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Abstract— Learning 3D global features by aggregating multiple
views has been introduced as a successful strategy for 3D shape
analysis. In recent deep learning models with end-to-end training,
pooling is a widely adopted procedure for view aggregation.
However, pooling merely retains the max or mean value over
all views, which disregards the content information of almost
all views and also the spatial information among the views.
To resolve these issues, we propose Sequential Views To Sequen-
tial Labels (SeqViews2SeqLabels) as a novel deep learning model
with an encoder–decoder structure based on recurrent neural
networks (RNNs) with attention. SeqViews2SeqLabels consists
of two connected parts, an encoder-RNN followed by a decoder-
RNN, that aim to learn the global features by aggregating
sequential views and then performing shape classification from
the learned global features, respectively. Specifically, the encoder-
RNN learns the global features by simultaneously encoding
the spatial and content information of sequential views, which
captures the semantics of the view sequence. With the proposed
prediction of sequential labels, the decoder-RNN performs more
accurate classification using the learned global features by
predicting sequential labels step by step. Learning to predict
sequential labels provides more and finer discriminative informa-
tion among shape classes to learn, which alleviates the overfitting
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problem inherent in training using a limited number of 3D
shapes. Moreover, we introduce an attention mechanism to fur-
ther improve the discriminative ability of SeqViews2SeqLabels.
This mechanism increases the weight of views that are distinctive
to each shape class, and it dramatically reduces the effect
of selecting the first view position. Shape classification and
retrieval results under three large-scale benchmarks verify that
SeqViews2SeqLabels learns more discriminative global features
by more effectively aggregating sequential views than state-of-
the-art methods.

Index Terms— 3D feature learning, sequential views, sequential
labels, view aggregation, RNN, attention.

I. INTRODUCTION

THE 2D views taken around 3D shapes have been shown
to be effective for learning 3D global features for 3D

shape analysis, such as 3D shape classification and retrieval
[1]–[8]. View-based methods understand a 3D shape by learn-
ing its global feature via aggregating the multiple views
taken around it. Due to their independence of 3D geometry
processing, view-based methods are capable of understanding
both manifold and non-manifold 3D shapes. More importantly,
this advantage also alleviates the difficulty of learning features
directly from irregular 3D shapes (i.e., arbitrary vertex reso-
lution, irregular vertex topology and orientation ambiguity on
3D surface) [9]–[12], especially for deep learning models [9],
[10], [12]. Therefore, how to aggregate multiple views for 3D
feature learning has become an important research topic in 3D
shape analysis and understanding.

Recently, deep learning models have been very success-
ful at learning 3D features by aggregating the informa-
tion of multiple views. To perform end-to-end optimization
in deep learning models, max pooling or mean pooling
[3], [4], [6]–[8], [13] is always used to aggregate the content
information of multiple views into global features. Although
pooling can make global features invariant to the rotation
of 3D shapes to a certain extent, it was designed as a procedure
of information abstraction in deep learning models, and it
inevitably loses the content information of almost all views
and the spatial information among the views. Thus, it remains
a research challenge to learn 3D global features by more
effectively aggregating the content and spatial information of
multiple views using deep learning.

To tackle this challenge, we propose Sequential Views
To Sequential Labels (SeqViews2SeqLabels), a novel
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deep learning model that learns 3D global features
by simultaneously aggregating the content and spatial
information of multiple views of a 3D shape. To enhance
the discriminability of learned features via efficiently using
the spatial information among views, multiple views are
taken from a circle surrounding the 3D shapes. This forms
the sequential views to be learned from in our work.
SeqViews2SeqLabels forms an encoder-decoder structure
based on Recurrent Neural Network (RNN) [14]. Specifically,
an encoder-RNN learns the global feature of a 3D shape
by simultaneously aggregating the content information of
all sequential views and the spatial information among
them. In this way, the semantics of the view sequence,
which is robust to the first view position, can be learned.
Subsequently, an decoder-RNN maps the learned feature
into sequential labels, which are also organized in a
sequential manner for shape classification. The learning
of sequential label prediction is proposed to present more
and finer discriminative information among different shape
classes for the decoder-RNN to capture. This alleviates
the overfitting problem inherent in training using a limited
number of 3D shapes. Moreover, the decoder-RNN also
introduces an attention mechanism to further increase the
discriminative ability of SeqViews2SeqLabels. The attention
mechanism adaptively learns to weigh the content information
of sequential views to predict each sequential label. The
attention weight highlights the views that are distinctive to
the shape class indicated by a sequential label and suppresses
other views. This assists the encoder-RNN to learn the
semantic meaning of the view sequence and dramatically
reduces the effect of choosing the first view position.
In summary, our main contributions are as follows:

i) We propose SeqViews2SeqLabels as a novel deep
learning model for 3D global feature learning by more
effectively aggregating sequential views, preserving the
content information of all sequential views and the spatial
information among the views.

ii) To the best of our knowledge, SeqViews2SeqLabels is the
first fully RNN-based 3D global feature learning method
based on aggregating multiple views, which verifies the
usefulness of RNN for 3D global feature learning.

iii) We propose to perform shape classification by predicting
sequential labels in a step-by-step way, where the task
of predicting sequential labels provides more and finer
discriminative information among the shape classes to
learn. This alleviates the overfitting problem inherent in
training using a limited number of 3D shapes.

iv) We propose an attention mechanism to further increase the
discriminative ability of SeqViews2SeqLabels by increas-
ing the weight of distinctive views for each shape class.
This also assists the encoder-RNN to learn the semantic
meaning of the view sequence and it dramatically reduces
the effect of choosing the first view position.

This paper is organized as follows: We review the
related work in Section II, and present the details of
SeqViews2SeqLabels in Section III. We describe our exper-
imental setup and results in Section IV and Section V,
respectively. Finally, we draw conclusions in Section VI.

II. RELATED WORK

In this section, the methods of learning 3D features
by deep learning models are reviewed. These methods are
categorized in terms of different raw 3D representations
that are learned from, including meshes, voxels and views.
In addition, the existing view aggregation procedures are
emphasized in the reviewed methods, which highlights the
novelty of our RNN-based view aggregation employed in
SeqViews2SeqLabels. Finally, we also review the meth-
ods with similar structure of SeqViews2SeqLabels in other
applications.

A. Mesh-Based Methods

3D mesh is an important raw representation for 3D shapes.
A 3D mesh is composed of vertices which are connected by
edges. To learn features from 3D meshes directly, several deep
learning models have been proposed. Han et al. [9] proposed
circle convolutional restricted boltzmann machine to learn
3D local features based on a novel circle convolution in an
unsupervised way. To learn global features via hierarchically
abstracting from local information, Han et al. [10] further
proposed mesh convolutional restricted boltzmann machine,
which simultaneously encodes the geometry of local regions
and the spatiality among them. With heat diffusion based
descriptor, Xie et al. [15] proposed DeepShape to learn 3D
global features. Similarly, Masci et al. [16] learned 3D features
from hand-crafted features on 3D surface by a novel geodesic
convolutional neural network. To explore the feasibility of
learning features in spectral domain, Boscaini et al. [17]
proposed localized spectral convolutional network to perform
supervised local feature learning. Also in the spectral domain,
Xie et al. [18] learned binary spectral shape descriptor for 3D
shape correspondence. By encoding the spatial relationships
among virtual words on 3D meshes, Han et al. [19] proposed
deep spatiality to simultaneously learn 3D global and local
features with novel coupled softmax. However, these methods
can only be used to learn features from smooth manifold
meshes.

B. Voxel-Based Methods

Voxel-based methods learn 3D features from voxels
which represent 3D shapes by the distribution of corre-
sponding binary variables. Wu et al. [20] proposed 3D
ShapeNets to learn global features from voxelized 3D
shapes based on convolutional restricted boltzmann machine.
Sharma et al. [21] employed fully convolutional denoising
autoencoder to robustly perform unsupervised global feature
learning via decomposing and reconstructing voxelized 3D
shapes. Girdhar et al. [22] combined voxels and the cor-
responding images to learn global features by a novel T-L
network based on CNN. To employ the generative adversarial
training manner, Wu et al. [23] learned 3D global features
by a novel 3DGAN which is composed of a generator and a
discriminator. By analyzing the reason why the performance
of voxel-based methods are always not as good as view-based
methods, Qi et al. [13] employed CNN to learn global features
from novel voxel representations, where max pooling is used to
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aggregate the information captured from different orientations.
To speed up the learning from voxels by deep learning models,
Wang et al. [24] proposed O-CNN to learn global features
based on a novel octree data structure. To learn local features
from voxles, Han et al. [12] proposed a novel voxelization
permutation strategy to eliminate the effect of rotation and
orientation ambiguity on the 3D surface. Although voxel-based
methods have the advantage of generating 3D shapes, they not
only need heavy computational cost but also require 3D shapes
to be aligned. In addition, this kind of methods always perform
discriminating shapes worse than the following view-based
methods.

C. View-Based Methods

Light Field Descriptor (LFD) [25] is the pioneer view-based
3D descriptor, which employs features of 2D silhouettes
in multiple views of 3D shapes. Instead of aggregating
multi-view information into global features, LFD evaluates the
dissimilarity between two shapes via comparing 2D features
of their corresponding two view sets in a greedy way. By the
same strategy, GIFT [5] measures the difference between two
shapes by the Hausdorff distance between their corresponding
view sets. To bridge 2D sketches and 3D shapes for shape
retrieval, barycentric representations of 3D shapes were pro-
posed to be learned from multiple views [26].

DeepPano [6] was proposed to learn features from
PANORAMA views using CNN, where a PANORAMA view
can be regarded as the seamless aggregation of multiple views
captured on a circle. To eliminate the effect of rotation about
the up-oriented direction, row-wise max pooling was intro-
duced in DeepPano. With pose normalization, Sfikas et al. [27]
used CNN to learn 3D features from multiple PANORAMA
views which were stacked together in a consistent order.
Similarly, using another hand-crafted feature, geometry image,
Sinha et al. [28] proposed to learn 3D features from geom-
etry images. In addition, RotationNet [29] is proposed to
learn global features by treating pose labels as latent vari-
ables which are optimized to self-align in an unsupervised
manner.

Recently, Su et al. [3] proposed Multi-View CNN to learn
3D global features from multiple views. To describe a 3D
shape by multiple views, the content information within
multiple views is aggregated into the global feature through
max pooling. Similarly, max pooling is also employed to
aggregate multiple views to learn local features for shape
segmentation or correspondence [4]. To employ more content
information in each view, Savva et al. [30] concatenated all
view features for hierarchical abstraction in the CNN-based
model. By decomposing a view sequence into a set of view
pairs, Johns et al. [31] classified each view pair independently,
and then, learned an object classifier by weighting the contri-
bution of each view pair, which allowed 3D shape recognition
over arbitrary camera trajectories. To perform pooling more
efficiently, Wang et al. [8] proposed dominant set clustering
to cluster views token form each shape, where pooling is
performed in each cluster.

Although pooling resolves the effect of rotation of 3D
shapes, it still suffers from two kinds of information loss,
i.e., the content information of almost all views and the
spatial information among the views. The spatial information
between pairwise views is also disregarded by the view pair
decomposition [31]. Savva et al. [30] compensated these two
kinds of loss by concatenation of all views, however, it is
sensitive to the first view position.

To resolve the aforementioned issues, SeqViews2SeqLabels
is proposed to learn 3D features via aggregating sequential
views by RNN. The RNN-based aggregation not only pre-
serves the content information of all views and the spatial
information among the views, but also becomes capable of
learning the semantics of view sequence, which is robust to
the first view position.

D. CNN-RNN Based and RNN-RNN Based Models

SeqViews2SeqLabels is similar to CNN-RNN based and
RNN-RNN based models. Different from multiple views,
Miyagi and Aono [32] employed multiple voxel slices to
learn 3D global features. They used CNN to extract the
feature of each voxel slice, and then, used RNN for view
aggregation, where a softmax was employed to conduct 3D
shape classification. Using a two-layer RNN, Le et al. [33]
proposed a CNN-RNN model to segment 3D shapes, where
multiple edge images were predicted to estimate the different
parts on a 3D shape. In addition, RNN-RNN based models,
especially seq2seq models, were originally proposed for text
understanding. Due to their powerful learning ability, they
have been successfully employed for image and speech under-
standing, such as scene text recognition [34], [35], image
caption generation [36] and speech recognition [37]. The
models in [34]–[36] were proposed to recognize what are in
a single image. For example, [34] and [35] focused on how
to recognize the characters in an image, [36] focused on how
to recognize the concepts in an image. Different from their
tasks, SeqViews2SeqLabels recognize what a view sequence of
multiple views is. This difference makes the involved attention
play different roles. In our method, we want to use attention
to highlight the views with distinctive characteristics to each
shape class and depress the views with ambiguous appearance.
Thus, our attention weights are computed at the image level.
In the methods of [35] and [36], attention is used to highlight
the parts with a specified meaning in an image, although mul-
tiple feature maps are involved. Thus, their attention weights
are computed at the part level. To represent the characteristics
of each shape class at each step of decoder, we propose a novel
attention mechanism which is different from the one employed
in [35] and [37].

III. SEQVIEWS2SEQLABELS

In this section, SeqViews2SeqLabels is introduced in detail.
First, we provide an overview and then describe the key
elements, including capturing sequential views, view feature
extraction, the encoder-RNN, the decoder-RNN, and the atten-
tion mechanism in the subsequent five subsections.
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Fig. 1. The framework of SeqViews2SeqLabels. The sequential views are first captured around each up-oriented 3D shapes on a circle in (a). Then, they
are learned by SeqViews2SeqLabels which consists of encoder-RNN and decoder-RNN. (a) Sequential view capture. (b) SeqViews2SeqLabels.

A. Overview

The framework of SeqViews2SeqLabels is illustrated
in Fig. 1, where SeqViews2SeqLabels consists of the
encoder-RNN and the decoder-RNN as shown in Fig. 1 (b).
First, a view sequence vi is captured on a circle around each
3D shape mi in a set of M 3D shapes, where i ∈ [1, M],
as shown in Fig. 1 (a). The view sequence vi is composed
of V sequential views v i

j , such that vi = [v i
1, . . . , v

i
j ] and

j ∈ [1, V ]. Then, the global feature of mi , namely Fi ,
is learned from vi by the encoder-RNN. Finally, the decoder-
RNN classifies mi into one of C shape classes based on the
global feature Fi learned by the encoder-RNN.

To learn Fi , the encoder-RNN not only aggregates the
content information of each single view v i

j in vi , but also
preserves the spatial information between successive views,
such as v i

j and v i
j+1. This enables the learning of semantics

of the view sequence vi , which makes SeqViews2SeqLabels
robust to the first view position with the assistance of the
attention mechanism introduced later. The content information
of v i

j is described by its low-level feature f i
j , which is

extracted by the fined-tuned VGG19 [38] deep neural network.
In addition, the decoder-RNN classifies shape mi into one

of C shape classes by predicting a label sequence l i based
on Fi learned by the encoder-RNN. The label sequence l i is
composed of C sequential labels li

c, such that l i = [li
1, . . . , li

c],
where c ∈ [1, C], li

c ∈ {0, 1} and
∑C

c=1 l i = 1. li
c = 1 indicates

the positive prediction of the c-th label for mi , which means
mi is classified into the c-th shape class, while li

c = 0 indicates
the negative prediction of the c-th label for mi .

We employ sequential labels in l i to provide more and
finer discriminative information among different shape classes.
Sequential labels change the traditional classification task of
learning a mapping from a sequence (sequential views) to a
scalar (shape class index) to an extended mapping of learning

a mapping from a sequence (sequential views) to another
sequence (sequential labels). This extended mapping effec-
tively alleviates the overfitting problem inherent in training
under a limited number of 3D shapes. The prediction of li

c is
only conducted at the c-th step of the decoder-RNN. The pre-
diction of sequential labels in a step-by-step manner enables to
comprehensively refer to view aggregation at each step of the
encoder-RNN, the characteristics of forward (from the 1-th to
the (c − 1)-th) shape classes, the characteristics of backward
(from the (c + 1)-th to the C-th) shape classes, and the label
prediction li

c−1 at the previous (c − 1)-th step. Note that the
order of shape classes to be predicted in the decoder-RNN does
not affect the discriminative ability of SeqViews2SeqLables,
because the prediction of each sequential label is always
conducted based on the characteristics of all shape classes.

More importantly, we also introduce an attention mech-
anism to further increase the discriminative ability of
SeqViews2SeqLabels for higher classification accuracy than
merely using the encoder-decoder structure. The attention
mechanism is implemented by weighting the low-level feature
f i

j of all sequential views for each shape class. That is,
the views that are distinctive to one shape class are empha-
sized, and otherwise the views are suppressed. This ability of
observing all views for each sequential label prediction also
assists the encoder-RNN to learn the semantic meaning of the
view sequence by dramatically reducing the effect of choosing
the first view position.

B. Capturing Sequential Views

The sequential views are captured around each 3D shape on
a circle, which forms a view sequence, as shown in Fig. 1 (a).
The sequential views are formed by V views in order which
are uniformly distributed on the circle. Here, the cameras are
elevated 30◦ from the ground plane, pointing to the centroid
of the 3D shape. The first view in the view sequence is taken
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from a fixed position that can be randomly selected on the
circle. Then, the subsequent views are taken with an angle
interval of 360◦/V in a consistent sequential direction. The
sequential direction is determined by the right hand rule, that
is, it is along the direction of wrapping one’s right hand
when the thumb is in the same direction of the up-orientation,
as demonstrated by the green arrow surrounding the 3D shape
in Fig. 1 (a).

Different from traditional multiple view capture [5], [25],
the sequential views are captured on a circle rather than a
unit sphere. Although the sequential views cannot fully cover
the top or the bottom of 3D shapes, the low-level features
of sequential views can be more efficiently aggregated while
preserving the spatial information among the views for 3D
global feature learning.

C. Low-Level View Feature Extraction

The low-level feature of each single view can be extracted
through fine-tuning existing deep neural networks, such as
VGG19 [38] and Alexnet [39]. In our work, we employ
VGG19 to extract the low-level feature f i

j of each single view
v i

j in vi , since VGG19 and its pre-trained parameters are easy
to access. VGG19 is originally trained under the ImageNet
benchmark for large scale image classification [38].

VGG19 is formed by 19 weight layers including 16 convo-
lutional layers and 3 fully connected layers. With a softmax
layer, VGG19 is capable of classifying images belonging to
1000 categories. In our work, the VGG19 pre-trained under
ImageNet is fine-tuned by all sequential views of 3D shapes
in the training set, where each view is classified into one of
C shape classes by another softmax layer. When a view v i

j is
forwarded through the fine-tuned VGG19, its low-level feature
f i

j is extracted as a 4096 dimensional vector from the last fully
connected layer of the VGG19.

D. Encoder-RNN

To benefit from the powerful ability of learning sequential
data, SeqViews2SeqLabels employs an RNN as the encoding
procedure to learn 3D global feature Fi . The encoder-RNN
learns Fi via aggregating f i

j of all sequential views v i
j in

the view sequence vi while preserving the spatial information
among them.

The general structure of the encoder-RNN for aggregating
sequential views in vi is illustrated in Fig. 2, where the RNN
cell shown as a blue square at each step can be a Long
Short Term Memory (LSTM) [14] or Gated Recurrent Unit
(GRU) [40]. The encoder-RNN learns from the sequential
views v i

j in vi step-by-step, where all low-level features of v i
j ,

i.e., [ f i
1 , . . . , f i

j , . . . , f i
V ], are sequentially aggregated while

preserving the spatial information among them.
An f i

j is conveyed to the encoder-RNN as the input at the
j -th step. At the j -th step, a hidden state he

j plays the role of
“memory” of the encoder-RNN, where the superscript, e, is the
abbreviation of the encoder. This is because he

j is calculated
based on the hidden state he

j−1 at the previous j − 1-th step

Fig. 2. The structure of the encoder-RNN aggregates low-level features of
views while preserving the spatial information among them.

and the input f i
j at the current step j , as defined in Eq. (1),

he
j = ReLU(Ue f i

j + Wehe
j−1), (1)

where ReLU(·) is a non-linear function defined as max(0, ·),
Ue and We are learnable parameters. he

0 required to calculate
he

1 is initialized to all zeros.
In addition, an output is obtained at each step of the encoder-

RNN. The output at the j -th step, oe
j , is provided to the

decoder-RNN for the prediction of sequential labels, and oe
j

can be calculated as in Eq. (2),

oe
j = Oehe

j + be. (2)

where Oe and be are learnable weight parameters. Moreover,
the hidden state at the last step, he

V , describes mi as its global
feature Fi after aggregating all sequential views in vi , such
that Fi = he

V .

E. Decoder-RNN

1) Overview: Similar to the encoder-RNN, the decoder-
RNN is also implemented by an RNN, which leads to the
encoder-decoder structure of SeqViews2SeqLabels. According
to the global feature Fi of mi provided by the encoder-RNN,
the decoder-RNN aims to classify mi into one of C shape
classes by predicting the sequential labels li

c in l i step by step,
as shown in Fig. 1 (b).

Based on sequential labels, the decoder-RNN regards the
shape classification as finding a mapping from a view sequence
vi to a label sequence l i , which is different from the tradi-
tional mapping from vi to a shape class index. This facilities
the decoder-RNN to learn from more and finer discrimina-
tive information among different shape classes, which effec-
tively alleviates overfitting inherent in training a powerful
RNN-based model under a limited number of 3D shapes.

The decoder-RNN predicts one label li
c in l i

c at each c-
th step. The prediction of li

c indicates whether the shape mi

belongs to the c-th shape class. The positive prediction (li
c = 1)

indicates that mi belongs to the c-th shape class. Otherwise,
the negative prediction (li

c = 0) is provided.
2) Structure: The details of the decoder-RNN are briefly

illustrated in Fig. 3, where only two steps for predicting the
sequential labels of “Airplane” and “Bathtub” shape classes
are demonstrated. Generally, each sequential label li

c is pre-
dicted according to several aspects of information, such as
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Fig. 3. We illustrate the structure of the decoder-RNN, where only two
steps of the decoder-RNN for predicting the sequential labels of “Airplane”
and “Bathtub” shape classes are shown.

the view-level information (gc) combined by the attention
mechanism at the current step, the information (kc−1) of the
sequential label predicted at the previous step, the character-
istics (hd

c−1) of forward shape classes, and the characteristics
of backward shape classes.

3) The Hidden State at the Current Step: For the prediction
of label li

c at the c-th step, the hidden state at the c-th step, hd
c ,

is first computed, where the superscript, d , is the abbreviation
of the decoder. To compute hd

c , the hidden state at the previous
step hd

c−1 and the embedding kc−1 of label li
c−1 predicted

at the previous step are employed. hd
c−1 comprehensively

encodes the characteristics of forward shape classes, while
kc−1 especially highlights the label prediction at the previous
step, as defined as follows,

hd
c = ReLU(Ud kc−1 + Wd hd

c−1). (3)

where Ud and Wd are learnable parameters.
Note that, for the prediction of the first label li

1, the hidden
state at the previous step is replaced by the global feature Fi

of mi . Moreover, a special embedding, kstart , is employed to
indicate the start of the prediction of sequential labels. Then,
Eq. (3) is rewritten to calculate the hidden state at the first
step hd

1 , as defined below,

hd
1 = ReLU(Ud kstart + Wd Fi ). (4)

4) The Prediction Vector: The prediction of sequential label
li
c also considers the view-level information at each step

of the encoder-RNN, which is represented by the attention
vector gc. gc is obtained through the attention mechanism
as detailed in the following subsection. We expect sequential
label li

c can be predicted through simultaneously observing
the view-level information and the class-level information.
Therefore, the prediction of li

c is carried out based on a
prediction vector sc that is formed by the concatenation of
the attention vector gc and the characteristics of forward shape

classes hd
c , as defined below,

sc = Od [gc hd
c ] + bd , (5)

where Od and bd are learnable parameters. To represent the
characteristic of each shape class at each step, the view-
level information is not directly involved in producing the
class-level information as in other methods [35], [37]. This
design makes the decoder-RNN learn the distribution of
sequential labels mainly based on the characteristics of shape
classes.

Similar to rewriting Eq. (3) as Eq. (4), Eq. (5) can be
rewrittern as Eq. (6) for the prediction of the first label li

1,

s1 = Od [g1 hd
1 ] + bd . (6)

5) Sequential Label Prediction: In our scenario, the c-th
label li

c can only be predicted at the c-th step of the decoder-
RNN. Thus, the sum of probabilities over both positive and
negative predictions of li

c is supposed to be one, where li
c

only equals to either one or zero to indicate whether shape
mi belongs to the c-th shape class. Thus, the probability
of positive prediction of li

c can be obviously computed by
a sigmoid function according to the prediction vector sc,
while the probability of negative prediction of li

c is the sup-
plementary. However, sc merely considers the characteristics
of forward shape classes, which means the sigmoid function
cannot observe the characteristics of backward shape classes.
As a result, there is a loss of discriminative information among
shape classes when predicting sequential labels, resulting in
low classification accuracy.

To resolve this issue, the characteristics of all shape classes
are comprehensively considered when predicting each label
at each step by a softmax layer, as shown in Fig. 3. The
softmax layer captures more discriminative information among
different shape classes via minimizing the probabilities that
a shape belongs to wrong shape classes and maximizing
the probabilities that it belongs to the correct shape class
in the training procedure. More importantly, the softmax
layer also efficiently employs the characteristics of backward
shape classes, which overcomes the disadvantage that only
the characteristics of forward shape classes are encoded as
the hidden state hd

c−1 for the c-th label prediction.
Specifically, the softmax layer regards the positive and

negative label predictions of each shape class as two inde-
pendent categories, that is, the sum of probabilities over both
positive label prediction and negative label prediction is not
guaranteed to be one. Thus, there are totally 2C categories
for the softmax layer to classify at each step of predicting
sequential labels. With the softmax layer, the probabilities of
positive and negative predictions of li

c are respectively defined
based on the prediction vector sc as below,

yc = Wsc + b, (7)

p(li
c = 1|[li

1, li
2, . . . , li

c−1], vi ) = ex p(y1
c )

∑

a∈[1,C]
∑

b∈{0,1}
ex p(yb

a)
, (8)

p(li
c = 0|[li

1, li
2, . . . , li

c−1], vi ) = ex p(y0
c )

∑

a∈[1,C]
∑

b∈{0,1}
ex p(yb

a)
, (9)
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where yc = [y0
1 , y1

1 , . . . , yb
a , . . . , y0

C , y1
C ], a ∈ [1, C], and

b ∈ {0, 1}, W and b are learnable parameters in the softmax
layer. Finally, a joint probability is defined over the sequential
labels li

c in l i by sequentially conditional probabilities as
follows,

p(l i ) =
∏

c∈[1,C]
p(li

c|[li
1, li

2, . . . , li
c−1], vi ), (10)

where the label sequence l i = [li
1, . . . , li

c] is for the i -th shape
mi . It means to evaluate the probability of l i to be inferred
based on the given view sequence vi .

6) Objective Function: Based on Eq. (10), we want the
decoder-RNN to predict the sequential labels as accurately as
possible. Thus, the objective function of SeqViews2SeqLabels
is to maximize the log-likelihood of joint probabilities of
predicting li

c in l i for all M shapes in the training set,
as defined below,

max
1

M

∑

i∈[1,M]
log p(l i ). (11)

A testing shape is classified according to p(li
c =

1|[li
1, li

2, . . . , li
c−1], vi ), such that the shape class that the

testing shape belongs to is determined by argmaxc p(li
c =

1|[li
1, li

2, . . . , li
c−1], vi ). In the next subsection, the attention

mechanism is introduced in detail, which describes how to
compute the attention vector gc.

F. Attention Mechanism

For each sequential label prediction, the attention mecha-
nism determines which views should be paid more attention
for more accurate prediction of sequential labels.

To predict the c-th label li
c for shape mi , the degree

of attention paid to the j -th view v i
j is measured by the

attention weight αi
c, j , where all attention weights form an

attention weight vector αi
c = [αi

c,1, . . . , α
i
c, j ], j ∈ [1, V ]

and
∑V

j=1 αi
c, j = 1. If li

c = 1 is finally predicted, a higher
value of αi

c, j means that the shape appearance in the j -th view
v i

j is more distinctive to the characteristics of the c-th shape
class, and maybe, no other views are needed for the positive
prediction of li

c. Otherwise, if li
c = 0 is finally predicted,

a higher value of αi
c, j means that the shape appearance in

the j -th view v i
j is more different from the characteristics of

the c-th shape class, and maybe, no other views are needed
for the negative prediction of li

c. Thus, the attention vector gc

is computed via weighting the output oi
j at each step of the

encoder-RNN by the attention weights αi
c, j , defined as,

gc =
V∑

j=1

αi
c, j oi

j . (12)

Inspired by the attention mechanism for machine transla-
tion [41], we compute the attention weight αi

c, j in a similar
way. αi

c, j measures the similarity between the view v i
j and

the c-th shape class, which indicates the distinctiveness of v i
j

to the c-th shape class. Different from the attention involved
in [35] and [37], the attention weights are computed according

to the hidden state at the current step rather than the hidden
state at the previous step. Therefore, the computation of αi

c, j

is implemented by a single-layer neural network involving oi
j

and hd
c , as defined as follows,

β i
c, j = xTtanh(Yoi

j + Zhd
c ), (13)

αi
c, j = ex p(β i

c, j)
∑V

q=1 ex p(β i
c,q)

, (14)

where the vector x, and the matrices Y and Z are learnable
parameters of SeqViews2SeqLabels for learning the attention
weight vector αi

c. These parameters are optimized along
with other parameters involved in SeqViews2SeqLabels in the
learning procedure via maximizing Eq. (11).

IV. EXPERIMENTAL SETUP

In this section, different shape benchmarks and perfor-
mance measures for global shape classification and retrieval
are respectively described to evaluate the 3D global features
learned by SeqViews2SeqLabels. In addition, the setup of
parameters involved in SeqViews2SeqLabels is also discussed.

A. Benchmarks and Evaluations

The global shape classification and retrieval experiments
are conducted under three large-scale 3D shape bench-
marks, including ModelNet40 [20], ModelNet10 [20] and
ShapeNetvCore55 [42].

ModelNet40 and ModelNet10 are two subsets of Mod-
elNet which contains 151,128 3D shapes categorized into
660 shape classes. As smaller subsets, ModelNet40 is formed
by 40 shape classes with a total of 12,311 3D shapes, while
ModelNet10 consists of 4,899 3D shapes split into 10 shape
classes. The training and testing sets of ModelNet40 consist
of 9,843 and 2,468 shapes, respectively. In addition, the train-
ing and testing sets of ModelNet10 consist of 3,991 and
908 shapes, respectively. ShapeNetCore55 is a subset of
the ShapeNet dataset, and it contains 51,190 3D shapes
of 55 shape classes.

In 3D shape classification experiments, the metrics
employed for evaluating the performance of different methods
include average instance accuracy and average class accu-
racy. In 3D shape retrieval experiments, mean Average Preci-
sion (mAP), Precision and Recall (PR) curves, precision (P),
recall (R), F1 score (F1) and Normalized Discounted Cumula-
tive Gain (NDCG) are presented to compare the performances
of different methods under different benchmarks.

B. The Setup of Parameters

In this subsection, the key parameters involved in
SeqViews2SeqLabels are set by exploring their impacts on the
performance of SeqViews2SeqLabels in shape classification
experiments under ModelNet40. The average instance accu-
racy is used as the metric for the performance comparison,
and the GRU cell is employed in SeqViews2SeqLabels.

The key parameters include the dimension of hidden state,
the embedding dimension of sequential labels, the learning
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TABLE I

THE DIMENSION OF HIDDEN STATE COMPARISON UNDER MODELNET40,
EMBEDDING=256, RATE=0.0001

TABLE II

THE DIMENSION OF LABEL EMBEDDING COMPARISON UNDER
MODELNET40, HIDDEN=128, RATE=0.0001

rate, and the number of views in the view sequence captured
around each 3D shape.

1) The Dimension of the Hidden State: The hidden states of
the encoder-RNN and the decoder-RNN have the same dimen-
sion in SeqViews2SeqLabels. In this experiment, the results
obtained with different candidate dimensions of hidden state
are compared as shown in Table I, where the dimension of
label embedding is set to 256, and the learning rate is 0.0001.

The candidate dimensions of hidden state form a set
{64, 128, 256, 512}. From the comparison shown in Table I,
all results obtained with these candidate dimensions are
very good, and the best result is achieved with 128. Thus,
the dimension of the hidden state is set to 128 in the following
experiments.

2) The Embedding Dimension of Sequential Labels: We
conduct a comparison of different embedding dimensions of
sequential labels using 128 dimensional hidden states and a
learning rate of 0.0001.

The results with candidate embedding dimensions
{64, 128, 256, 512} of sequential labels are compared
in Table II. The best result is achieved with 256, which is
used in the following experiments.

The former two comparisons also imply that the perfor-
mance of SeqViews2SeqLabels cannot be further improved by
increasing the dimension of hidden states and the embedding
dimension of sequential labels under ModelNet40. However,
we believe the learning ability of SeqViews2SeqLabels could
be increased via enlarging the dimension of the hidden state
and the embedding dimension of sequential labels if more
training samples were available.

3) The Learning Rate: The learning rate affects the opti-
mization of parameters in SeqViews2SeqLabels. In this exper-
iment, the results obtained with different learning rates are
compared. As shown in Table III, the result obtained with
learning rate of 0.0002 is better than the ones obtained
in the former experiments, which achieves an accuracy of
93.31%. This comparison is conducted with the 128 dimen-
sional hidden state and the 256 dimensional embedding
of sequential labels, respectively. In the following experi-
ments, SeqViews2SeqLabels is trained with the learning rate
of 0.0002.

4) The Number of Views: The number of views in view
sequence is also a factor of affecting the performance of
SeqVews2SeqLabels. In the former experiments, 12 views in

TABLE III

THE LEARNING RATE COMPARISON UNDER MODELNET40,
HIDDEN=128, EMBEDDING=256

TABLE IV

THE NUMBER OF VIEWS UNDER MODELNET40, HIDDEN=128,
EMBEDDING=256, RATE=0.0002

TABLE V

THE NUMBER OF VIEWS UNDER MODELNET10, HIDDEN=128,
EMBEDDING=256, RATE=0.0002

view sequence are captured around each 3D shape, which
is employed for learning global features. In this experiment,
different numbers of views are compared to explore the effect
of number of views.

In the comparison shown in Table IV, the best result is
obtained with 12 views. Similar to the effect of dimension of
hidden state and the embedding dimension of sequential labels,
the performance of SeqViews2SeqLabels cannot be further
improved by increasing the number of views, as indicated by
the result with 24 views. The same phenomenon is observed
under ModelNet10 as shown in Table V, where the best result
is also achieved with 12 views. The reason is analyzed in the
following paragraph.

Although more sequential views in view sequences provide
more information of each shape, it would become more
difficult to aggregate more views for effective feature learning.
In other words, the ability of learning long sequential data is
still limited even if LSTM and GRU are specially designed
to learn from long sequences. In the following experiments,
12 views in the view sequences captured around each shape
are used to learn global features.

V. RESULTS AND ANALYSIS

In this section, the performance of SeqViews2SeqLabels is
evaluated against the state-of-the-art methods in shape classifi-
cation and shape retrieval under ModelNet40, ModelNet10 and
ShapeNetCore55, respectively. For fair comparison, the results
obtained by the state-of-the-art methods are computed from
single modality, such as image, voxel or point cloud.

A. Shape Classification

1) ModelNet40: Under ModelNet40 for shape classifica-
tion, the comparison is shown in Table VI, where the modality
and numbers of views are also presented. The evaluation
metrics, both average class precision and average instance
precision, are presented in the table if they are reported in
the original paper.
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TABLE VI

CLASSIFICATION COMPARISON UNDER MODELNET40, HIDDEN=128,
EMBEDDING=256, RATE=0.0002

Using views captured from 3D shapes in the training set
of ModelNet40, VGG is fine-tuned via classifying each single
view into one of 40 shape classes. The accuracy of single
view classification is 89.47%, as the result named as “VGG
(ModelNet40)”. By voting the classification of single view
over all views in each view sequence, namely “VGG (Voting)”,
the average instance accuracy of classifying 3D shapes is
92.50%. Fine-tuning is important to extract low-level features
of views by VGG. This is because VGG is pre-trained by color
images from ImageNet while the views are captured without
colors. Thus, the results listed as “Ours (No finetune)” are not
as good as our best results described in the following para-
graph, where SeqViews2SeqLabels is trained under low-level
features obtained from no fine-tuned VGG.

With SeqViews2SeqLabels employing GRU cell, our results
named as “Ours” achieve 91.12% and 93.31%, as shown by
the bold numbers. Our results are the best results among all
reported results in terms of both average class accuracy and
average instance accuracy. For fair comparison, the result of
VRN [43] is presented with a single CNN, where twice more
views than ours are employed, and the result of RotationNet
[29] is presented with views taken by the default camera
system orientation which keeps identical with other methods.
In addition, another result of ours listed as “Ours1” achieves

91.24% and 93.15%, which is also a state-of-the-art result.
The comparison between “Ours” and “Ours1” implies that
the unbalanced number of shapes in each shape class makes
average class accuracy and average instance accuracy not
positively correlated.

SeqViews2SeqLabels is able to learn the semantics of
sequential views via aggregating views by the encoder-RNN,
which makes SeqViews2SeqLabels insensitive to the first
view position. To verify this point, the result named as
“Ours (Start)” is obtained via training SeqViews2SeqLabels by
sequential views with random first view position. Although the
first view position is not fixed for training, the result obtained
as “Ours (Start)” is still comparable to our best result.

In addition, the effect of different kinds of RNN cells
is also explored in the comparison. The result listed as
“Ours (LSTM)” is obtained by replacing GRU with LSTM
in SeqViews2SeqLabels. The effect of different kinds of RNN
cells is insignificant, as implied by the comparable result to
our best result.

The effect of the attention mechanism is also highlighted
in the comparison. The result listed as “Ours (No attention)”
is obtained based on SeqViews2SeqLabels without attention
vector for sequential labels prediction. The degenerated result
implies that the attention mechanism is important for the
prediction of sequential labels, especially when sequential
views are with large number and complex to understand.

The result listed as “Ours (No decoder)” emphasizes the
importance of sequential labels. “Ours (No decoder)” is
implemented by replacing the decoder-RNN with a softmax
classifier. The degenerated result shows that, by learning
and predicting labels in a sequential way, the decoder-RNN
successively captures more discriminative information among
different shape classes than the softmax classifier. Sequential
labels effectively alleviate overfitting, which increases the
classification accuracy.

In addition, we also conduct an experiment to verify the
effectiveness of the softmax layer for sequential labels pre-
diction at each step of the decoder-RNN. By replacing the
softmax layer with a sigmoid function, the result listed as
“Ours (Sigmoid)” is obtained by minimizing the least squares
error of predicted sequential labels. However, the result listed
as “Ours (Sigmoid)” is not satisfactory. This is because the
characteristics of backward shape classes cannot be observed
for sequential labels prediction by the sigmoid function at each
step.

Finally, we highlight our novel view aggregation by com-
paring it with widely used max pooling and mean pooling.
To conduct a fair comparison, we employ the same low-level
view features as the ones (“VGG (ModelNet40)”) involved
in our best results of “Ours”. Moreover, the structure of
MVCNN is trained with max pooling and mean pooling
respectively, as shown by the results of “Ours(Maxpooling)”
and “Ours(Meanpooling)”. Due to the loss of content informa-
tion in most of the views and the spatial information among
the views, these results are not better than ours.

2) ModelNet10: The performance of SeqViews2SeqLabels
is further evaluated under ModelNet10 for shape classification.
The comparison is shown in Table VII.
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TABLE VII

CLASSIFICATION COMPARISON UNDER MODELNET10, HIDDEN=128,
EMBEDDING=256, RATE=0.0002

The VGG fine-tuned by the views from ModelNet40 is first
used to extract the low-level features of sequential views which
are captured from the 3D shapes in ModelNet10.

As the results listed as “Ours” and “Ours (LSTM)” shown,
SeqViews2SeqLabels achieves the best results under Model-
Net10. Comparing with the GRU cell, LSTM cell performs
better under ModelNet10, where average class accuracy and
average instance accuracy achieve up to 94.80% and 94.82%,
respectively.

The effects of attention mechanism and sequential labels are
also highlighted in the comparison. Although both the results
listed as “Ours (No attention)” and “Ours (No decoder)” are
better than the ones of other state-of-the-art methods, they
are degenerated compared with “Ours” or “Ours (LSTM)”
due to the lack of attention mechanism and sequential labels,
respectively.

With the low-level features provided by VGG which is
fine-tuned under the views captured from the shapes in Mod-
elNet10, we explore whether better results could be achieved.
As the result listed as “VGG (ModelNet10)”, the accuracy of
classifying single view into one of 10 shape classes is 91.87%.
By voting the classification of single view over all sequential
views in each view sequence, the accuracy of classifying
shapes is achieved to 93.83%, as listed as “VGG (Voting)”.
Although the results of “Ours1” and “Ours1 (LSTM)” are
slightly degenerated compared with the results of “Ours” and
“Ours (LSTM)”, they are still the state-of-the-art results among
all reported results.

Under ModelNet10, we repeat the experiments of “Ours
(Start)”, “Ours(Maxpooling)” and “Ours(Meanpooling)”

TABLE VIII

CLASSIFICATION COMPARISON UNDER SHAPENETCORE55,
HIDDEN=128, EMBEDDING=256, RATE=0.0002

conducted under ModelNet40. As the results shown
in Table VII, the same phenomenons are observed.

3) ShapeNetCore55: In this experiment, the performance of
SeqViews2SeqLabels is evaluated under ShapeNetCore55. For
each 3D shape, 12 sequential views rendered without colors
are used to train SeqViews2SeqLabels. In addition, we also
explore whether sequential views rendered with colors can be
used to improve the performance of SeqViews2SeqLabels. The
sequential views with colors are downloaded from the web
page of ShapeNet, however, there are only 8 sequential views
in each view sequence. The results are shown in Table VIII.

In Table VIII, the results named as “VGG (ShapeNet-
Core55)” and “VGG1 (ShapeNetCore55)” are obtained via
fine-tuning VGG by the views without colors and the views
with colors, respectively, where the results obtained by voting
are correspondingly listed as “VGG (Voting)” and “VGG1
(Voting)”. Because of the highly unbalanced number of shapes
in each shape class, we only present our best results in
terms of average class accuracy, as listed as “Ours” and
“Ours1” which are obtained by low-level view features from
“VGG (ShapeNetCore55)” and “VGG1 (ShapeNetCore55)”,
respectively. The comparison between these results implies
that the color is slightly helpful to increase the performance
of SeqViews2SeqLabels in terms of average class accuracy,
from 74.81% and 76.91%. We also try to explore whether
the performance of SeqViews2SeqLabels could be improved
via increasing the dimension of hidden state, as the results
of “Ours (512)” and “Ours1 (512)”. However, the results
with higher dimension of hidden states are comparable
to “Ours” or “Ours1” respectively, which implies that the
128 dimensional hidden states are sufficiently good to learn
from shapes for the scale of ShapeNetCore55.

B. The Effect of Shape Class Order

In this subsection, we explore the effect of shape class
order under ModelNet40 and ModelNet10 in shape clas-
sification. In the experiments above, we use the default
shape class order provided by the benchmark, while we
employ randomized shape class order in this experiment.
Specifically, we randomize shape class order 40 times under
each benchmark. Using each randomized shape class order,
we repeat the shape classification with the parameters of
“Ours” in Table VI or Table VII. Finally, we compute the
mean, standard deviation and maximum over the 40 groups
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TABLE IX

THE EFFECT OF SHAPE CLASS ORDER UNDER MODELNET40 AND
MODELNET10, HIDDEN=128, EMBEDDING=256, RATE=0.0002

Fig. 4. The attention weights learned by SeqViews2SeqLabels for two
airplanes and one bathtub from ModelNet40, as shown in (a), (b) and (c)
respectively.

of results in terms of average instance accuracy and average
class accuracy, as shown in Table IX.

The statistic results show that the effect of shape class
order is subtle. Under both benchmarks, the mean values are
high, and the standard deviations are quite small, in terms
of both average instance accuracy and average class accuracy.
In addition, we even obtain a higher instance accuracy than our
best results with default shape class order under ModelNet40,
as shown by “Ours(ClassMax)-Instance”.

C. Attention Visualization

In this subsection, the attention learned by
SeqViews2SeqLabels under ModelNet40 is visualized to
analyze how SeqViews2SeqLabels recognizes 3D shapes
by understanding sequential views. As shown in Fig. 4,
the attention weight vectors {αi

c} for all shape classes over
sequential views in vi are visualized as a matrix, such as
the ones of two airplanes in Fig. 4 (a), (b) and the one of
a bathtub in Fig. 4 (c), where red represents high attention
weight and each αi

c is the c-th column of the matrix.
SeqViews2SeqLabels learns the attention weights of two
airplanes with similar patterns which are much different from
the ones of bathtub. In addition, the learned attention weights
conform to the human cognition of objects. Specifically, for

TABLE X

RETRIEVAL COMPARISON UNDER MODELNET40 AND MODELNET10,
HIDDEN=128, EMBEDDING=256, RATE=0.0002

shapes like airplanes with distinctive characteristics, most
shape classes can make certain label predictions upon merely
the first view. This can be observed in most red entries in
the first row of matrices in Fig. 4 (a) and (b). In contrast, for
shapes without distinctive characteristics, such as the bathtub
which is similar to “cup” or “flowerpot”, most shape classes
need almost all views to predict each sequential label in label
sequence, as shown by the inapparent entries in most columns
of the matrix in Fig. 4 (c).

D. Shape Retrieval

The performance of SeqViews2SeqLabels is also evaluated
using the learned global features in shape retrieval experi-
ments under ModelNet40, ModelNet10 and ShapeNetCore55,
respectively. Under ModelNet40 and ModelNet10, our results
are produced with the global features learned by the trained
SeqViews2SeqLabels named as “Ours” in the corresponding
Table VI, Table VII.

The shapes in ModelNet40 and ModelNet10 are originally
split into a training set and a testing set. Thus, to comprehen-
sively evaluate the performance of SeqViews2SeqLabels for
shape retrieval, four experiments are conducted under each
benchmark. The four experiments are named as “Test-Test”,
“Test-Train”, “Train-Train”, and “All-All”, indicating which
data set the query and retrieved shapes come from, respec-
tively. For example, “Test-Train” indicates that the shapes in
the testing set are used as query for shape retrieval from the
training set.

The comparison between SeqViews2SeqLabels and the
state-of-the-art methods is shown in terms of mAP in Table X,
where the retrieval range is also explained. Under Mod-
elNet40, the mAPs obtained by SeqViews2SeqLabels are
the best, which achieves 89.00% and 96.73% in the “Test-
Test” and “All-All” experiments, respectively, as shown
by the bold numbers. Under ModelNet10, the mAPs of
SeqViews2SeqLabels achieve 89.55% and 97.85% in the
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TABLE XI

RETRIEVAL COMPARISON UNDER SHAPENETCORE55, HIDDEN=128, EMBEDDING=256, RATE=0.0002

Fig. 5. The comparison between precision and recall cures obtained by
different methods under (a) ModelNet40 and (b) ModelNet10.

“Test-Test” and “All-All” experiments, respectively. The cor-
responding PR curves of our results obtained under Mod-
elNet40 and ModelNet10 are shown in Fig. 5 (a) and (b),
respectively, where the PR curves of our results show a high
performance of SeqViews2SeqLabels.

We believe our results are also the best as shown in
bold, even if GIFT obtains a higher mAP. This is because,
the dataset used by GIFT is formed by randomly selecting
100 shapes from each shape category, which is much simpler
than the whole benchmark that we used. To verify this point,
we employ the same low-level view features to compare with
GIFT (64 clusters) under the whole ModelNet40 and Model-
Net10, as shown by “GIFT1”. In addition, for better analysis
of SeqViews2SeqLabels in shape retrieval, we also present
the retrieval results with the features learned by the variants
of SeqViews2SeqLabels compared in the shape classification
experiments, such as “Ours(LSTM)”, “Ours(Start)”,“Ours(No
attention)”, “Ours(No decoder)” and “Ours(ClassMax)”. The
corresponding PR curves are presented in Fig. 6.

Fig. 6. The comparison between precision and recall cures obtained by GIFT
and different variants of SeqViews2SeqLabels under (a) ModelNet40 and
(b) ModelNet10 based on the same low-level view features.

Under the three subsets of ShapeNetCore55, i.e., training
set, validation set and testing set, the retrieval performance
of SeqViews2SeqLabels is compared with other state-of-the-
art methods in terms of different metrics. Considering that
there is no comparison results under training set and validation
set in [53], the results of state-of-the-art methods under
testing set are from the SHREC2017 retrieval contest [53],
while the ones under training set and validation set are
from the SHREC2016 retrieval contest [30]. All involved
3D shapes under ShapeNetCore55 are normal and are not
perturbed by rotation. In Table XI, we present the performance
obtained by SeqViews2SeqLabels respectively trained under
views without colors and views with colors, as the ones
named as “Ours (512)” and “Ours1” in Table VIII. The
comparison shown in Table XI implies that the performance
of SeqViews2SeqLabels for shape retrieval is the best among
all state-of-the-art methods under all subsets, where our results
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under views without colors and views with colors are listed as
“Ours” and “Ours (C)”, respectively. In addition, the compari-
son between results of “Ours” and “Ours (C)” also demonstrate
that colors in views for training do not significantly improve
the retrieval performance of SeqViews2SeqLabels.

VI. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

A. Conclusions

In this paper, a novel deep learning model,
SeqViews2SeqLabels, is proposed to learn 3D global
features via aggregating sequential views captured around 3D
shapes on a circle. In existing methods, a pooling procedure
is employed to aggregate multiple views but suffers from
two issues, i.e., the lack of content information of almost
all views and the lack of spatial information among the
views. To resolve these disadvantages, SeqViews2SeqLabels
employs an encoder-RNN to aggregate sequential views,
which effectively learns global features with semantics.
In addition, the other part of the encoder-decoder structure of
SeqViews2SeqLabels, the decoder-RNN, predicts sequential
labels based on the learned global features. The decoder-RNN
is able to capture more and finer discriminative information
among all shape classes to effectively alleviate overfitting for
higher classification accuracy. Finally, an attention mechanism
is integrated in the decoder-RNN, which assigns heavier
weights on the low-level features of distinctive views for each
shape class. The introduced attention assists the encoder-RNN
in learning the semantic meaning of view sequences by
dramatically reducing the effect of the first view position.
The attention mechanism is experimentally verified to further
improve the discriminative ability of SeqViews2SeqLabels.

B. Limitations and Future Work

Although SeqViews2SeqLabels learns 3D global features
with high performance, it still suffers from two disadvantages.
First, SeqViews2SeqLabels can only learn features via aggre-
gating sequential views rather than any kind of unordered
views, such as views captured on a unit sphere centered at
3D shapes. Second, although RNNs are good at aggregating
sequential data, their ability is limited when the sequence
contains a large number of data, especially for the complex
data, such as views in this work. Thus, SeqViews2SeqLabels
merely performs well under limited number of sequential
views, even with the help of the attention mechanism.

In the future, it is worth to explore how to aggregate large
numbers of sequential views in view sequences with novel
deep learning models, since more views could provide more
information to learn for discriminating 3D shapes.
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