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Abstract— Highly discriminative 3D shape representations can
be formed by encoding the spatial relationship among virtual
words into the Bag of Words (BoW) method. To achieve
this challenging task, several unresolved issues in the encoding
procedure must be overcome for 3D shapes, including: 1) arbi-
trary mesh resolution; 2) irregular vertex topology; 3) orientation
ambiguity on the 3D surface; and 4) invariance to rigid and
non-rigid shape transformations. In this paper, a novel spatially
enhanced 3D shape representation called bag of spatial context
correlations (BoSCCs) is proposed to address all these issues.
Adopting a novel local perspective, BoSCC is able to describe
a 3D shape by an occurrence frequency histogram of spatial
context correlation patterns, which makes BoSCC become more
compact and discriminative than previous global perspective-
based methods. Specifically, the spatial context correlation is
proposed to simultaneously encode the geometric and spatial
information of a 3D local region by the correlation among spatial
contexts of vertices in that region, which effectively resolves
the aforementioned issues. The spatial context of each vertex
is modeled by Markov chains in a multi-scale manner, which
thoroughly captures the spatial relationship by the transition
probabilities of intra-virtual words and the ones of inter-virtual
words. The high discriminability and compactness of BoSCC
are effective for classification and retrieval, especially in the
scenarios of limited samples and partial shape retrieval. Experi-
mental results show that BoSCC outperforms the state-of-the-art
spatially enhanced BoW methods in three common applications:
global shape retrieval, shape classification, and partial shape
retrieval.

Index Terms— Bag of spatial context correlations, spatial
context correlation, spatial context, 3D shape representations.
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I. INTRODUCTION

BAG OF WORDS (BoW) method is originally developed
for natural language processing [1] and document clas-

sification [2]. With BoW, a text, e.g. a sentence or a docu-
ment, is represented as an occurrence frequency histogram of
words in a dictionary, as shown in Fig. 1 (a). Regarding 2D
images or 3D shapes as documents in computer vision, BoW
representations have also been used to facilitate understanding
2D [3]–[9] or 3D [10]–[14] shapes based on “virtual words”,
as illustrated in Fig. 1 (b). Through clustering over a set of
local features (e.g., features around 2D pixels and features
around 3D vertices or faces), cluster centers are obtained and
considered as the types of virtual words. Subsequently, each
local feature is assigned to its nearest type of virtual word in
order to compute the occurrence frequency of each type of
virtual words in a shape. However, the BoW method disre-
gards the spatial relationship among words or virtual words,
which is in fact an important information source to enhance
the discriminability of BoW representations. Thus, effective
spatially enhanced BoW methods are highly demanded in 3D
shape analysis, where the spatial information is regarded as
a key point. However, it is a very challenging task to encode
the spatial relationship among virtual words for 3D shapes.
The main unresolved issues in the encoding procedure for 3D
shapes include i) arbitrary mesh resolution, ii) irregular vertex
topology, iii) orientation ambiguity on the 3D surface and iv)
invariance to various rigid and non-rigid shape transforma-
tions, such as translation, rotation, and articulation.

An intuitive idea of encoding the spatial information
into BoW representations for 2D images resorts to the
absolute positional relationship, such as “above” [15], “top-
left” [16] or the relationships described by coordinates in 2D
grids [17]–[20]. However, the absolute positional relation-
ship is not rotation-invariant, which makes the encoded
spatial information unsuitable for discriminating 3D shapes.
Therefore, one class of approaches for 3D shapes encodes
the relative positional relationship between local BoW
representations. Similar to the spatial pyramid matching
for 2D images [17], [20], local BoW representations are
first calculated from segmented local 3D regions, such as
patches [21], [22], regions between concentric spheres cen-
tered at the barycenter [23], and regions between intrinsic
isocontours on articulated shapes [24]. Then, the relative
positional relationship is encoded by concatenating local BoW
representations in a consistent order [23], [24], or the pairwise
Euclidean distance [21], [23] and the neighboring indica-
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Fig. 1. Illustration of BoW for texts and 3D shapes. (a) BoW for texts.
(b) BoW for 3D shapes.

tor [22] between local BoW representations. Nevertheless,
these approaches suffer from a common problem, that is, only
coarse spatial information can be encoded. This is because the
spatial information in each segmented local region is neglected
under local BoW representations. To encode more detailed
spatial information, another class of approaches employs the
pairwise distance between local features or virtual words, such
as the geodesic or diffusion distance between local features
on 3D articulated shapes [25], [26] or the Euclidean distance
between local features and the barycenter of artificial 3D
shapes [27]. However, the pairwise distance may cause spatial
ambiguity, which fails to encode the spatial relationship among
multiple pairs of virtual words. Furthermore, these approaches
in both classes adopt the global perspective to directly encode
the global spatial information. This global perspective results
in high dimensional 3D shape representations but with coarse
spatial information. Under this kind of representation, the per-
formance of subsequent classification or partial shape retrieval
is significantly affected. Therefore, for various applications
such as shape retrieval and classification, it remains a research
challenge to produce a compact (i.e. lower dimensional
yet sufficiently informative) 3D shape representation, that is
encoded with the spatial information invariant to rigid and
non-rigid shape transformations.

To achieve this challenging requirement, we propose a
novel spatially enhanced 3D shape representation, named as
Bag of Spatial Context Correlations (BoSCC). Unlike the
global perspective adopted in [23], [24], and [26], BoSCC
employs a novel local perspective which indirectly describes
the global spatial information by the local spatial information.
Specifically, spatial context correlation is proposed to simul-
taneously encode the geometric and spatial information of a
local region via correlation among spatial contexts of vertices,
where the spatial context of each vertex is modelled as Markov
chains [28] in a multi-scale manner. With the help of the
novel spatial context correlation, BoSCC is formed by an
occurrence frequency histogram of spatial context correlation
patterns, which captures more detailed spatial information
in a more compact way than other state-of-the-art methods.
The resulting BoSCC representation is compact and with
high discriminability for classification and retrieval, especially
significant for training of classifiers with limited samples and
partial shape retrieval. Finally, the significant contributions of
our work are summarized as follows:

i) The Markov chain is introduced to model the spa-
tial context around a vertex, which effectively over-
comes the obstacles of arbitrary mesh resolution, irreg-
ular vertex topology and orientation ambiguity on
3D surface.

ii) The spatial context correlation is proposed to simulta-
neously encode the geometric and spatial information
of 3D local regions.

iii) BoSCC is proposed as a spatially enhanced 3D shape
representation, which is compact and with high discrim-
inability for shape classification and retrieval. The com-
pactness of BoSCC is especially helpful when training
classifiers with limited available samples.

iv) A novel local perspective is introduced to indirectly
encode the global spatial information by spatial context
correlation patterns of local regions. In this way, BoSCC
becomes more suitable for partial shape retrieval than
other global perspective based methods.

The paper is organized as follows. Section II presents the
related work of BoW and spatially enhanced BoW in 3D
domain. The core techniques of BoSCC including spatial
context modelling and the computation of spatial context
correlation are detailed in Section III. Experimental setup and
results with analysis are described in Section IV. Finally,
the conclusion is drawn in Section V.

II. RELATED WORK

In this section, three categories of related work are briefly
reviewed, including i) BoW for 3D shapes, ii) BoW with
encoded spatial information for 3D shapes and iii) spatially
enhanced techniques for 2D images.

A. BoW for 3D Shapes

The BoW method offers a basic framework to represent a
3D shape using local features of vertices, faces or regions.
Based on virtual words from a learned virtual dictionary, each
local feature is assigned to its nearest type of virtual word
whose index labels the corresponding vertex, face or region.
Consequently, the BoW representation of a 3D shape is formed
by an occurrence frequency histogram of all types of virtual
words.

Recently, the BoW method has been employed for 3D
shape recognition and retrieval [11], [23], [29]–[31]. The
main difference among these studies lies in the different local
features used for learning the virtual dictionary. For example,
Toldo et al. [32] employ different geometry descriptors to char-
acterize regions, Ohbuchi et al. [30] and Lian et al. [31] adopt
SIFT features to describe projections of 3D local regions,
Liu et al. [29] and Li and Godil [23] use the spin image [33]
as the features of sampled vertices. With the powerful spectral
descriptors such as the Heat Kernel Signature [34] and the
Local Spectral Descriptor [10], the BoW method obtains better
results in [10] and [35]. To enable efficient fusion of different
types of local features and modalities for learning the virtual
dictionary, Tabia et al. [14] introduce the covariance matrix
to fuse local features in a local region. Since covariance
matrices lie on Riemannian manifolds, the geodesic distance
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on Riemannian manifolds is further derived to measure the
similarity between covariance matrices.

B. Spatially Enhanced BoW for 3D Shapes

The disadvantage of BoW method is the disregard of spatial
relationships among virtual words. To remedy this disadvan-
tage, one class of approaches employs the spatial relationship
among local BoW representations. Similar to spatial pyramid
matching [17], local BoW representations are computed from
local 3D regions, such as patches [21], regions between
concentric spheres centered at the barycenter [23], and regions
between intrinsic isocontours for articulated shapes [24].

In the concentric BoW method [23], concentric spheres are
adopted as the spherical harmonic descriptor [36] to segment
a shape into different regions, followed by spatial relationship
encoding between segmented regions. First, a 3D shape is par-
titioned by several concentric spheres centered at its barycen-
ter. Then, the 3D shape is represented by a concatenation of
local BoW representations, and a local BoW representation is
computed from the region between each pair of neighboring
spheres. Although the encoded spatial information is invariant
to rigid shape transformation (e.g., translation and rotation),
it cannot resist non-rigid shape transformation (e.g., bending of
arm). This is because non-rigid shape transformation changes
the distribution of virtual words between the neighboring
spheres. The same issue also exists in the spatially enhanced
BoW method [21]. Although the patches used for computing
the local BoW representations are directly segmented on 3D
shape surfaces, the spatial relationship among these patches
is still not invariant to non-rigid shape transformation due to
its encoding under pairwise Euclidean distances. To resolve
this issue, Intrinsic Spatial Pyramid Matching (ISPM) [24]
uses isocontours of the second eigenfunction of the Laplace-
Beltrami operator [37] to cut the articulated shapes into
regions. The spatial information encoded by ISPM is invariant
to non-rigid shape transformation, but it is only suitable for
articulated shapes. This is because the rigid shape cannot
be consistently segmented under the isocontours employed
in [24].

In a nutshell, the main problem of aforementioned
approaches is that the spatial information in each segmented
local region is disregarded by the local BoW representation,
leading to unsatisfactory discriminability.

To encode more detailed spatial information, spatial
sensitive Bag-of-Features (SSBoF) employs the pairwise
geodesic or heat diffused distance between local fea-
tures, which is invariant to rigid and non-rigid shape
transformations [25], [26]. SSBoF provides a simple 3D shape
representation which sums over all pairwise distance-weighted
features. However, the spatial information is encoded merely
by the pairwise geodesic or diffusion distances, which is
ambiguous and restricted. The spatial ambiguity is mainly
caused by uncertain relative location between two virtual
words. This is because the location of one virtual word
determined by a specific distance to another virtual word
can be anywhere on a circle rather than an unambiguous
location. This leads SSBoF to the failure of encoding the

spatial relationship among multiple pairs of virtual words. As a
result, the significantly discriminative spatial information in a
local region cannot be effectively captured. The same issue
also exists in the case of the Euclidean distance between the
local feature and the barycenter in [27], where the Euclidean
distance cannot resist non-rigid shape transformation and is
only meaningful for rigid 3D shapes.

The aforementioned methods encode the spatial information
from the global perspective, which directly encodes the global
spatial information into shape representations. This makes
the resulting representation with high dimensions but coarse
spatial information, which is incompact for the subsequent
processing. To capture more detailed spatial information in
a more compact way, the proposed BoSCC encodes the
global spatial information from the local perspective. BoSCC
represents 3D shapes by the patterns of encodings of geometric
and spatial information in 3D local regions.

C. Encoding the Spatial Information for 2D Images

Features are always important for 2D images understanding
[38]–[40]. Many methods have been proposed to encode
the spatial relationship among virtual words in 2D images
[15]–[18], [25], [41]–[45]. Among these methods, correlation-
based methods present several attractive properties, such as
low computational complexity and robustness with respect
to basic geometric transformations. In the pioneer work of
Huang et al [41], the correlation between colors in images
is employed for indexing and classifying images. Following
this idea, Savarese et al. [42] propose to capture the spatial
arrangement of virtual words based on the co-occurrence
matrix of virtual words. However, local BoW representations
are extracted from local regions in [42], leading to the spatial
information loss in local regions. By considering the correla-
tion between local features, the work [46] significantly speeds
up the virtual word learning process while maintaining accu-
racy. To benefit from the advantages of correlation, we propose
to capture the complex spatial information in a local region
by the correlation among spatial contexts of vertices.

In addition, the Markov chain [28] is also employed to
encode the spatial relationship between virtual words. In [44]
and [45], a Markov chain is used to incorporate the spatial
information into classical histogram features. In [44], the spa-
tial co-occurrence matrix based Markov chain is introduced
to encode relationships among intra-virtual words and inter-
virtual words, respectively. Accordingly, Markov stationary
features are proposed by combining the initial and station-
ary distributions of Markov chain. To eliminate the inherent
ambiguities of Markov stationary features, homogeneity-aware
Markov stationary features are derived in [45], which only
considers mutually distinct pairs of virtual words in the spatial
co-occurrence matrix. In our method, the high performance of
homogeneity-aware Markov stationary features facilities the
modelling of spatial context around each vertex in a multi-
scale manner.

III. BAG OF SPATIAL CONTEXT CORRELATIONS

BoSCC is introduced in detail in this section. First,
the overview of BoSCC is presented. Next, several subsections



3710 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017

Fig. 2. The framework of computing the bag of spatial context correlations. For a set of 3D shapes briefly shown in (a), the local features of each shape are
first extracted as shown in (b), which are used for learning a low-level virtual dictionary shown in (c). Based on the low-level virtual dictionary, the spatial
context correlation in a local region centered at each vertex is calculated in (d), which is used for high-level virtual dictionary learning in (e). The proposed
novel 3D shape representation, bag of spatial context correlations, are shown in (f).

are included to elaborate on the main steps or techniques men-
tioned in the overview, including low-level virtual dictionary
learning, spatial context modelling, the computation of spatial
context correlation, high-level virtual dictionary learning and
the computation of BoSCC.

A. Overview of BoSCC

An overview of BoSCC is introduced in the following four
steps and also illustrated in Fig 2.

1) Low-level feature extraction. Given a set of 3D shapes
represented as meshes, as briefly shown in Fig. 2 (a),
the local feature around each vertex on all shapes is
extracted by several local descriptors. To distinguish
from the following involved features, the local feature
is called as the low-level feature of vertex. In Fig. 2 (b),
the colors shown on each shape represent the values at
the same dimension in all low-level features of vertices
on that shape, where the 1st, 2nd and 608th dimensions
are typically visualized. For the i -th shape, the values
shown by colors are denoted as li (1), li (2) and li (608),
respectively. This step will be described in detail in
Section III-B.

2) Low-level virtual dictionary learning. A low-level
virtual dictionary is learned via clustering over the
extracted low-level features from all shapes, where the
cluster centroids are regarded as the types of low-level
virtual words. In the learning process, each vertex on
all shapes is labelled by the index of its nearest type of
low-level virtual word. These indices on each shape are
shown in Fig. 2 (c), separately. This step will be also
described in detail in Section III-B.

3) The computation of spatial context correlation. With
the low-level virtual dictionary, the geometric and spatial
information of a local region can be described by the
proposed spatial context correlation. First, the spatial
context around each vertex is modelled to capture
the distribution of neighboring low-level virtual words.
Then, the correlation between spatial contexts is able
to simultaneously encode i) low-level virtual words and
ii) their spatial relationship, containing geometric and
spatial information in the local region. Comparing to
the low-level feature, the spatial context correlation also
encodes the spatial information of a local region, thus,
it is called as the high-level feature of vertex in this
paper. The spatial context correlations of two vertices on
an airplane are demonstrated in Fig. 2 (d). More details
of the spatial context modelling and the computation of
spatial context correlation are presented in Section III-C
and Section III-D, respectively.

4) High-level virtual dictionary learning. Using spatial
context correlations as high-level features, a high-level
virtual dictionary is learned, that is constituted by
spatial context correlation patterns. Such patterns are
obtained by clustering over all spatial context correla-
tions (computed in Step 3) from all shapes. The clustered
patterns (or centroids) are regarded as the types of high-
level virtual words. In the learning process, each vertex
on all shapes is labelled by the index of its nearest type
of high-level virtual word, as shown in Fig. 2 (e). The
detail of this step is presented in Section III-E.

5) The computation of BoSCC. Finally, BoSCC repre-
sents each 3D shape as a frequency histogram, that is
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constructed by counting the occurrence of each type of
high-level virtual word, as shown in Fig. 2 (f). More
details are introduced in Section III-F.

B. Low-Level Virtual Dictionary Learning

Let S = {Si |i ∈ [1, N]} be a set of 3D shapes, where the
vertices on each shape Si is denoted as a set {vi

j | j ∈ [1, Ni
V ]}.

Since we do not know in advance whether the shape Si is
rigid or non-rigid, we construct the low-level feature l i

j of each
vertex vi

j using many informative local descriptors. Similar
to [47], the following descriptors are included, i.e., multi-
scale surface curvature, average geodesic distances [48], sin-
gular values extracted from principal component analysis
of local regions, distances from medial surface points [49],
the shape diameter function [50], shape contexts [51], and
spin images [33]. For each descriptor, different parameters
are also employed to generate more comprehensive features.
Overall, these descriptors generate 64, 18, 60, 270, 72, 100,
and 24 dimensional feature vectors, respectively. The low-level
feature l i

j is formed via concatenating all the aforementioned
feature vectors into a 608-dimensional vector as defined by
l i

j = [li
j (1), li

j (2), . . . , li
j (608)]. Then, the low-level features

of vertices on all shapes are collected into a set which is
denoted as L = {l i

j |i ∈ [1, N], j ∈ [1, Ni
V ]}. Readers can

refer to [47] for more details of the involved descriptors.
Subsequently, a low-level virtual dictionary � is learned by

clustering over all the low-level features in L. This is imple-
mented based on K-means clustering method via optimizing
iteratively the objective function defined as follows,

argmin
φk∈�

KL∑

k=1

∑

l i
j∈Lk

‖l i
j − φk‖2. (1)

In our implementation, the initial cluster centers are ran-
domly selected for K-means. To alleviate the effect caused by
the random initialization of cluster centers, the final clustering
result is optimally selected from 10 candidate clustering results
which are differently initialized.

Using Eq. (1), the low-level features in L are clustered
into KL clusters, and each cluster is denoted by Lk , where
k ∈ [1, KL ]. Here, Lk is a subset of L such that L can also be
described as {Lk |k ∈ [1, KL ]}. The center of each cluster Lk

serves as one type of low-level virtual word φk in �, that is,
� = {φk|k ∈ [1, KL ]}. The selection of KL will be discussed
in Section IV. Finally, each low-level feature l i

j in L is labelled
by the index of its nearest type of low-level virtual word
in �. With the low-level virtual dictionary �, the distribution
of low-level virtual words can be presented on each shape as
shown in Fig. 2 (c) and Fig. 3 (a).

Based on the low-level virtual dictionary �, the spatial con-
text around each vertex can be further modelled, as described
in the following subsection.

C. Spatial Context Modelling

1) Overview: For a local region Rv centered at a vertex
v, the spatial context around v is modelled in a multi-scale

manner to capture the distribution of low-level virtual words
in Rv . In the modelling process, a Markov chain is adopted
in each scale of v to extract the distribution information from
co-occurrence counts of pairwise types of low-level virtual
words. To detail, the spatial relationship between the intra-
virtual words and the one between the inter-virtual words are
encoded by the initial and the stationary distributions of a
Markov chain, respectively.

Note that the co-occurrence counts between pairwise low-
level virtual words can be directly obtained from 3D surfaces,
and the counts are invariant to rigid shape transformation.
In addition, the counts are independent of mesh resolution,
vertex topology and orientation on 3D surfaces, which makes
the Markov chain effectively overcome the issues of arbitrary
mesh resolutions, irregular vertex topology and orientation
ambiguity on the 3D surface.

The procedures of spatial context modelling are illustrated
in Fig. 3. After each vertex is labelled by the index of its
nearest type of low-level virtual word, as shown in Fig. 3 (a),
the spatial context around each vertex is modelled in multi-
scales as demonstrated in Fig. 3 (b). In each scale shown
in Fig. 3 (c), a Markov chain is constructed via forming the
spatial co-occurrence matrix in Fig. 3 (d). Then, the initial
and stationary distributions of the Markov chain are calculated
according to the spatial co-occurrence matrix by the method
proposed in [45], which encodes the spatial relationship
between intra-virtual words and the one between inter-virtual
words as shown in Fig. 3 (e) and Fig. 3 (f), respectively.

2) Spatial Co-Occurrence Matrix: The spatial context of v
is modelled in the local region Rv . Firstly, Rv is separated into
several ring-like scales. The r -th scale is denoted by R(v,r),
where r ∈ [1, NR] and NR is the number of scales. R(v,r)

can be established via partitioning the vertices in Rv using
a set of geodesic distance thresholds {R0, R1, . . . , RM }, i.e.
R(v,r) = {u|Rr−1 ≤ Geo(v, u) ≤ Rr , u and v ∈ S}, where
Geo(v, u) is the geodesic distance between the vertex u and
the centeral vertex v.

In each scale R(v,r), a Markov chain is constructed by
forming a spatial co-occurrence matrix, C(v,r) ∈ Z

KL×KL .
Every entry cab of C(v,r) counts co-occurrence frequency of
the a-th and b-th types of low-level virtual words, where
a ∈ {1, KL} and b ∈ {1, KL}. A co-occurrence of two low-
level virtual words is determined if they are connected by an
edge. The cab is defined as below

cab = Num{pi
u = a, pi

v = b|Edge(u, v)}, (2)

where Num indicates the number of vertex pairs which
satisfy all the conditions listed in the set, pi

u and pi
v are

the indices of the nearest types of low-level virtual words by
which the vertices u and v are labelled, Edge(u, v) denotes
that the vertices u and v are connected by an edge. Note
that the spatial co-occurrence matrix C(v,r) is symmetric and
nonnegative [45].

The construction of C(v,r) is illustrated in Fig. 4 (a) and
Fig. 4 (b). In Fig. 4 (a), the central vertex v and its neighboring
vertices form a local patch. In this example, the neighboring
vertices are labeled by three types of low-level virtual words,
such as a-th, b-th and c-th types of low-level virtual words.
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Fig. 3. The procedures of modelling the spatial context around a vertex marked by a red point. For a 3D shape with vertices labelled by low-level virtual
words in (a), the spatial context around the vertex is modelled as shown from (b) to (e). The local region centered at the vertex is separated into multi-scales as
shown in (b). Each scale detailed in (c) is used to construct the spatial co-occurrence matrix of a Markov chain, as shown in (d). According to (d), the initial
and stationary distributions of the corresponding Markov chain are calculated, as shown in (e) and (f), respectively.

Fig. 4. The formation of spatial co-occurrence matrix. (a) The vertices
connected by edges are labeled by the a-th, b-th and c-th types of low-level
virtual words. (b) The spatial co-occurrence matrix is formed from (a), where
the color of entries corresponds to the color of edges in (a). (c) The initial
and stationary distributions of the Markov chain represented in (b).

The spatial co-occurrence matrix C(v,r) derived from this local
patch is given in Fig. 4 (b), where each entry of C(v,r) indicates
the number of edges with the same color as it in Fig. 4 (a).
Taking cab = 5 for example, the green entry 5 means that the
a-th and b-th types of low-level virtual words are co-occurred
5 times on the local patch, where the corresponding edges
connecting a and b are also marked in the same green color.

3) Spatial Context: Based on C(v,r), the transition matrix
T(v,r) of a Markov chain is derived to describe the feature of
the Markov chain. The entry tab of T(v,r) is defined in the
following,

tab = cab/
∑KL

b=1
cab. (3)

The definition of T(v,r) satisfies some basic properties of a
Markov chain, including tab > 0,∀ (a, b) ∈ Edge(a, b), and∑KL

b=1 tab = 1, a ∈ [1, KL].

However, the representation of T(v,r) is of K 2
L dimensions

and may not be robust [45]. To model the spatial information
in each scale more effectively, the homogeneity-aware Markov
stationary features [45] are employed in our method. The
homogeneity-aware Markov stationary features are formed by
the initial and stationary distributions of the corresponding
Markov chain, whose representation is a 2KL dimensional
vector defined as follows.

The initial distribution of various types of low-level virtual
words over R(v,r), denoted by π(v,r), is a KL dimensional
vector. π(v,r) encodes the intra-virtual words transition infor-
mation in the r -th scale around the vertex v. π(v,r) consists
of the normalized diagonal entries of C(v,r) as defined in the
following,

π(v,r)(k) = ckk/
∑KL

k=1
ckk , (4)

where π(v,r) derived from C(v,r) is illustrated in Fig. 4 (c).
The stationary distribution of various types of low-level

virtual words over R(v,r), denoted by τ(v,r), is also a KL

dimensional vector. τ(v,r) encodes the inter-virtual words tran-
sition information in the r -th scale around the vertex v. It is the
limiting probability of each type of low-level virtual word that
the Markov chain will be in infinitely. Therefore, τ(v,r) satisfies
τ(v,r) = τ(v,r) × T(v,r), which makes it capable of becoming a
unique and invariant measure of the Markov chain. We employ
the informative solution from the homogeneity-aware Markov
stationary features as defined below,

τ(v,r)(k) =
∑

q �=k
ckq/

∑KL

k=1

∑
q �=k

ckq , (5)
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where τ(v,r) derived from C(v,r) is also illustrated
in Fig. 4 (c).

Finally, the spatial context around each vertex v is rep-
resented by the set of pairs of π(v,r) and τ(v,r) in terms of
different scales, i.e. {(π(v,r), τ(v,r))|r ∈ [1, NR ]}. The spatial
context encodes the spatial relationship between the low-level
virtual words in the same type and the one between the low-
level virtual words in different types. Based on these spatial
contexts, the spatial context correlation is computed as detailed
in the following subsection.

D. The Computation of Spatial Context Correlation

1) Overview: The co-occurrence based Markov chain over-
comes the obstacles of 3D shapes in spatial context mod-
elling, and it keeps the spatial context invariant to rigid
shape transformations. However, the co-occurrence makes
the spatial context still suffer from two drawbacks. On one
hand, the co-occurrence indicated by two neighboring low-
level virtual words is a kind of short-range connection, which
makes the spatial context unable to model the long-range
spatial relationship among low-level virtual words in a local
region. This aspect determines that the spatial information
encoded by the spatial context is coarse and restricted. On the
other hand, the co-occurrence information is vague and easily
affected by noisy virtual words on 3D shapes due to non-
rigid shape transformation. To make up these disadvantages,
the novel spatial context correlation is proposed to encode the
long-range spatial information in a local region in a robust
way, which alleviates the influence caused by non-rigid shape
transformation.

The spatial context correlation is implemented via capturing
the correlation between two spatial contexts in a local region.
One is the spatial context of the vertex centered at the region,
the other is the mean spatial context among vertices that are
labeled by the same type of low-level virtual word in the same
region. The spatial context correlation implicitly models how
the two spatial contexts impact each other via the correlation
on 3D surfaces. Taking the local region centered at a vertex
vi

j for example, the spatial context correlation of this region
is denoted as hi

j , which is also implemented in a multi-scale
way. In each scale of vi

j , hi
j is obtained as the correlation

between the spatial context of vi
j and the mean spatial con-

text of vertices assigned to each type of low-level virtual
word.

The reason why the correlation can capture such complex
spatial information of a 3D shape mainly lies in three aspects.
First, the low-level virtual words are spatially distributed
in different scales of vi

j , and hence, the correlation is also
computed in a multi-scale manner. Second, there are spatial
overlaps between the scales of vi

j and the scales of vertices
assigned to each type of low-level virtual word, which implic-
itly bridges the gap between the spatial context change of vi

j
and the one of vertices assigned to each type of low-level
virtual word. Thus, the changes in common help to alleviate
the effect of noisy virtual words caused by non-rigid shape
transformation. Third, the long-range spatial information can
be captured by averaging spatial contexts of vertices assigned

Fig. 5. An illustration of spatial context correlation. The circle and star
nodes denote vertices assigned to two types of low-level virtual words in a
local region centered at v, where v is marked by a red triangle. In each of the
two scales of v, the mean spatial context of vertices assigned to each type of
low-level virtual word is computed.

to the same type of low-level virtual word in different scales
of vi

j .
An illustration of spatial context correlation is shown

in Fig 5, where the spatial context correlation of v (denoted as
a red triangle) is computed over the neighboring region of v,
Rv . v is surrounded by the vertices assigned to the a-th and
b-th types of low-level virtual words (denoted as the circle
nodes and the star nodes, respectively) in two scales of v,
i.e. R(v,1) and R(v,2). The yellow regions and green regions
denote the spatial context of each vertex in two different
scales, respectively. In each scale of v, the mean spatial
context among vertices assigned to each type of low-level
virtual word is computed. Taking the two vertices assigned
to the a-th type of low-level virtual word in R(v,1) for
example, the computation of mean spatial context is detailed
in the red rectangle, where the yellow regions representing
the spatial contexts of two vertices are averaged. In addition,
the mean spatial context of vertices assigned to the a-th type
of low-level virtual word in R(v,2) is calculated, as illustrated
via averaging the two green regions in the black rectangle.
Similarly, the mean spatial contexts of vertices assigned to
the b-th type of low-level virtual word in R(v,1) and R(v,2) are
calculated via repeating the above process, as shown in the
blue and cyan rectangles, respectively.

2) Spatial Context Correlation: Specifically, hi
j includes

two parts in each scale of vi
j , which is defined as hi

j =
{(�v(r),�v(r))|r ∈ [1, NR ]}. In the r -th scale of vi

j , �v(r) is
the correlation between π(v,r), while �v(r) is the correlation
between τ(v,r). �v(r) and �v(r) are two matrices, where each
row of �v(r) and �v(r) is the mean spatial context of vertices
assigned to the same type of low-level virtual word in the
r -th scale. Each row of �v(r) and �v(r) is defined as follows,
respectively,

�v(k, r) =
∑

u∈Mk (r)

π(u,r)/|Mk(r)|, (6)

�v(k, r) =
∑

u∈Mk (r)

τ(u,r)/|Mk(r)|, (7)
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Fig. 6. A demonstration of computing the spatial context correlation of
vertex v in one scale. The procedure of computation is shown in the right
table, where the colors of entries correspond to the colors of π and τ .

where Mk(r) = {u|u ∈ R(v,r), pi
u = k} denotes all the vertices

u assigned to the k-th type of low-level virtual word in the
r -th scale of v, and |Mk(r)| is the number of vertices in Mk(r),
r ∈ [1, NR ], k ∈ [1, KL].

Using Eq. (6) and Eq. (7), the correlation between the spatial
context of vertex vi

j and the mean spatial context of vertices in
Mk(r) is computed. It implicitly encodes how the mean spatial
context impacts the spatial context of vi

j in the r -th scale. For
vertices in Mk(r), the mean spatial context is obtained by
averaging their spatial contexts in the same r -th scale.

Eq. (6) and Eq. (7) are further explained via demonstrating
the computation of spatial context correlation in one scale
in Fig. 6. The vertex v is surrounded by three vertices (u1, u2
and u3) located in the first scale of v. For a better presentation,
the three vertices are only assigned to the a-th and b-th types of
low-level virtual words. The spatial contexts of three vertices
are shown beside. The computed spatial context correlation
{(�v(1),�v(1))} is shown as two matrices on the right. The
colors of vertices and spatial contexts are used to show the
computation process more clearly.

3) A More Compact Representation: For each scale r ,
�v(r) and �v(r) are two KL × KL matrices, resulting in
a computation-inefficient representation of hi

j , which is 2 ×
K 2

L ×NR dimensional. However, such a high dimension further
burdens the learning of high-level virtual words.

To remedy this disadvantage, we regard the�v(r) and �v(r)
as the spatial co-occurrence matrices of two new Markov
chains. Then, the initial and stationary distributions are respec-
tively computed using Eq. (4) and Eq. (5) to represent the two
new spatial co-occurrence matrices. This procedure provides
a more compact representation of hi

j without any information
loss, in which the dimension of hi

j is significantly reduced
from 2 × K 2

L × NR to 4 × KL × NR .

E. High-Level Virtual Dictionary Learning

The spatial context correlation hi
j is computed from the

local region centered at each vertex vi
j . Since hi

j contains
the spatial information of a local region, it is regarded as a
high-level feature of vi

j in this paper. The hi
j extracted from

each vertex on all shapes is collected into a high-level feature
set H, such that H = {hi

j |i ∈ [1, N], j ∈ [1, Ni
V ]}. In order

to learn the high-level virtual dictionary �, all the high-level
features in H are clustered into K H clusters, where each cluster
is denoted by Hd , then, H can also be described as {Hd |d ∈

Fig. 7. The BoSCC representations of different rigid and non-rigid shapes
in different classes. The BoSCC representation is drawn in the same color as
the corresponding shape in each class. For example, the blue woman shape is
with the blue histogram and the red woman shape is with the red histogram.

[1, K H ]}. The learning of� is implemented based on K-means
clustering method via optimizing iteratively the object function
defined as follows,

argmin
ψd∈�

K H∑

d=1

∑

hi
j ∈Hd

‖hi
j − ψd‖2, (8)

where � = {ψd |d ∈ [1, K H ]} and the center of each cluster
Hd serves a type of high-level virtual word ψd . Similar to
the learning of low-level virtual dictionary, the final clustering
result is also optimally selected from 10 candidate clustering
results which are differently initialized.

The selection of K H will be discussed in Section IV. The
learning result labels each hi

j by the index of its nearest type
of high-level virtual word ψd . Then, the distribution of high-
level virtual words can be presented on each shape, as shown
in Fig. 3 (e).

Based on the high-level virtual dictionary �, BoSCC can
be computed for each shape via counting the occurrence
frequency of all types of high-level virtual words.

F. The Computation of BoSCC

The proposed BoSCC, denoted as f i , is computed via
quantizing all hi

j in shape Si into a K H dimensional vector.
The element of f i represents the occurrence frequency of each
type of high-level virtual word ψd in Si . Described by the
spatial context correlation patterns, f i is more compact and
encodes more detailed spatial information than other methods.

In Fig. 7, the BoSCC representations of different shapes
in different classes are shown. In each class, although shapes
are transformed by different rigid and non-rigid shape trans-
formations, such as rotations or different poses of human
and ants, the BoSCC representations of shapes in the same
class are almost identical, in addition, the ones of shapes in
different classes are significantly different from each other,
thereby promoting the shape discriminability. The result in
this example shows that BoSCC is capable of discriminating
shapes from different classes and resisting rigid and non-rigid
shape transformations by a compact representation.

The computation of BoSCC is carried out using MATLAB
on a computer with an i7 CPU and 16GB RAM. Based on
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Fig. 8. The comparison of BoSCC parameters. The involved parameters
include the local region size RM , the number of scales NR , the number
of low-level virtual words KL and the number of high-level virtual words
K H . The red square marks the best performance in each pair of specific NR
and RM .

the low-level virtual words, the average time for computing
the spatial context correlation of a local region is about
0.005 second, where the region with three scales is determined
by a threshold of 0.1 times maximum geodesic distance. The
time complexities of K-means for learning low-level and high-
level virtual words are both O(t), where t is proportional to
three factors: the number of clusters, the number of samples,
and the number of iterations.

IV. RESULTS AND ANALYSIS

In this section, the results and analysis of the performance
of BoSCC are presented. The setup of BoSCC parameters
is first discussed. By demonstrating how these parameters
affect the discriminability of BoSCC for global shape retrieval,
the parameters tuning procedure is explained. Then, BoSCC
is compared with the state-of-the-art methods under several
different shape benchmarks for three common applications
of 3D shape analysis, including global shape retrieval, shape
classification and partial shape retrieval. The shapes employed
in the experiments are with various mesh resolutions, irregular
vertex topology, and different rigid or non-rigid shape trans-
formations.

A. The Setup of BoSCC Parameters

The setup of BoSCC parameters is performed through 3D
shape retrieval under a shape set which is formed by the
first 280 shapes in the labeledPSB dataset [47]. Note that
other shape sets can also be used for this setup. For clear
comparison, the area under the Precision and Recall (PR) curve
is used to compare the retrieval results obtained by different
sets of parameters.

The BoSCC parameters include the size of low-level virtual
dictionary KL , the size of high-level virtual dictionary K H ,
the number of scales NR , and the size of local region around
each vertex which is determined by the maximum geodesic
distance threshold RM .

Four candidates are considered for comparing the impact
made by the increasing size of local region, such as RM ∈
{0.05, 0.1, 0.3, 0.5}. For each RM , the number of scales NR

is set as {1, 3, 5}, respectively. The incremental NR is able
to provide more detailed spatial information around each
vertex for the spatial context correlation to capture. For each
combination of RM and NR , both KL and K H iterate from
10 to 100 with an increment of 10. Under the above parameter
settings, the performance of BoSCC for 3D shape retrieval is
analyzed comprehensively. The obtained results with different
parameters are shown in Fig. 8, where the area under PR
curves is shown by colors in each matrix with KL as column
and K H as row. The nine matrices are indexed by RM in row
and NR in column.

1) The Size of Local Region RM : RM determines the size
of local region centered at each vertex. The results obtained
by different sizes of local regions are compared in Fig. 9 (a),
where each colored point is the mean of all entries of the
matrix determined by the specific RM and NR in Fig. 8.
From the comparison, we could see that comparable results
are obtained with RM = 0.05 and 0.1, which are better
than the ones obtained with other region sizes. Moreover,
the performance of BoSCC decreases while increasing the size
of local regions. The comparison results imply that oversized
local regions decrease the performance of encoding the spatial
information. This is because the spatial context in each scale
becomes too vague to be captured by a Markov chain. As a
result, common spatial patterns cannot be effectively extracted
through the correlation among spatial contexts. In the follow-
ing experiments, BoSCC is calculated with RM = 0.1, since
the performance with NR = 5 of RM = 0.1 is better than
the ones of RM = 0.05. In addition, NR = 5 is chosen as
explained as follows.

2) The Number of Scales NR : The larger NR makes BoSCC
encode more detailed spatial information, which increases the
shape retrieval performance. This is verified by the results
showing how the performance of BoSCC is impacted by NR

in Fig. 9 (b). In Fig. 9 (b), each colored point is the mean
of values on all scales in Fig. 9 (a), and the performance of
BoSCC increases along with increasing NR . Thus, NR is set
to 5 for the following experiments. However, overlarge NR

would burden the computation of high-level virtual dictionary
learning. Hence, no larger NR is explored for better perfor-
mance.

3) The Size of Low-Level Virtual Dictionary KL: KL mainly
depends on the extracted low-level features. In Fig. 8, the same
set of low-level features are used. Therefore, the impacts of KL

to the performance of BoSCC over different pairs of RM and
NR are almost the same. This impact is further elaborated as
follows. On one hand, it is impossible to discriminate patterns
of low-level features when KL is very small, e.g. KL = 10,
leading to the unsatisfactory performance for BoSCC. On the
other hand, the impact of KL is almost unchanged when KL is
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Fig. 9. The comparison between different results obtained with different RM
in (a) and different NR in (b).

sufficiently large. Thus, the KL is set to 100 in the following
experiments, where the best performance is obtained with
KL = 100, K H = 70, RM = 0.1 and NR = 5.

4) The Size of High-Level Virtual Dictionary K H : K H

specifies the number of spatial context correlation patterns.
Similar to KL , the spatial context correlation patterns cannot
be effectively discriminated with too small K H , e.g. K H = 10.
In addition, K H is determined based on the complexity of
the spatial context correlations. It is necessary to choose
smaller K H for less complex spatial context correlations.
This can be clearly observed from the results obtained with
NR = 1. With increasing RM from 0.1 to 0.5, the results
obtained with a large K H are getting worse. This is because,
with only one scale (NR = 1), the increasing RM makes
the spatial context capture more limited spatial information
of local regions, which further affects the performance of
spatial context correlation. Thus, it is enough for small K H to
discriminate the spatial context correlation patterns. Adopting
the same strategy as KL , K H is set to 70 in the following
experiments.

B. Global Shape Retrieval

Global shape retrieval aims to search the globally similar
shapes in a large dataset for a given query shape. In the fol-
lowing retrieval experiments, BoSCC is compared with several
state-of-the-art methods of encoding the spatial relationship
among virtual words for 3D shapes, such as SSBoF [25], [26],
ISPM [24], and Bag of Spatial Context (BoSC). In addition,
BoW is regarded as a baseline method. Note that BoSC is a
representation based on the high-level virtual words learned
from the multi-scale spatial context, which aims to highlight
the effect of correlation employed by BoSCC. In addition,
the Euclidean distance in the feature space is used to measure
the similarity between two arbitrary shapes.

The comparison experiments are carried out under sev-
eral well-known datasets, including the LabeledPSB [47],
McGill 3D shape benchmark, SHREC2007 dataset [52] and
SHREC2010 dataset [53]. In each shape set, all the compared
methods employ the same low-level and high-level virtual
dictionaries.

To comprehensively evaluate the performance of dif-
ferent methods, the PR curve, Nearest Neighbor (NN),
First-Tier (FT), Second-Tier (ST), E-Measures (E) and Dis-
counted Cumulated Gain vector (DCG) are employed. The FT
is the percentage of top KC −1 matches (excluding the query)

Fig. 10. The PR curves obtained by BoW, SSBoF, ISPM, BoSC
and BoSCC under different shape benchmarks, including (a) LabeledPSB,
(b) SHREC2007, (c) McGill and (d) SHREC2010.

from the class of the query, where KC is the size of class.
The ST is the same kind of metric, but for the top 2(KC − 1)
matches. The NN is the percentage of test in which the top
match is from the class of query. The idea of E-Measures is to
combine precision and recall into a single number to evaluate
the whole performance. DCG measures the ranking quality.

The PR curves obtained by different methods under
LabeledPSB, SHREC2007, McGill and SHREC2010 are
shown in Fig. 10 (a), (b), (c) and (d), respectively. In all com-
parison results, our BoSCC obtains the best results among all
the methods, which implies that BoSCC is able to effectively
capture the geometric and spatial information of different
shape regions by spatial context correlations. The outper-
forming result shows that BoSCC is superior to BoSC. This
demonstrates that the correlation between the spatial context
is able to capture the long-range spatial information in a
more robust way than the spatial context, which is helpful for
discriminating articulated shapes. Since rigid shapes cannot be
split into local regions in a consistent manner as articulated
shapes due to various geometric variations, the performance
of ISPM is unsatisfactory when discriminating rigid shapes,
such as tables and chairs. Some other retrieval measures are
listed in Table I, where the bold numbers highlight the high
performance of BoSCC in a more detailed way.

BoSCC is also compared with some other state-of-the-art
methods under SHREC2007, including the Hybrid BoW of
Lavoué [22], the curve based method of Tabia et al. [54],
the BoW method of Toldo et al. [32] and Covariance Descrip-
tors of Tabia et al. [14]. The PR curves under these methods
are shown in Fig. 11 while the corresponding numerical eval-
uations are presented in Table II. In this experiment, BoSCC
obtains the best result, implying that the spatial information
encoded by BoSCC is with the highest discriminability. Note
that the best result is obtained with KL = 280 and K H = 100,
which is even better than the one with KL = 100 and
K H = 70 as shown in Fig. 10 (b).
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TABLE I

THE MEASURES OF SHAPE RETRIEVAL OBTAINED BY DIFFERENT
METHODS UNDER SEVERAL 3D SHAPE BENCHMARKS

Fig. 11. (a) The comparison between PR curves which are obtained by
BoSCC and some other state-of-the-art methods under SHREC2007. (b) The
comparison between partial shape retrieval results obtained by BoW, SSBoF,
ISPM, BoSC and BoSCC under SHREC2007 partial shape retrieval dataset.

TABLE II

THE MEASURES OF SHAPE RETRIEVAL OBTAINED BY DIFFERENT

METHODS UNDER SHREC2007 DATASET

C. Classification

Shape classification aims to classify shapes into dif-
ferent classes. The performance of BoSCC is further
evaluated for shape classification task under the same
four shape benchmarks including LabeledPSB, McGill,
SHREC2007, and SHREC2010. Specifically, binary Support
Vector Machine (SVM) [55] is employed to resolve the multi-
class classification problem using the one-versus-one coding
design, where KU (KU −1)/2 SVMs are trained and KU is the
number of shape classes. In addition, 10-fold cross validation
on the training data are used to train the involved SVMs for
better performance evaluation. For this task, the classification

TABLE III

THE CLASSIFICATION RESULTS OBTAINED BY DIFFERENT METHODS
UNDER SEVERAL 3D SHAPE BENCHMARKS

accuracy is measured using different numbers of training sam-
ples. 50%, 60%, 70%, 80% and 90% of shapes are randomly
sampled from each class as training samples, and accordingly,
the remaining shapes in each class are regarded as the testing
samples.

The classification accuracy listed in Table III indicates that
the performance of BoSCC is the best compared with BoW,
SSBoF, ISPM, and BoSC. The high performance of BoSCC
for classification benefits from not only the discriminability
but also the compactness. Due to the compactness, BoSCC
makes the training of classifier easily converged, especially
when the training samples are limited. The compactness of
BoSCC can be reflected from the dimension of representation
vectors. For example, the dimensions of BoW, SSBoF, ISPM,
BoSC and BoSCC are respectively 100 (equals to KL ), 10000
(equals to K 2

L ), 25500 (equals to KL ∗ Kbin , where Kbin is
the sum of region numbers of all resolutions.), 70 (equals to
K H ) and 70 (equals to K H ). The result of ISPM is obtained
under hard pooling with 8 resolutions, which concatenates the
local BoW representations calculated from 1, 2, 4, 8, 16, 32,
64 and 128 regions split from a 3D shape, respectively. In the
experiment, the results of SSBoF and ISPM are unsatisfactory
since it is hard for a classifier to be trained well by only few
training samples in such a high dimension.

In addition, the results of several methods with 60% train-
ing samples are visualized by the confusion matrix shown
in Fig. 12. The lowest errors of BoSCC imply that the
high performance of BoSCC is very suitable for 3D shape
classification.

D. Partial Shape Retrieval

Partial shape retrieval aims to effectively search par-
tially similar shapes as a given query in a database.
SHREC2007 partial retrieval dataset is employed to evaluate
the current experiment. Given the database of 400 watertight
shapes and a set of 30 hybrid query shapes, each query is
associated with a set of highly relevant shapes and a set of
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Fig. 12. The comparison shown by the confusion matrices with 60% training
samples under LabledPSB dataset, which are obtained by (a) BoW, (b) SSBoF,
(c) ISPM, (d) BoSC, (e) BoSCC.

marginally relevant shapes. In other words, these two sets
of shapes respectively represent the classes which share a
similar subpart with the query, and those which are reasonably
similar to the query. The quantitative evaluation is computed
using the Normalized Discounted Cumulated Gain (NDCG)
vector [56]. NDCG is obtained via normalizing DCG by the
ideal cumulated gain vector calculated from the ground truth.
DCG is defined in the following,

DCG[i ] =
{

G[i ] if i = 1;
DCG[i − 1] + G[i ]/ log2 i otherwise,

(9)

where G[i ] is a gain value representing the relevance of the
i -th retrieved shape (2 for highly relevant, 1 for marginally
relevant and 0 otherwise). For a given query, DCG[i ] is first
computed, and then, N DCG[i ] is obtained via dividing the
DCG[i ] by the ideal cumulated gain vector calculated from
the ground truth.

The performance of BoSCC is compared with BoW, SSBoF,
ISPM, and BoSC for partial shape retrieval. The NDCG values
obtained by BoW, SSBoF, ISPM, BoSC and BoSCC are shown
in Fig. 11 (b), and the best result is also obtained by BoSCC.
Benefiting from the powerful ability of encoding the geometric
and spatial information of local regions and the compactness,

Fig. 13. Some examples of query shapes (the left column) and the
top-5 retrieved shapes (the right 5 columns).

BoSCC is good at retrieving shapes queried with partially
similar parts. The local perspective adopted by BoSCC is more
effective to encode the local geometric and spatial information
into global shape representations than the global perspective
adopted by other state-of-the-art methods. This advantage
can be further illustrated in Fig. 13, where five queries and
their corresponding top-5 retrieved partially similar shapes are
shown in each row, more importantly, the retrieved shapes are
all highly relevant to the query shapes.

V. LIMITATION, FUTURE WORK AND CONCLUSION

A. Limitation and Future Work

Although the proposed BoSCC achieves a high performance
on shape retrieval and classification applications, there are
still two limitations. One is that the performance of BoSCC
might be affected by the discriminability of low-level virtual
words, since the spatial context correlation patterns employed
by BoSCC are based on the low-level virtual words. The other
is that, although BoSCC can provide a compact 3D shape
representation, the computation burden for learning high-level
virtual words is still high. This is because the dimension of
spatial context around each vertex increases while increasing
the size of low-level virtual dictionary and the number of
scales.

In the future, we plan to explore how to directly learn
the high-level virtual words from low-level features and their
spatial information, which aims to overcome the limitations of
BoSCC. However, this is still a big challenge.

B. Conclusion

To remedy the significant issue of lacking spatial infor-
mation in BoW for 3D shapes, BoSCC is proposed as a
spatially enhanced 3D shape representation based on the novel
spatial context correlation. It effectively encodes the spatial
relationship among virtual words on the 3D surface into an
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occurrence frequency histogram of spatial context correlation
patterns. Benefiting from the novel local perspective, BoSCC
is able to encode more detailed spatial information and become
more compact than other global perspective based methods.
The novel spatial context correlation overcomes the obstacles
including arbitrary mesh resolution, irregular vertex topology,
and orientation ambiguity on the surface in the spatial informa-
tion encoding procedure, which facilitates the encoded spatial
information to become invariant to rigid and non-rigid shape
transformations. These advantages of BoSCC are justified by
its high discriminability shown in the shape classification and
retrieval experiments, especially when training classifiers with
the limited number of samples or performing for partial shape
retrieval, from which the existing state-of-the-art methods are
still suffering.
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