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_ Abstract—Learning 3D global features by aggregating multiple WO dimensional views can be used to represent both
views is important. Pooling is widely used to aggregate views in manifold and non-manifold 3D shapes. This advantage
deep learning models. However, pooling disregards a lot of con- g)jeyiates the difficulty of direct learning of 3D features from

tent information within views and the spatial relationship among . lar 3D sh . bit ' b . |
the views, which limits the discriminability of learned features. irreguiar shapes (i.e. arbitrary vertex number, irregular

To resolve this issue,3D to Sequential Views (3D2SeqViews) is Vertex topology and orientation ambiguity on 3D surface) [1]-
proposed to more effectively aggregate sequential views using[3] by deep learning models, which makes learning 3D features
convolutional neural networks with a novel hierarchical attention  from multiple views important for 3D shape analysis [4]-[8],

aggregation. Specifically, the content information within each ¢ - a5 3D shape classification and retrieval [9]. By taking

view is first encoded. Then, the encoded view content information ltiol . d 3D sh 3D sh feat
and the sequential spatiality among the views are simultane- muliple views around a shape, shape 1eafures can

ously aggregated by hierarchical attention aggregation, where D€ learned by aggregating the information of views [4], [5],
view-level attention and class-level attention are proposed to [7], [8], [10]-[12], where the key lies in an efficient and
hierarchically weight sequential views and shape classes. View-effective view aggregation. To fully benefit from the powerful
level attention is learned to indicate how much attention is paid learning ability of deep learning models, it is critical to learn

on each view by each shape class, which subsequently weight . o
sequential views through a novel recursive view integration. S‘J‘D features by view aggregation in the end-to-end parameter

Recursive view integration learns the semantic meaning of view Optimization procedure.

sequence which is robust to the first view position. Furthermore, ~ Max or mean pooling is widely used for view aggregation in
class-level attention is introduced to describe how much attention deep learning models [4], [5], [7], [8], [10], [11]. As a proce-
is paid on each shape class, which innovatively employs the e originally designed for information abstraction, pooling

discriminative ability of the fine-tuned network. 3D2SeqViews | | th | f h di .
learns more discriminative features than the state-of-the-art, ON'Y €MPIOYS the max or mean value of each dimension across

which leads to the outperforming results in shape classification all view features to learn 3D shape features. Although pooling
and retrieval under three large-scale benchmarks. is able to eliminate the rotation effect of 3D shapes to some
Index Terms—3D global feature learning, View aggregation extent, a lot of content information within views and the spatial
Sequential views, Hierarchical attention aggregation, CNN. relationship among the views are inevitably lost, leading to the
limited discriminability of learned features. Therefore, it is still
a research challenge to learn 3D features by more effectively
aggregating the content information and spatial relationship of
multiple views in deep learning models.

To tackle this challenge, a novel deep learning model,
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more comprehensive characteristics in the view sequence thanMesh-based methods
existing methods. Then, the encoded view content information
and the sequential spatiality among the views are simulta-3D mesh is an important type of 3D shape representations.
neously aggregated to learn 3D global features by a novk|3D mesh is composed of vertices which are connected
hierarchical attention aggregation. Finally, a softmax layer iy €dges. Mesh-based methods mainly aim to learn the ge-
employed to guide the parameter optimization by minimizin@metncal and spatial information from triangle faces of 3D
the classification errors of 3D shapes. mesh. To directly learn features from 3D meshes, different
In hierarchical attention aggregation, view-level attentiofi€€pP learning models have been proposed. Han et al. [1]
and class-level attention are proposed to hierarchically weighPPosed circle convolutional restricted boltzmann machine to
sequential views and shape classes. View-level attention!§@m 3D local features based on a novel circle convolution in
learned to indicate how much attention is paid on each vied} Unsupervised way. To learn global features by hierarchically
by each shape class, while class-level attention is further int@2stracting from local information, Han et al. [2] further
duced to describe the attention paid on each shape class wiRtpPosed mesh convolutional restricted boltzmann machine,
employs the discriminative ability of fine-tuned networks. I¥hich simultaneously encodes the geometry of local regions
addition, a novel recursive view integration is proposed ®d the spatiality among them. Jonathan et al. [13] learned
weight the encoded view content information by view-levelD féatures from hand-crafted features on 3D meshes by a
attention while preserving the sequential spatiality among thevel geodesic convolutional neural networks. To explore the
views, which enables 3D2SeqViews to learn the semanfrasibility of learning features in the spectral domain, Davide
meaning of view sequence that is robust to the first vief al. [14] propose_d localized spectral co_nvolutional ne_tworks
position. Our significant contributions are listed as below: 0 perform supervised local feature learning. By encoding the
i) A novel deep learning model called 3D2SeqViews igpatlal relationships among v!rtual words on 3D meshes, Han
proposed for 3D global feature learning by aggregati et al. proposed deep spatiality [_15] to simultaneously learn
sequential views. It not only encodes the content infoy- global rz:md Iocalhfedatures W'}h tr:ovel ((:jouplled so]ftmax.
mation within all sequential views but also preserves tr} owever, these methods can only be used to learn features

sequential spatiality among the views. fom smooth manifold meshes.
ii) A novel view aggregation in CNN called hierarchical
attention aggregation is proposed to simultaneously aggre-
gate the content information and sequential spatiality inBa Voxel-based methods
view sequence, where view-level attention and class-level
attention are propOSed to get Comprehensive|y Combined\/oxel'based methods learn 3D features from voxels which
to significantly increase the discriminability of learnedepresent 3D shapes by the distribution of corresponding
features. binary variables. These methods usually employ deep learning
iy The sequential spatiality captured by a novel recufmodels to capture the patterns of correlation among the binary
sive view integration improves the limited ability ofvariables involved in each 3D shape. Wu et al. [16] proposed
CNN for learning from sequential data, which enable3D ShapeNets to learn global features from voxelized 3D
3D2SeqViews to learn the semantic meaning of vieRhapes based on convolutional restricted boltzmann machine.
sequence that is robust to the first view position. Sharma et al. [17] employed fully convolutional denoising
iv) The discriminative ability of fine-tuned network for low-autoencoder to robustly perform unsupervised global feature
level view feature extraction is innovatively employed byearning by decomposing and reconstructing voxelized 3D
3D2SeqViews through class-level attention in hierarchicahapes. Girdhar et al. [18] combined voxels and views of
attention aggregation, which is an important source to eAD shapes to learn global features by a novel T-L network

hance the discriminability of learned features but ignordtsed on CNN. With the generative adversarial training, Wu
by existing methods. et al. [19] learned 3D global features by a novel 3DGAN

This paper is organized as follows. The related studi(‘é@iCh _is composed of a generator and a discriminator. By
; . Iaéﬂnalysmg the reason why the performances of voxel-based

presented in Section Ill. Experimental setup and results Wmethods are always not as good as view-based methods, Qi
al. [10] employed CNN to learn global features from novel

analysis are shown in Section IV and Section V, respectives}. . R
Finally, a conclusion is drawn in Section VI. oxel representations, where max pooling is used to aggregate

information captured from different orientations. To speed
up the training, Wang et al. [12] proposed O-CNN to learn
global features based on a novel octree data structure. To learn

The deep learning methods for 3D feature learning alecal features from voxels, Han et al. [3] proposed a nhovel
reviewed in this section. These methods are categorizedvisxelization permutation strategy to eliminate the effect of
terms of different raw 3D representations that are learned frorofation and orientation ambiguity on 3D surface. Although
including meshes, voxels and views. In the reviewed methodsxel-based methods have the advantage of generating 3D
the procedures employed for view aggregation are emphasizbdpes, these methods require heavily computational cost and
to highlight the novelty and the significance of hierarchicaheir performances in shape discrimination are always worse
attention aggregation proposed in 3D2SeqViews. than the following view-based methods.

Il. RELATED WORK
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C. View-based methods shapes to some extent, however, it inevitably loses a lot of
content information within views and the spatial relationship
ong the views which has been regarded an important
ormation in computer vision area [26]. In addition, the

View-based methods try to understand each 3D shape fr
different viewpoints. These methods learn the feature of a

sha_pe ”9”‘ a set (_)f View Images c_aptured_ from thg 3D Shaeﬁatial relationship between pairwise views is also disregarded
Light field descriptor (LFD) [20] is the pioneer view-baseqhy, the view pair decomposition [25]. Although it is able to
3D descriptor to extract 3D global features, which employs the .- ome the disadvantages of pooling by concatenation of

features of 2D silhouettes in multiple views taken around a 3Ly \jie\y content information [24], it is sensitive to the first
shape. Instead of learning global features by aggregating mql)iléw position in a view sequence. Xu et al. [27] employed
view information, LFD evaluates the dissimilarity between twh e concept of attention to find next best view for depth

shapes by comparing the corresponding two view sets inaq jisition, and then, found the most discriminative part in
greedy way. By the same strategy, GIFT [6] measures tQg 1 view for part-based recognition.

difference between two 3D shapes by the Hausdorff distancery yesolve the aforementioned issues, 3D2SeqViews em-
between their corresponding view sets. These metho_ds eMYys a novel hierarchical attention aggregation to aggregate
a greedy strategy to compare views for the evaluation of tQgq ,ential views for 3D global feature learning. In hierar-
difference between two 3D shapes, which avoids to identicallyica| attention aggregation, the content information within

align 3D shapes before pairwise 3D shape comparison. In Cfff- sequential views and the sequential spatiality among the
trast, RptatlonNet [21] was propose_d to Iearn global fegtgrg%ws are effectively aggregated under hierarchically weight-
by treating pose labels as latent variables which are optimizgd \je\y-level attention and class-level attention. With a novel
to self-align in an unsupervised manner. recursive view integration, the sequential spatiality among
Besides the 2D rendered views, other different 2D regaquential views is encoded to help 3D2SeqViews learn the
resentations are also employed to represent 3D shapes f@hantic meaning of sequential views in the view sequence,

deep learning models to learn. DeepPano [7] was proposeq\f§ich is robust to the first view position.
learn features from panorama views using CNN, where each

panorama view can be regardgd as the sgamless aggregation of IIl. 3D2SEQVIEWS
multiple views captured on a circle. To eliminate the effect of
rotation about the up-orientation, row-wise max pooling was

introduced in DeepPano. With pose normalization, Sfikas _ . e . .
al. [22] used CNN to learn 3D global features from multipl lements, including sequential views capturing, low-level view

panorama views which were stacked together in a consist gature encoding, and hierarchical attention aggregation are

order. Similarly, Sinha et al. [23] proposed to learn featuréigscribed in detail in the subsequent three subsections, re-

from hand-crafted features named as geometry images.  SPECtively.
To encode information from multiple views through view
aggregation, pooling becomes a widely used procedure in déepOverview
learning models. This manner was introduced in multi-view The framework of 3D2SeqViews is illustrated in Fig. 1.
CNN [4] which learns global features by aggregating multiplgirst, for eachi-th 3D shapem’ in a training set ofdM 3D
views. To describe a 3D shape, the content information withghapes, whereé € [1, M], a view sequence’ is obtained
all views is first max-pooled together before the global featutsy capturingV sequential viewsv’ aroundm’, such that
of the 3D shape is learned. Similarly, max pooling is also firgt = [vi, -y 0k, v ] andj € [1, V], as shown in Fig. 1 (a).
employed to aggregate multiple views which are taken aroumlen, the low-level featurgf; of each viewv} is encoded by
local regions to learn local features for 3D shape segmentati@i-wise convolution after extracted by a fine-tuned VGG19
or correspondence [5]. Instead of performing pooling firshetwork [28]. The VGG19 also provides the classification
3D2SeqViews convolves the content information within ajprobability p of each viewv} to calculate the subsequent
sequential views in a view sequence, which prevents the lagass-level attention, as shown in Fig. 1 (b). Finally, the
of content information caused by pooling. global featureF" of shapem’ is learned by aggregating the
To employ the content information within all views, Li etcontent information within all sequential view§ in »* and
al. [24] concatenated all content information for hierarchicghe sequential spatiality amongf. This view aggregation is
abstraction in the CNN-based model. By decomposing a viesnducted under hierarchically weighting view-level attention
sequence into a set of view pairs, Johns et al. [25] classifiadd class-level attention by hierarchical attention aggregation,
each pair independently, and then, learned an object classifisrshown in Fig. 1 (c).
by weighting the contribution of each pair, which allows To learn F?, the low-level feature#j of all sequential
3D shape recognition over arbitrary camera trajectories. Views in v* are first stacked into a low-level view feature
perform pooling more efficiently, Wang et al. [8] proposethatrix A* according to the sequential direction derived in
dominant set clustering to cluster views taken from each shape, Then, several hidden convolutional layers are employed
where pooling is performed in each cluster respectively. to perform row-wise convolution oA’ by row-wise convolu-
The issues of the view aggregation procedures in thien kernels, which abstracts the content information within
aforementioned methods are analyzed in the following. Viegach vierj. The hidden convolutional layers shorten the
aggregation by pooling eliminates the effect of rotation on 3@w-level feature f; of each viewv; in »* and form an

In this section, 3D2SeqViews is introduced in detail. First,
overview of 3D2SeqViews is presented. Then, the key
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(a) Sequential view capturing (b) Low-level view feature encoding (c) Hierarchical attention aggregation

Fig. 1. The overview of 3D2SeqViews. The sequential viewsfast captured around each up-oriented 3D shapes on a circle in (a). Then, the low-level
feature of each view is encoded by row-wise convolution after extracted by a fine-tuned VGG network, as shown in (b). Finally, the global 3D feature
learned by aggregating sequential views in hierarchical attention aggregation.

abstracted view feature matrig?. Subsequently, another row-all v;'. is further encoded into a s#* of column-wise feature
wise convolution layer is employed to further encod¥ maps by row-wise convolution. The content information and
into a set H' of column-wise feature maps by row-wisethe sequential spatiality af’ in H* is subsequently aggregat-
convolution. Finally, F* is learned fromH*® by hierarchical ed by hierarchical attention aggregation which will be detailed
attention aggregation, where view-level attentighand class- in the next subsection.

level attention3’ are employed to weight* in a hierarchical Low-level view feature extraction. VGG19 is employed to
manner. View-level attention’ weights the encoded contentextract the low-level featurg! of each sequential view! in
information of views with preserving the sequential spatiality? from thei-th shapen’. VGG19 is originally trained under
among the views through the novel recursive view integratiolmageNet benchmark for large scale image classification [28].
which helps 3D2SeqViews learn the semantic meaning ofVGG19 is formed by 19 weight layers which include
the view sequence that is robust to the first view positioné convolutional layers and 3 fully connected layers. With
With introducinge” and3?, the discrminability of the learned a softmax layer, VGG19 is capable of classifying images

global featureF™ are significantly increased. belonging to 1000 categories. Here, the VGG19 pre-trained
under ImageNet is fine-tuned by all sequential views of 3D
B. Sequential view capturing shapes in the training set, where each vigvis classified into
. . . ) one of C' shape classes by another softmax layer, as shown in
The V sequential views); are taken around théth 3D Fig. 1 (b).

shapem’ on a circle, which forms a view sequeneé as

shown in Fig. 1 (a), wherg € [1,V] andi € [1,M]. The In Fig. 1 (b), when the view; is forwarded through the

sequential views inv* are uniformly distributed on the circle fine-tuned VGGL9, its low-level featurg, is extracted as a
4 y 4096 dimensional vector from the last fully connected layer.

'r:a%rger’o\?r’::i?] re tt:fhceacrgi;?;;g ?AZV?DG zrf]r:rr; tq%g;ﬁl;?sieln addition, the classification probabiliyyjl of sequential view
b P 9 pe. % is also obtained from the softmax layer, which will be

in the view sequence is taken from a fixed position which can . 4
. - Subsequently used for calculating class-level attenfian
be randomly selected on the circle. Then, the subsequentvniv(\S\SN Llevel view feature abstraction. To preserve the se-
are taken with an angle interval 860°/V in a consistent ential spatiality amona se uentieil vie\?vs i the low-
sequential direction. The sequential direction is determin o} P Y 9 seq ’

by the right hand rule, i.e., the direction of wrapping one’seVEI featuresf}' of all sequential views are stacked into

X ; AT [ . pi. . i
right hand when the thumb is in the same direction of the up- Iovjxileve}lR‘\//lxe;/g%fe;a:t.urte tr;:atlrlel _I f[flj[“" 7’ f’ fV]h
orientation, as demonstrated by the green arrow surround € . First, the low-level featuref; of eac

the 3D shape in Fig. 1 (a). view vj is abstrac_ted by row-wise convolutiqn oA’ in

Different from the traditional multi-view capturing [6], [20], N_h|ddeg La‘}'frsp'?v wheren & [1,N]. The hidden layer
the sequential views are captured on a circle rather thanPa € K™ ™ is produced byF, row-wise convolution

unit sphere. Although the sequential views cannot fully covdj€rs and encodes the content information within each view

the top or the bottom of 3D shapes, the content informatidn With reducing the dimension of low-level view features into
Then, an abstracted view feature matfiX, is obtained

within sequential views can be more efficiently aggregatéd- ) X —
m A*, where Ey = 1. The matrix D}, is denoted as

with preserving the sequential spatiality among the views fi P VD )
3D global feature learning. B* € RV** with D = ¢, for more clear representation.

Low-level view feature encoding.Another row-wise convo-
) ) lution is conducted o’ to further encode the content infor-
C. Low-level view feature encoding mation within each view by row-wise filters{k;}, where
In this subsection, the low-level featugf of each view k, € R'*? andt € [1, K]. For each row-wise convolution
v} in v’ is first extracted by a fine-tuned VGG19. Then, thélter k;, a column-wise feature mdg € RYXl is obtained by
content information within each view is abstracted by reducir@pnvolving acrossB* row-by-row, whereh! = sig(B" * k),
the dimension of the low-level featureﬁ? using row-wise = is the row-wise convolution angig is the sigmoid function.
convolution. Finally, the abstracted content information withifihen, all column-wise feature map$ obtained by{k;} form
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The global featureF" of the i-th shapem’ is learned Zos
from H* by hierarchical attention aggregation. Hierarchic@o_2
attention aggregation aims to aggregate the encoded contentin-
formation within sequential views and the sequential spatialit)9‘l
among the views for learning 3D global features. In addition, o . 0
the two kinds of attention, i.e., view-level attentieri and ‘ﬁ Zﬁ 38’ 4&9 ‘W W
class-level attentiops’, hierarchically weight sequential views _ _ . _ _
and shape classes in this view aggregation process. Fig. 2. The illustration of view-level attention learned frcup. The view-

. . - level attention on different views is shown by bars, where the colors indicate
View-level attention. In order to facilitate 3D2SeqViews 1O gifferent shape classes, such as shape class “bow!” and shape class “cup”. The
conduct the classification of 3D shapes, view-level attentidine of ratio between view-level attention from the two shape classes is also
own, where the isoline indicating the unit ratio is used for reference. As

o' is learned to indicate how much attention is paid on eaéﬁ . , ;
Shown by the attention values, a shape class tries to focus more on the views

view v} in v* by each shape clags wherec € [1,C] andC'  that are more distinctive to the shape class. This is achieved by measuring
is the number of shape classes. the distance between the low-level view feature and shape class feature in a
Intuitively, each shape class focuses more on the views tif&f'men space learned in our model.

are more distinctive to the shape class when contributing to

the classification of 3D shapes. For example, because of sglfiere its entrya(c, j) denotes the attention paid on thie
occlusion, shape class “bpwl” focuses more on some vie\%s sequential viev\/u’;'- of shapem’ by the c-th shape class.
of a cup with a handle if the handle does not appear ifhe entry oi(c, j) indicates the distinctiveness of thieth

these views, while shape class “cup” focuses more on othef, ential view' to thec-th shape class, which is defined as
views where the handle appears. Thus, view-level attentiongjg,q,, J

proposed to indicate how much attention is paid on each view
by each shape class, which shows the distinctiveness of each al = Wu(A)T + FCWe + by, 1)
view to each shape class.

In addition, the distinctiveness indicated by view-level awhere W4, W¢, and by are learnable parametergr®
tention is measured by the similarity between each view aigl @ matrix formed by all shape class featurg$ which
each shape class in our work. This is because a specific shafge innovatively employed as the parameters learned in the
class focuses more on some views which are more similarsoftmax layer for the classification of 3D shapes, where
the common characteristics of the shape class. For examglé, = [f', ..., f¢, ..., f¢] and f¢ is the feature of the-
the views of the cup that shape class “bowl” focuses more &h shape class. To make our description more cledfy,
are more similar to the characteristics of shape class “bowbill be detailed at the end of this subsectid¥4, and W¢
than the ones of shape class “cup”. respectively projectd’ and F¢ into a common subspace for

For sequential views of a cup, the view-level attentiothe calculation of similarity betweed’ and F©, whereby,
learned by 3D2SeqViews is briefly visualized in Fig. 2. This used as a bias term. In addition, for th¢h shape class,
view-level attention paid by shape class “bowl” and shape clait$ attentiona’(c, 1 : V) to all sequential views in v* are
“cup” is shown by bars in different colors. To better visualiz&ormalized by softmax as follows,
which shape class pays more attention on a specific view, the

adeys om) woy u

S
I =R =)

SISSB[O

line of ratio between view-level attention paid by shape class Q) orm (€, 1: V) = softmaz(a’(c,1:V)), 2
“bowl!” and shape class “cup” is also shown, and the isoline i Y .
wherea denotes the normalized’ for clearer descrip-

of unit ratio is used for reference. Since the handle of the ¢ Bn norm

is occluded by the body in view 1 and view 2, shape cla ecursive view integration. Each feature magi € RY 1

bowl!” pays more attention on these views than shape clalﬁsHi is weighted by view-level attention through the

cup”, as shown by the rqt|o upon the |soI|ne.. In contrast, Whennovel recursive view integration, which highlights the encoded
the handle appears in view 3, view 4 and view 5, shape cl

“eup” bavs more attention than shape class “bowl”. Althou aﬁdc’ntent information within sequential views that should be
P pay P ) gp id more attention by each shape class. Recursive view inte-

Fhe handle also appears In Views 6, view 7, and views 8, Fation not only aggregates the encoded content information
is very hard to distinguish the handle from the body becau%e(j) of the j-th view v with view-level attention’ but
J

H H “ ” norm
of the resoll_mon of the views, Thu‘?’ shfmpe cllass bOWI Pa¥3so preserves the sequential spatiality among the views. The
more attention than shape class “cup” again. This example,
illustrates the rationale of the proposed view-level attentiod"nefi
o' which is detailed in the following.
The view-level attentiomx’ measures the distinctiveness of

each vieWz;;i to each shape clagsby the similarity between

the low-level view feature matrixA’ and the shape classwhere® denotes the recursive view integratiafi.c R¢*! is

featuresF“. The view-level attentiomy’ is aC x V matrix, the result of recursive view integration dij, whose element

rsive view integration on a feature mapwith o, is

norm

ned as,

i__ 1 7
Tt = Qnorm ® h’t’ (3)
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orm(CG: 11 V)@ hi(1: V). ri comprehensively aggregation to employ the discriminative ability of the fine-
encodes the sequential spatiality among views and the contiemed VGG19 by 3D2SeqViews.

information encoded ith! along with weighting the attention Class-level attentiof3’ presents a shape class prior to show
paid by each shape clags Specifically, with the attention the importance of shape classes to the classification of-the

paid by thec-th shape clase&’ .. (c,1: V), thec-th element th 3D shapen?, which comes from the softmax layer in the

norm

ri(c) of r} is obtained by the recursive view integration on &éine-tuned VGG19. The fine-tuned VGG19 not only extracts

is ri(c) = ol

feature maph!, as defined by, low-level features of sequential views but also learns the
discriminative information for the classification of sequential
r(1) = ai, (e, 1)hi(1), yiews. Cla_ss-level _attentioﬁi helps 3D2SeqViews adopt this
. ; N i N important information source.
7 (7) = (1= o (€ 9))7 (5 = 1) + Qopm ;)i (9), B¢ is innovatively calculated using the classification prob-
ri(c)=r'(V),and2 < j <V, ability p’ of sequential views provided by the fine-tuned

_ _ _ _ (4) vGG1o, wherep! € R'*“. VGG19 is fine-tuned to minimize
where ' is an intermediate variable vector for better unme cassification error of each sequential viejvinto one of
derstanding of recursive view integration, the iteration is' shape classes, where the classification probabljtpf v
continued untilj reached” from 2, andr'(1) is initialized by 5 hrovided to indicate which shape clagsbelongs to. With
o (€5 1)Ri(1) whenj = 1. Finally, rj(c) is assigned by p’, class-level attentio®’ € R'*C is calculated by averaging

norm , ) . A g j l
the last element of’. This procedure is further illustrated |np3 of all sequential views in', as defined below,

Fig. 3 with a sequence df = 4 views.

14
i 1 %

%F 1 X 1 - B = V ;Pj- (5)

=2 X 2)=~ - | |

N2 3 / 3" 3) = Class importance weighting.Global featureF™ of shapem®
ol / A m N is finally learned by weighting?? using3?, which highlights
the dimensions of each feature mejpin R! according to the

4 —¥ he dimensions of each f R' according to th

’ importance of shape classes to the classification of 3D shape
r ®X® m'. Each elemenf"(¢) of F' is obtained by multiplying3‘

with r! in R’, as defined as follows,

Fig. 3. The recursive view integration is illustrated by weigg normalized ) o

attention weightsx?, ..., (¢, 1 : V') on a feature map(1 : V') of a sequence F'(t) =B'r; (6)

of V. = 4 views. The calculation involved in the second row of Eq. (4)

is represented by a symbol of star. The recursive view integration not ojjyhere F* —= [Fi(l), s Ft (t), . FZ(K)] c R\*K js a K

encodes the content information of each view but also preserves the sequential . . . e

spatiality among the views. |meln5|onal vector which is employg(_j fo.r the class_|f|c§t|on

of m* by a softmax layer. The classification probabiliB/
Recursive view integration is defined as a form of recursiyovided by the softmax layer is used to classify shape

filtering as shown in Eq. (4). It is able to encode the séAto one ofC shape classes, as defined by,

guential spatiality among the sequential views, and moreover, _ _

makes the 3D2SeqViews learn the semantic meaning of view P’ = softmaz(F'Wg + bp). (7

sequence which is robust to the first view position. This is
because recursively weightidg — o, ., (c, 7)) significantly In Eq. (7), Wp and by are leamable parameters. The
. i ! . th element ofP*, P*(I* = ¢|F"), is the probability thatn®

reduces the influence of the first view position but keeps S "
ongs to the-th shape class, i.€’, = c. In addition, Wy €

. . . e
concentrating on the sequential spatiality among the succesié\@éxc is innovatively used as the features of all shape classes.

sequential views. . ; .
gimilar to H' all column-wise feature mapsi form Here,F¢ in Eq. (1) is the transpose 8% for the calculation
’ Pe; of view-level attentiona?, such thatF© = W .

another setR' of feature maps, such tha®’ = {ri|t €
[1, K]}. SubsequentlyR! is weighted by class-level attention
B to highlight the shape classes that are focused more by Learning inference

3D2SeqViews, which represents the importance of each shapginally, the parameters involved in 3D2SeqViews are opti-
class to the classification of 3D shapé. mized by minimizing the negative log-likeliho@d over M/ 3D
Class-level attention. Because of our limited computa-shapes in the training set, as defined below, widgé’ = c)
tional capacity, VGG19 is not jointly trained with entirejs the ground truth label,

3D2SeqViews in an end-to-end manner, which is a compro-
c

mise that is widely adopted by existing methods. However, the 1 M . .
discriminative ability of fine-tuned network, such as VGG19, O=-+; > > QU =e)log P(I' = c). (8)
i=1 c=1

was always ignored by existing methods, which should be

an important source to increase the discriminability of learnedThe involved parameters can be optimized by back propaga-
global features although it is hard to use. To resolve this isstien of classification errors of 3D shapes. It is worth noting that
class-level attention is introduced in hierarchical attenticdhe gradient for updatin§¥x comes from two parts. One part
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is from the softmax layer for the classification of 3D shapedropout ratio, the learning rate the numben/ of sequential
i.e.,00/0Wp, the other is from the calculation of view-levelviews in the view sequence captured around each 3D shape
attention, i.e.0a’/OW . Finally, W is iteratively updated and the numbeiN of hidden row-wise convolution layers for

with the learning rate as follows, low-level view feature abstraction.
50 5o The number K of row-wise kernels and dropout ratio.
We +— Wp —¢( @ ). (9) In this experiment, the impacts of the numk€rof row-wise

OWp  OWp kernels and dropout ratio on the performance of 3D2SeqViews
The advantage of Eq. (9) lies in th&» can be learned are comprehensively investigated. To explore the raw effect of

more flexibly for optimization convergence, which can bé, the row-wise convolution in hidden layers is not used, i.e.

regarded as a skip connection across 3D2SeqViews. ThisNis= 0 and A = B®. In addition, the dropout is employed

becauseWr is innovatively employed as the shape classn the low-level view feature matrid’.

features for the learning of view-level attentiaf. In addition, The learning rates is set t00.000002. K is iterative-

the shape class featur¥&r also enablex’ to simultaneously ly selected from{32, 64,128,256, 512,1024}. Similarly, the

observe the encoded content information of viewddh and dropout ratio is iteratively selected frof0.7,0.5,0}. The

the original content information of views iA*, which makes result comparison is presented in Table |I.

3D2SeqViews comprehensively understand the 3D shape

TABLE |

IV. EXPERIMENTAL SETUP K AND DROUPOUT RATIO COMPARISON UNDERVIODELNET40,

. . . = 0.000002.
In this section, different shape benchmarks and performance :

measures for shape classification and retrieval are respectively | Accuracy(%) | Dropout=0.7 | Dropout=0.5| Dropout=0
described for evaluating the 3D global features learned by o oo o o0
3D2SeqViews. In addition, the setup of parameters involved K=128 93.03 93.07 92.99
in 3D2SeqViews is also discussed. K=256 93.15 93.03 93.15
K=512 93.15 93.27 93.31
K=1024 93.15 93.23 93.23

A. Benchmarks and evaluations

The shape classification and retrieval experiments are conComparison results show that the performance of
ducted under three well-known large-scale 3D shape ben@®2SeqViews can be improved by increasidg. In ad-
marks, including ModelNet40 [16], ModelNetl0 [16] andlition, the dropout ratio only affects the performance of
ShapeNetCore55 [29]. 3D2SeqViews whenK is small, such asKk = 32. The

ModelNet40 and ModelNet10 are two subsets of ModelNaverage instance accuracy achie98s31% with K = 512
which contains 151,128 3D shapes categorized into 660 shapel dropout ratio of 0. In addition, these results indicate that
classes. As smaller subsets, ModelNet40 is formed by 40 shéipe performance is slightly affected by the dropout. This is
classes with a total of 12,311 3D shapes, while ModelNetb@cause although there is information loss using dropout, it
comprises 4,899 3D shapes split into 10 shape classes. The be compensated by using more row-wise kernels. This
training and testing sets of ModelNet40 consist of 9,84@bservation also shows that there is no overfitting issue in our
and 2,468 shapes, respectively. In addition, the training aodrrent network. Therefore, dropout is not employed in the
testing sets of ModelNet10 consist of 3,991 and 908 shapés|owing experiments.
respectively. ShapeNetCore55 is a subset of the Shapelké learning rate . In this experiment, we explore how
dataset, and it contains 51,190 3D shapes of 55 shape clas$gs. learning rate affects the optimization of parameters

In classification experiments, the metrics employed for evah 3D2SeqViews. ¢ is set to each candidate from
uating the performances of different methods inclagerage {0.000001, 0.000002, 0.000004, 0.000016,0.0001,0.001,0.01}
instance accuracyand average class accuracyn retrieval which are 0.5, 1, 2, 8, 50, 500 and 5000 times0@f00002
experimentsmean Average Precisio(mAP), Precision and employed in the former experiment. As the comparison shown
Recall (PR) curves precision (P), recall (R), F1 score(F1) in Table II, the results obtained with appropriate learning
and Normalized Discounted Cumulative Ga({iNDCG) are rates are quite well, such §8.000001, 0.000002, 0.000004}.
presented to compare the performances of different methadsaddition, the result obtained with learning rate of 0.000004
under different benchmarks. is better than the ones obtained in the former experiment,
which achieves up t®3.40%. While the performance is
degenerated gradually with bigger learning rates, such as

B. The setup of parameters : '
n thi b . he K involved _510.000016, 0.0001,0.001,0.01}. In the following experiments,
n this subsection, the key parameters involved 0. <ot 10 000004,

3D2SeqViews are set by exploring their impacts on the
performance of 3D2SeqViews in shape classification under
ModelNet40. The average instance accuracy is used as thﬁm LEARNING RATE € COMPIQIBSLOI?\IILIJNDERMODELNET4O,K=512.
metric for the performance comparison.

In 3D2SeqViews, the key parameters include the numhef x 0.000001 1 2 4 16 100 | 1000 | 10000
K of row-wise kernels for low-level view feature encoding,Accuracy% | 93.19 | 93.31 | 93.40] 93.23| 92.46 | 92.17 | 32.30
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The number V' of sequential views inv®. In this experiment, A. Shape classification

the effect of the numbeV’ of sequential views is explored.vodelNet40. Under ModelNet40, the performance compari-
Note thatV' = 12 sequential views in the view sequenc@on in shape classification is shown in Table V, where the
captured around each 3D shape are employed to learn globgljality and numbers of views are also presented. The evalua-
features in the former experiments. As the comparison shogh metrics, both average class precision and average instance
in Table Ill, both the performances of 3D2SeqViews undgjfrecision, are presented in Table V if they are available in the

ModelNet40 and ModelNet10 keep improved along with injierature.

creasingV until V' = 12. In the following experiments,
V = 12 sequential views in the view sequence captured arou
each shape are used to learn 3D global features.

nd

TABLE V
CLASSIFICATION COMPARISON UNDERMODELNET40,K=512,

& = 0.000004.
TABLE Il Methods Modality | Views | Class(%) | Instance(%)
V COMPARISON UNDERMODELNET, K=512, = 0.000004. SHD Mesh - 68.23 -
LFD Image 10 75.47 -
View nunmber 3 6 12 24 PyramidHoG-LFD Image 20 87.2 90.5
ModelNet40 Accuracy(%)| 92.10 | 93.07 | 93.40 | 92.75 Fisher vector [4] - 12 84.8 -
ModelNet10 Accuracy(%)| 94.49 | 94.60 | 94.71 | 94.60 3DShapeNets [16] Voxel 12 77.32 -
DeepPano [7] Image 1 77.6 -
. . . Geometry image [23] Image 1 83.9 -
The number N of hidden row-wise convolution layers. VoxNet [30] Voxel - 83.0 -
In this experiment, we explore whether the performance of ;/;?NNN[%;] xoxe: 24 604 91.33
. . i oxel - . -
SDZSqu|ews_ COL_JId l_:)e further improved by add_monal TOW- | Network [18] Voxel i 74.4 )
wise convolution in hidden layers for low-level view feature 3DGAN [19] Voxel - 83.3 -
abstracting. Specifically, we incrementally adfd= 2 hidden PPPi?’:IN?t [3[214] EO?n: i 86.2 g?'sza
Wi . 1 i ointNet++ oin - .
row-wise convolution Iaye_rs to abstraA’.f, whereD? employs. FoldingNet [35] Point 1 ) 88.4
E, € {16,32,64} row-wise convolution kernels to obtain Octree [12] Voxel 12 90.6 -
multiple feature maps fromA’, and D} employs E; = 1 PANORAMA [22] Image 6 90.70 -
row-wise convolution kernel to combine these feature maps|to ~ FaIrwise [25] Image )~ 12 9.7 )
_ ut _ ol p GIFT [6] Image | 64 89.5 ;
form B*. In addition, the width ofA* is not reduced by the Dominant Set [8] Image 12 - 92.2
two hidden row-wise convolution layers, i.g;, = g2 = 4096, Sl\ljl-vl\é\{\ﬁ\lN[f\llo[]‘l] :mage gg gg-% 2.0
. : : . _ mage . .
Whlch aims to e>_<p|org the effect_of hidden row-wise cor MVCNN-Sphere [10] Voxel 20 86.6 895
volution layers with fairly comparing the results of formef spherical projection [36]] Image 36 - 93.31
experiments. As shown in Table IV, different numh&r of Rostgtl?\lnN%Y[]Zl] lgﬂé}ge 112 63 %%%5
; : -Net oint . .
row-wise convolution kernels, such &4, _128, 256, 512},_are [ VGG(ModeiNet0) Tmage 1 - 5947
employed for the performance comparison. Comparing with  vGG(voting) Image 12 90.27 92.50
the results in Table I, the degenerated performances imply that Ours Image 12 91.51 93.40
the added hidden row-wise convolution layers cause overfit- Oursl Image | 12 91.64 93.217
i X X X Ours(Start) Image 12 90.83 93.27
ting. This experiment also demonstrates that the hidden rqw- ours(No finetune) Image 12 80.74 83.43

wise convolution layers are capable of increasing the learning

ability of 3D2SeqViews. According to the scale of dataset, Using the sequential views captured around 3D shapes in the
the hidden row-wise convolution layers are not employed ifaining set of ModelNet40, VGG is fine-tuned by classifying
the following experiments, that isN' = 0, A* = B* and each sequential view into one of 40 shape clasées-(40).

D = 4096. The accuracy of single view classification 89.47%, as the
result named as “VGG(ModelNet40)". By voting the classi-
fication results of all sequential views in a view sequence,
namely “VGG(Voting)”, the instance accuracy of classifying

TABLE IV
N COMPARISON UNDERMODELNET40,e = 0.000004.

Accuracy(%) | E1=16 | E1=32 | E1=64 3D shapes i92.50%. Fine-tuning is important for VGG to
K=64 9149 | 91.73 | 89.91 extract low-level view features. This is because VGG is pre-
K=128 91101 9157 ) 91.33 trained with color images from ImageNet while the sequential
K=256 91.20 | 9157 | 92.05 _ ; : . :

K=512 91.05 | 91.86 | 91.92 views are captured without colors. To verify this point, the

results listed as “Ours(No finetune)” are obtained by training
3D2SeqViews under low-level view features extracted from
pre-trined VGG. As analysis before, they are unsatisfactory,
comparing to our best results described in the following
In this section, the performance of 3D2SeqViews is evalparagraph.

ated by comparing with the state-of-the-art methods in shapdJsing the low-level view features from the fine-tuned VG-
classification and retrieval under ModelNet40, ModelNet1lB19, the results of 3D2SeqViews listed as “Ours” achieve
and ShapeNetCore55, respectively. For fair comparison, the51% and 93.40%, as shown in the bold numbers. Our
results obtained by the state-of-the-art methods are computesults are the best among all reported results in terms of both
from the single modality, such as image, voxel or point cloudverage class accuracy and average instance accuracy. All the

V. RESULTS AND ANALYSIS
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compared methods learn 3D shape features from three differ- TABLE VI

ent modalities. We find that the methods learning from voxel or ~ CLASSIFICATION COMPAR'SgNOlOJgO%ZRM0DELNET10:K:512:
. . . e =0Vu. .

point clouds are usually with the worst performance in shape

classification, although they have the ability of generating 3D Methods Modality | Views | Class(%) | Instance(%)
shapes using voxel or points. View-based methods usuglly SHD Mesh - 79.79 -
. . LFD Mesh 10 79.87 -
perform better _but thes_e methods are still sufferl_ng from the apshapeNets [16] |  Voxel 12 83.54 .
loss of content information and spatiality among views caused DeepPano [7] Image 1 85.5 -
i i i i Geometry image [23]| Image 1 88.4 -
by pooling and tlhe understandlng of the amblguous.wevxs. VoxNet [30] Imags - 920 .
To reso!ve th_ese issues, 3D28qu|ews emp.loys recursive view vrn (31 Voxel 24 - 938
integration with view-level attention mechanism, which makes 3DGAN [19] Voxel - 91.0 -
3D2SeqViews achieve the best results. With hierarchical at- _ORION [38] Voxel : 93.8 -

. . . . FoldingNet [35] Point 1 - 94.4
tention aggregation, 3D2SeqViews can aggregate views MPrespNorAMA [22] Image 6 91.12 -
effectively. This enables 3D2SeqViews to learn more discrim-  Pairwise [25] Image 12 92.8 -
inati — i GIFT [6] Image 64 91.5 -
maﬂvg features from _onIW 12 views than the methods RotationNet [21] Imags 12 - 93.84
learning fro_mV = 20 views or more, such as MVCNN-Spher_e 3DDescriptorNet [39]|  Voxel R . 9.4
[10], Spherical projection [36], and Su-MVCNN [4]. For fair SO-Net [37] Point 1 93.9 94.1
comparison, the result of VRN [31] is presented with a single YGG(ModelNet10) | Image 1 - 91.87

here twi : than ours are emploved. the YGG(voting) Image 12 93.83 93.83
CNN, where twice more views ~are employed, ours Image | 12 94.68 94.71
result of RotationNet [21] is presented with views taken by Ours(256) Image 12 94.43 94.49

the default camera system orientation which keeps identical

with other methods, and the result of Spherical projection

[36] is presented with the same type of views as ours. he further improved by a smaller numbéf of row-wise

addition, our another set of results listed as “Ours1”, obtainé@nvolution kernels, such d§ = 256. However, as the results

with another set of initialized parameters, achiegeéss4% listed as “Ours(256)", the results are slightly degenerated to

and93.27%, which are also state-of-the-art results in terms &.43% and 94.49%, but they are still the state-of-the-art

average class accuracy. The comparison between “Ours” dagults among all reported results.

“Ours1” implies that the unbalanced number of shapes in eaShapeNetCore55.In this experiment, the performance of

shape class makes average class accuracy and average ins@pégeqViews in shape classification is evaluated under

accuracy not positively correlated. ShapeNetCoreb5. 3D2SeqViews is trained by 12 sequential
3D2SeqViews is able to learn the semantic meaning wiews (V' = 12) rendered without colors. In addition, we

a view sequence by aggregating sequential views using @iso explore whether sequential views rendered with colors

erarchical attention aggregation, which makes 3D2SeqViesgn be used to train 3D2SeqViews better. The sequential

insensitive to the first view position. To explore this pointyiews with colors are downloaded from the main page of

the result listed as “Ours(Start)” is obtained by trainin@hapeNet, however, there are only 8 sequential viéWs-(8)

3D2SeqViews with random first view position. Although théo represent each 3D shape. The results are shown in Table VII.

first view position is not fixed for training, the results obtained

by “Ours(Start)” are comparable to our best results listed as TABLE VII
“Ours”. CLASSIFICATION COMPARISON UNDERSHAPENET, K=512,
=0. 4.

ModelNet10. We further evaluate the performance of €= 0.00000

3D2SeqViews under ModelNet10 in shape classification. All Methods Modality | Views | Class(%) ]| Instance(%)

the results are compared in Table VI. VGG\(/Sthz’\?O'\t‘iﬁgore55) :mgg: 112 Lea gg-?g
Under Model_Neth, the low-level view featyres are aldo ours Image 12 74.07 84.58

extracted by a fine-tuned VGG19. In this experiment, VGG19 Ours(1024) Image 12 72.65 82.95

is fine-tuned by classifying each sequential view into one of .LO’GG\igsgi‘?\fo’\t'ﬁ‘(;me‘r’S IQZQZ é 603 g?-gi

. . epe I . .
shape classe<(= 10). The accuracy of single view classifi- oursl ’ |ma§e 8 76.12 86.29
cation is 91.8%, as the result named as “VGG(ModelNet10). Ours1(1024) Image 8 76.38 86.46

By voting the classification results of all sequential views in a

view sequence, namely “VGG(Voting)”, the average instance In Table VII, the results named as “VGG(ShapeNetCore55)”
accuracy of classifying 3D shapes is 93/83Nith low-level and “VGG1(ShapeNetCore55)" are obtained by fine-tuning
view features extracted by the fine-tuned VGG19, we obtafGG under the views without colors and the views with
the results listed as “Ours”, “Ours(256)”, “Ours(Maxpool)”colors, respectively, where the classification of 3D shapes
“Ours(Meanpool)” and “Ours(No recursive)”. obtained by voting across sequential views are correspond-

As the results shown as “Ours”, 3D2SeqViews achieves thgly listed as “VGG(Voting)” and “VGG1(Voting)”. Because

best results under ModelNet10, where average class accuratyhe highly unbalanced number of shapes in each shape
and average instance accuracy achieve up4®8% and class, we only present our best results in terms of average
94.71%, respectively. Considering that the shapes for trainirgass accuracy, as listed as “Ours” and “Oursl” which are
in ModelNet10 are less than the ones in ModelNet40, we toptained by learning from low-level view features employed
to explore whether the performance of 3D2SeqViews couild “VGG(ShapeNetCore55)” and “VGG1(ShapeNetCore55)”,
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respectively. The comparison between these results implies TABLE VIII

that the color is slightly helpful to increase the performand@W'LEVELV'EWMFEQTEE;ETEZJF}?CE'&N NET‘S’SEOKOSEMPAR'SON UNDER
. . . K= ,e=0. .

of 3D2SeqViews in terms of average class accuracy, i.e., from

74.07% to 76.12%. Based on the consideration that there Methods Modality | Views | Class(%)]| Instance(%)
are more 3D shapes in ShapeNetCore55 than the ones |in VGG19 Image 1 - 89.47
ModeINet40, we also try to explore whether the performance vc()su(rasl(s\)/((\;/g?g)) :mgg: 2 ever o
of 3D2SeqViews could be improved by increasing the numbefr VGG16 Image 1 . 89.34
K of row-wise convolution kernels, i.e., from 512 to 1024, as| VGG16(Voting) Image 12 90.01 92.30
the results of “Ours(1024)” and “Ours1(1024)". However, the| O“F:z(s\ﬁgéG) :EZQZ 112 91.10 gggg
results of “Ours(1024)” or “Ours1(1024)” are comparable t0 Resnet50(Voting) |ma§e 12 89.44 92.10
“Ours” or “Oursl”, respectively, which implies that the 512 | Ours(Resnet50) | Image 12 90.38 93.35
row-wise convolution kernelsi = 512) are sufficiently good Resﬁ:tsl%elt(leolﬁng) :mgg: 5 | soso e
to learn from shapes under the scale of ShapeNetCore55. | ouyrs(Resnet101)| Image 12 91.40 93.40

B. Ablation studies the spatial relationship among the views. On the other hand,

In this subsection, we conduct ablation studies to demaiierarchical attention aggregation can simultaneously aggre-
strate the contribution of elements involved in 3D2SeqViewgate the content information within all sequential views and
First, we explore how much the performance of 3D2SeqViewlse sequential spatiality among the views, where recursive
relies on the VGG19 for low-level view feature extractiowiew integration effectively weights view-level attention with
under ModelNet40. Then, we highlight the advantage of opreserving the sequential spatiality.
hierarchical attention aggregation over widely used pooling

under ModelNet40 and ModelNet10. Finally, we highlight the TABLE IX
effect of recursive view integration under ModelNet40 andcOMPARISON BETWEEN HIERARCHICAL ATTENTION AGGREGATION AND
ModelNet10 POOLING FOR VIEW AGGREGATION UNDERMODELNET40AND
) MODELNET10,K=512,e = 0.000004.
To explore the effect of VGG19, we replace VGG19
by several other state-of-the-art neural networks for image ModeINet40 ModelINet10
At ; ; Methods Class(%) | Instance(%)| Class(%) | Instance(%)
classification, mcludlng. VGGl_6 _[28], Resnet50 [40], an e e e e 4 L
Resnet101 [40] respectlvely. Similar tO the VGGlg, we f!nf?- Ours(Maxpool) 90.20 92.59 94.41 94.49
tune these networks using the same single view in our trainin@urs(Meanpool)|  90.77 92.99 94.53 94.60

set, and then, use these fine-tuned networks to extract low-

level view features. As shown in Table VIIl, we see that Furthermore, we highlight the effect of recursive view
these low-level view feature extraction networks perform snategration by replacing it with linear weighting. In other
lightly different. However, 3D2SeqViews can always achiewsords, the sequential spatiality is disregarded by directly
the state-of-the-art results using the low-level view featurgsultiplying view-level attentiona,,,,, with each feature
extracted by all these different networks. This observationap in H'. As shown in Table X, compared to our best
shows that 3D2SeqViews does not rely on a particularfgsults under ModelNet40 in Table V and ModelNet10 in
fine-tuned network for low-level view feature extraction. Infable VI, the results listed as “Ours(No recursive)” degenerate
addition, we also show the results obtained by voting trsdightly, which is caused by the lack of encoding the sequential
single view classification from each of these networks, listegpatiality among the views. However, “Ours(No recursive)”
as “*(Voting)”. Our outperforming results over voting indicatesire still at the state-of-the-art level with the help of view-level
that 3D2SeqViews can improve the discriminability of learneaftention and class-level attention.

features by aggregating more information from multiple views.

Moreover, by hierarchical attention aggregation, the issues in TABLE X

current view aggregation are resolved. T T O o N T SRATION UNDEMODELNET40
Then, we highlight the effect of hierarchical attention ag- ' ' ’ '

gregation by replacing it with the widely used pooling in ModelNet40 ModelNet10

view aggregation. In this experiment, we compare our best Mgtz‘&ds 051355(1%) '”Sg"‘s”zg(%) Cg‘:z(;@ '”Sga”;i(%)

results under ModelNet40 in Table V and ModelNet10 inours(No recursive) 90.61 9311 04.31 04.49

Table VI with the ones obtained using max pooling and mean
pooling, respectively. Specifically|? is pooled by max or
mean calculation across the content information within all se-
guential views that is encoded in each feature map. As shofvn
in Table IX, our proposed hierarchical attention aggregationin this subsection, the view-level attention and class-level
outperforms “Ours(Maxpool)” and “Ours(Meanpool)” in termsattention learned by 3D2SeqViews under ModelNet40 are vi-
of both average instance accuracy and average class accumgglized, which demonstrates how 3D2SeqViews understands
This is because max pooling or mean pooling loses a lot 8D shapes by analysing sequential views. In Fig. 4, view-
content information within sequential views, and disregardisvel attentiono? on sequential views im* from all shape

7
norm

Attention visualization
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classes is visualized as a matrix, such as the matrices of aBoth training and testing sets are provided in ModelNet40
airplane in Fig. 4 (a) and two different bookshelves in Fig. and ModelNet10. Thus, to comprehensively evaluate the per-
(b) and (c), wherex! ., is transposed for better demonstraformance of 3D2SeqViews in shape retrieval, four experiments
tion. The (j, ¢)-th entry of the matrix represents the attentioare conducted under each benchmark. The four experiments
paid on thej-th view by thec-th shape class. 3D2SeqViewsare named as “Test-Test”, “Test-Train”, “Train-Train”, and
learns the view-level attention matrices of two bookshelvéall-All”, indicating retrieval range formed by the sets that the
with similar patterns which are much different from the onquery and the retrieved shapes come from, respectively. For
of airplane. In addition, class-level attentigth employed by example, “Test-Train” indicates that the shapes in the testing
3D2SeqViews is also visualized on top of each view-levekt are used as query to retrieve shapes from the training set.
attention, where each circle indicates the attention paid on each

shape class by 3D2SeqViews. As shown in Fig. 4 (a), (b) and TABLE XI
(c), class-level attention could provide valuable information to  RETRIEVAL COMPARISON(MAP) UNDER MODELNET, K=512,
3D2SeqViews for the learning of highly discriminative global & = 0.000004.
features via employing the discriminative ability learned by th Vethods Range ModelNet20 | ModelNetio
fine-tuned network. Moreover, view-level attention and class SHD Test-Test 33.26 44.05
: ; ; L LFD Test-Test 40.91 49.82
level atte_ntlon en_able 3D2SeqViews to_ effectlv_el)_/ co_mblne_the 3DShapeNets [16] | Test Test 493 6826
content mformanon z_and_th_e st_equentle_ll spatiality in a View geometry image [23]] Test-Test 51.30 74.90
sequence with the discriminability of fine-tuned network by DeepPano [7] Test-Test 76.81 84.18
hierarchical ntion r ion. su-MVCNN [4] Test-Test 79.50 -
erarchical attention aggregatio PANORAMA [22] Test-Test 83.45 87.39
‘ GIFT [6] Random 81.94 91.12
Clase lovel n Triplet-Center [41] Test-Test 88.0 -
m(tcmmn 05 7 Ours Test-Test 90.76 92.12
Ours Test-Train 93.51 95.26
Ours Train-Train 98.76 99.82
Ours All-All 96.98 98.48

In Table XI, the comparison between 3D2SeqViews and the
state-of-the-art methods is shown in terms of mAP, where the
retrieval ranges are also presented. As shown by bold numbers,
Class-level the proposed 3D2SeqViews completely outperforms the other
enon *s compared methods in any range. Specially, in the “Test-
Test” and “All-All", it achieves 90.76% and 96.98% under
ModelNet40, while achieving2.12% and98.48% under Mod-
elNet10. Comparing with GIFT [6] under ModelNet10 (best
performing among the state-of-the-art methods), 3D2SeqViews
only achieves a higher mAP abouts, i.e., from 91.12%
to 92.12%. However, the dataset used by GIFT is formed
by randomly selecting 100 shapes from each shape class,
which is much simpler than the whole benchmark that we
used. Moreover, the corresponding PR curves of our results
obtained under ModelNet40 and ModelNetl0 are shown in
Fig. 5 (a) and (b), respectively, where the PR curves of the
results illustrate an excellent performance of 3D2SeqViews.

Class-lev elo L
attention
........ 600000600000

0

=

(c) 00

0.8
Fig. 4. The attention weights learned by 3D2SeqViews for drame and ;[ \\
two bookshelves from ModelNet40, including view-level attention (demon,(m:ilﬁg
strated in a matrix) and class-level attention (demonstrated in a vector), &s _§‘§“§,§;§§,§°§ls
shown in (a), (b) and (c), respectively. & 4|~ DeepPano

Panorama

g = SHD

'50.5| == LFD

2 3D ShapeNets
=== DeepPano

0.3| = Panorama
GIFT

0.2| === OUR-Test2test
=== OUR-Test2train

=——MVCNN

| m—GIFT
0.2|===OUR-Test2test
OUR-Test2train

D. Shape retrieval 0.1/ === OUR-Train2train 0.1 | OUR-Train2train
o[——OUR-AlL2all ] o OUR-All2all
The performance Of 3DZSEQVIGWS IS also evaluated us'ng() 0.1 02 03 (J.-’lkg.ga]l().(v 0.7 08 09 1 0 01 02 03 04Rg€a”0(> 07 08 09 1
the learned global features for shape retrieval under Model- @ ®

Net40, ModelNet10 and ShapeNetCores5, respectively. Un 5. The comparison between precision and recall cureairsat by
ModelNet40 and ModelNet10, our shape retrieval results aferent methods under (@) ModelINet40 and (b) ModelNet10.

respectively produced with the global features learned by the

trained 3D2SeqViews named as “Ours” in the correspondingUnder the three subsets of ShapeNetCore55, i.e., train-
Table V, Table VI. ing set, validation set and testing set, the performance of
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3D2SeqViews in shape retrieval is compared with other stathis inspiration, how to learn global features by aggregating
of-the-art methods in terms of different metrics. Since there imordered views is still eager to be resolved, which would be
no comparison results under training set and validation setdar next research topic in the future.
[42], the results of state-of-the-art methods under testing set
are from the SHREC2017 retrieval contest [42], while the ones REFERENCES
und_er training set and validation set are from the SHREC201[§] Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and X. Li, “Unsupervised
retrieval contest [24], where these compared methods are 3D local feature learning by circle convolutional restricted boltzmann
shown as the same names in the contests. All involved 3D MachineIEEE Transactions on Image Processingl. 25, no. 11, pp.
h der ShapeNetCore55 | and d5331—5344, 2016.
shapes .un er apeNetCore are normal, and not pe_rturtffi Z. Han, Z. Liu, J. Han, C.-M. Vong, S. Bu, and C. Chen, “Mesh con-
by rotation. In Table XII, the performances of 3D2SeqViews volutional restricted boltzmann machines for unsupervised learning of
trained under the views without/with colors are presented features with structure preservation on 3D meshi¥=EE Transactions
« e " . " on Neural Network and Learning Systermsl. 28, no. 10, pp. 2268 —

named as “Ours”/*Ours(C)”". These two results are respectively 5591 5917,
produced with the learned features employed in the results] z. Han, Z. Liu, J. Han, C. Vong, S. By, and C. Chen, “Unsupervised
of “Ours” and “Oursl(1024)" in Table VII. The comparison learning of 3D local features from raw voxels based on a novel

It sh in Table XII i l h h " f permutation voxelization strategyfEEE Transactions on Cybernetics
result s own in Table implies that the performance of g 49 no. 2, pp. 481-494, 2019.
3D2SeqViews in shape retrieval is the best among all state-q#] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-
the-art methods under all subsets. In addition, the comparison View CO”VO'IU“O”?' neural networks fc\’; 3D shape recognition,” in

« " « " International Conference on Computer Visid®015, pp. 945-953.

between the resu_lts OT Ours”and .O.UI‘S(C) also d_em_antratqg] H. Huang, E. Kalegorakis, S. Chaudhuri, D. Ceylan, V. Kim, and
that the colors in views for training do not significantly = E. Yumer, “Learing local shape descriptors with view-based convo-

improve the performance of 3D2SeqViews in shape retrieval, !utional neural networks,ACM Transactions on Graphic2017.
[6] S. Bai, X. Bai, Z. Zhou, Z. Zhang, and L. J. Latecki, “GIFT: Towards

scalable 3D shape retrievalEEE Transaction on Multimedjavol. 19,

VI. CONCLUSION, LIMITATION AND FUTURE WORK no. 6, pp. 1257-1271, 2017.
A C lUsi [7] B. Shi, S. Bai, Z. Zhou, and X. Bai, “Deeppano: Deep panoramic rep-
- Lonclusion resentation for 3D shape recognitionZEE Signal Processing Letters

In thi r. 3D2 Views i r r lve th vol. 22, no. 12, pp. 2339-2343, 2015.
this paper, 3D2SeqViews is proposed to resolve t ] C. Wang, M. Pelillo, and K. Siddigi, “Dominant set clustering and

loss of the Cont_em information and th_e spatial relationshi pooling for multi-view 3D object recognition,” iffroceedings of British
caused by pooling for view aggregation in deep learning Machine Vision Conferenc@017.

models. 3D2SeqViews is a novel deep learning model t§! Z. Han, Z. Liu, C-M. Vong, Y.-S. Liu, S. Bet al, “BoSCC: Bag
of spatial context correlations for spatially enhanced 3D shape repre-

learn 3D global features by aggregating sequential views. The sentation”IEEE Transactions on Image Processingl. 26, no. 8, pp.
proposed 3D2SeqViews is formed by CNN with a novel hi- 3707-3720, 2017.

erarchical attention aggregation, which effectively aggregatédl C- R. Qi H. Su, and M. Niebner, “Volumetric and multi-view cnns
9greg y aggreg for object classification on 3D data,” iEEE Conference on Computer

not only the content i_nformat@or_n within all sequgntial VIEWS  \ision and Pattern Recognitio2016, pp. 5648-5656.
but also the sequential spatiality among the views. In tiiEl] T. Furuya and R. Ohbuchi, “Deep aggregation of local 3D geometric
novel hierarchical attention aggregation, view-level attention ﬁgitgrr]eé;ﬂ;efgngg%‘i'ﬁret”e"a'v iRroceedings of the British Machine
is successfplly .Iearned to indicate how much attentiqq is .pq'g] P-S. Wang, Y. Liu, Y-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN:
on sequential views by each shape class for the classification of Octree-based convolutional neural networks for 3D shape analysis,’
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preserving the sequential spatiality among the views USiE%] gecBoc?snclg?nq Zglﬁ/iasci S. Melzi, M. M. Bronstein, U. Castellani, and
the npvel recursive view integration. Moreover, _Class'le\/]] P. Vandergheynst, “Learning class-specific descriptors for deformable
attention effectively employs the discriminative ability learned  shapes using localized spectral convolutional networl@gmputer
by the fine-tuned network in 3D2SeqViews, which furthe ] gfzpa:‘rllcsz':?_rildmc\/oboi‘; Q{OISS'SEI é3732§£ ;P%%eep spataliy: Un
increases the discriminability of learned global features. The™ gypenised leaming of spatially-enhanced global and local 3D features
outperforming results verify that the hierarchical attention ag- by deep neural network with coupled softma)EE Transactions on
gregation enables 3D2SeqViews to learn more discriminatié%] Image Processingvol. 27, no. 6, pp. 30493063, 2018.

n
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features by more effectively aggregating sequential views than' s geep representation for volumetric shapes, Pimceedings of IEEE

other state-of-the-art methods. Conference on Computer Vision and Pattern Recognit®l15, pp.
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o [17] A. Sharma, O. Grau, and M. Fritz, “VConv-DAE: Deep volumetric shape
B. Limitation and future work learning without object labels,” iRroceedings of European Conference

. on Computer Vision2016, pp. 236—-250.
Although 3D2SeqViews achieves excellent performance @) . girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, “Learning a pre-
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TABLE Xl
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RETRIEVAL COMPARISON UNDERSHAPENETCORES5,K =512, = 0.000004. ALL COMPARED METHODS WITHOUT CITATIONS TAKE THE SAME NAMES
IN [42] (UNDER TESTING SE7 OR[24] (UNDER VALIDATION AND TRAINING SETS).

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]
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micro macro

Datasets | Methods P@N R@N FI@N | mAP@N | NDCG@N | P@N R@N F1I@N | mAP@N | NDCG@N
Kanezaki | 0.810 | 0.801 | 0.798 0.772 0.865 0.602 | 0.639 | 0.590 0.583 0.656
Zhou 0.786 | 0.773 | 0.767 0.722 0.827 0.592 | 0.654 | 0.581 0.575 0.657
Tatsuma | 0.765 0.803 0.772 0.749 0.828 0.518 0.601 0.519 0.496 0.559
Furuya 0.818 | 0.689 | 0.712 0.663 0.762 0.618 | 0.533 | 0.505 0.477 0.563
Tesing Thermos | 0.743 0.677 0.692 0.622 0.732 0.523 0.494 0.484 0.418 0.502
Deng 0.418 0.717 0.479 0.540 0.654 0.122 0.667 0.166 0.339 0.404
Li 0.535 | 0.256 | 0.282 0.199 0.330 0.219 | 0.409 | 0.197 0.255 0.377
Mk 0.793 0.211 0.253 0.192 0.277 0.598 0.283 0.258 0.232 0.337
Su 0.770 | 0.770 | 0.764 0.735 0.815 0.571 | 0.625 | 0.575 0.566 0.640
Bai 0.706 | 0.695 | 0.689 0.640 0.765 0.444 | 0.531 | 0.454 0.447 0.548

Taco [43] | 0.701 0.711 0.699 0.676 0.756 - - - - -
Ours 0.6002 | 0.8030 | 0.6107 | 0.8428 0.9050 0.1891 | 0.8352 | 0.2411 | 0.7061 0.8537
Ours(C) | 0.6128 | 0.8035| 0.6158 | 0.8521 0.9092 0.1986 | 0.8565 | 0.2518 | 0.7251 0.8616
Su 0.805 | 0.800 [ 0.798 0.910 0.938 0.641 | 0.671 | 0.642 0.879 0.920
Bai 0.747 0.743 0.736 0.872 0.929 0.504 0.571 0.516 0.817 0.889
validation Li 0.343 | 0.924 | 0.443 0.861 0.930 0.087 | 0.873 | 0.132 0.742 0.854
Wang 0.682 0.527 0.488 0.812 0.881 0.247 0.643 0.266 0.575 0.712
Tatsuma | 0.306 0.763 0.378 0.722 0.886 0.096 0.828 0.140 0.601 0.801
Ours 0.8710 | 0.1165| 0.1653 | 0.9540 0.9553 0.6426 | 0.3742 | 0.3733 | 0.9168 0.9405
Ours(C) | 0.8792| 0.1383| 0.1904 | 0.9496 0.9530 0.6486 | 0.4258 | 0.4041 0.9135 0.9388
Su 0.939 0.944 0.941 0.964 0.923 0.909 0.935 0.921 0.964 0.947
Bai 0.841 | 0.571 | 0.620 0.907 0.912 0.634 | 0.452 | 0.472 0.815 0.891
Training Li 0.827 | 0.996 | 0.864 0.990 0.978 0.374 | 0.997 | 0.460 0.982 0.986
Wang 0.884 0.260 0.363 0.917 0.891 0.586 0.497 0.428 0.775 0.863
Ours 0.9902 | 0.0058 | 0.0114 | 0.9988 0.9843 0.9869 | 0.0220 | 0.0422 | 0.9987 0.9905
Ours(C) | 0.9970 | 0.0059 | 0.0115| 0.9996 0.9845 0.9971 | 0.0222 | 0.0426 | 0.9997 0.9909
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