 4.8% in
Img2txt and Txt2Img retrieval task, respectively. We believe
the our CMPD beats CM-GANs due to two reasons. First,
CM-GANs use the weight sharing constraints to force the

two generators to learn the shared common features of image
and text. On the contrary, the cross memory unit used in our
CMPD is a more complicated mechanism which automatically
learns a combination of shared and modality-specific feature.
Second, the reconstruction loss introduced in CM-GANs is still
a constraint that considers the semantic relationships between
paired items, although it can learn a better feature representa-
tions compared to element-wise constraints. The experimental
results of CM-GANs and CM-Net justify the importance of
learning relationships between unpaired items for constructing
the semantic structure in the common representation subspace,
as well as the effectiveness of joint distribution matching and
cross memory unit proposed in this work.

We specially note that, the results of DSCMR is quoted
from its original paper, in which the input text feature is
extracted using the TextCNN [50] instead of simple BOW
method. Even though, our CMPD can still outperform the
DSCMR on Wikipedia and NUS-WIDE-10K dataset. And we
use the preprocessed data publicized by DSCMR on Pascal
Sentence to obtain the results of CMPD(Ours-textcnn), which
also outperforms the DSCMR. Compared to CMPD(Ours),
the higher performance of CMPD(Ours-textcnn) on Pascal
Sentence proves the better quality of TextCNN features.
Therefore, the better results of CMPD on NUS-WIDE and
Wikipedia dataset compared to DSCMR is much more con-
vincing, because our CMPD achieves better performance using
only BOW text features. This comparison result further proves
the superiority of CMPD over DSCMR.

In Table II, we show the performance of CMPD on
MSCOCO, which is a large scale cross-model retrieval dataset.
Note that since MSCOCO is an unlabeled dataset, we fol-
low [7] to evaluate CMPD on the MSCOCO dataset. We quote
the mAP results obtained by the baselines as refer to [7].

C. Model Analysis

1) Analysis of Cross Memory Block: In Table V, we analyze
the influence of the gate structure in CMB and the influence
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TABLE III

THE ANALYSIS OF JOINT DISTRIBUTION DIVERGENCE (JD) AND CROSS MEMORY UNITS (CMU) ON THE PROPOSED CMPD MODEL (FULL)

TABLE IV

EFFECTS OF THE DIFFERENT λicd IN TERMS OF THE MAP ON THE WIKIPEDIA, PASCAL AND NUS-WIDE-10K

TABLE V

ANALYSIS OF CROSS MEMORY BLOCK

of CMS’s position. We design two different variations of
CMPD. The raw-input variation removes the feed-forward
layers before CMB and directly applies CMB on the raw input
of image and text feature. The no-gate variation removes the
gate structure in CMB, and directly add the shared feature
representation ms in Eq. (4) with v′

l in Eq. (2). And the
original model denotes the original version of CMPD, which
serves as the baseline for comparison. The best performance
is achieved by the original version, which proves the effective-
ness of preprocessing the raw input feature with feed-forward
layers and the gate structure in the CMB module.

2) Ablation Study: CMPD is mainly realized and improved
as a combination of two parts, the cross memory unit based
generator and the joint distribution matching constraints.
In order to further investigate more detailed effect of each part,
we developed and evaluated two different variations of our
CMPD model: (1) CMPD-JD, the model with joint distribu-
tion divergence only. The cross memory unit is removed from
the feed-forward based network. (2) CMPD-CMU, the model
with cross memory unit only. The joint distribution divergence
is removed from the model. The constraints only consist of
the triplet loss and the classification loss. Besides, we also
provide a baseline model from which both joint distribution
matching and cross memory unit are removed. All of the
training strategies and the hyper-parameter settings are the
same as the full CMPD model (CMPD-Full). In Table III,
we show the performance of the above four models on
the Wikipedia, Pascal and NUS-Wide-10K dataset in terms
of mAP.

Table III shows that both CMPD-JD and CMPD-CMU
outperform the baseline model, which proves the effec-
tiveness of joint distribution matching and cross memory

Fig. 3. The training curves for inter-modal divergence and inter-class
divergence.

unit, respectively. By combining both of the two parts,
the CMPD-Full achieves the best results over three datasets,
which demonstrates that both of the two parts contribute to
the final retrieval performance.

3) Visualization of the Learned Representations: To explore
the influence of balance factor λicd on the proposed CMPD,
as well as demonstrate the effectiveness of joint distribution
matching, we use t-SNE to visualize the representation vectors
learned by our CMPD on the Wikipedia dataset, as shown
in Fig. 4. The top row is colored according to the class labels,
and the bottom row is colored according to the modality.

From the left to the right, we first show the visualization
results of representation vectors learned with balance factor
λicd = 10, 1 and 0.1, respectively. The smaller balance factor
is, the less influence of the inter-class divergence has on
the model. For comparison, we also provide the visualization
results of model trained without joint distribution divergences
(Without JD) in Fig. 4. The basic experiment settings are the
same as full CMPD.

The visualization results demonstrate that the semantic
structure in the common subspace learned by CMPD is quite
sensitive to the balance factor λicd . A large λicd tends to
split the image and text distributions apart from each other.
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Fig. 4. The visualization results on Wikipedia dataset. Top row is colored according to the class label and the bottom row is colored according to the
modality label.

TABLE VI

THE ABLATION STUDY FOR THE NUMBER OF THE CMPD UNITS

It is a side effect for learning all the semantic relationships
across different class labels as a whole. For λicd = 0.1,
the model provides the best results. It tends to merge the
items’ distributions very tightly both in terms of modality
and class labels. Compared to the model trained without
joint distribution matching, our model establishes a more
discriminative semantic structure in terms of the class labels,
where the items of the same classes are gathered more tightly
and the items with the different classes are pulled further.

In Table IV, we also show the accuracy of image-text
retrievals in Wikipedia dataset, Pascal and NUS-WIDE-10K
dataset in terms of different balance factors. From Table IV,
we find that the best result of our model is achieved by
λicd = 0.1, which is in accordance with the visualization
results shown in Fig. 4.

4) Analysis of Joint Distribution Divergences: In this sub-
section, we will go into the training process to explore
the interactions and effects between the two divergences.
As shown in Fig. 3, we plot the training curves of the inter-
class and the inter-modal divergences.

The training process can be divided into two stages accord-
ing to the plotted curves. In the first stage, the inter-modal
divergence plays the key role, bringing the image and the
text distributions together in the common subspace. As a
side effect, the inter-class divergence also decreases during
this stage, because the inter-modal divergence will only bring
the items with the same modality and class label together,

regardless of the semantic structure between different classes.
In the second stage of training, the inter-class divergence
begins to work and distribute the items that have different
class labels away from each other. We can find that in this
stage, the inter-modal divergence stops falling and shows a
slightly upward trend, which is the side effect of optimizing
the inter-class divergence. But overall, the inter-modal diver-
gence remains relatively stable during the second stage and
successfully preserves the inter-modal structure to a certain
degree when the inter-class structure is constantly shaped
during training.

5) Analysis of Cross Memory Unit: In Table VI, we show
our model’s performance under different number of cross
memory units. We find the model achieves the best results at
64 cross memory units. The performance of the model drops
quickly when the number of units decreases, while increasing
the number of units from 64 to 128 does not yield a better
result. The explanations lie in two-folds: (1) for small number
of units, the representational ability of the network is limited
which cannot learn enough information from the input; (2) for
large number of units, there may exist information redundancy
which can hinder the network distinguish the learned features
of different classes.

V. CONCLUSION

In this paper, we present a novel model for image-text
retrieval, named CMPD. Our main work is to introduce the
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cross memory unit to share the learned features between
image and text generators, and optimize the model using
a novel joint distribution matching constraint for learning
the inter-modal and the inter-class relationships. This joint
distribution matching idea effectively resolve the element-wise
constraint’s issues which cannot preserve the relationships
between unpaired items in current methods. The experiments
on four widely used datasets demonstrate that CMPD can learn
better representations and achieve the state-of-the-art results in
class-level image-text retrieval tasks.
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