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Fine-Grained 3D Shape Classification With
Hierarchical Part-View Attention
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Abstract— Fine-grained 3D shape classification is important
for shape understanding and analysis, which poses a challenging
research problem. However, the studies on the fine-grained 3D
shape classification have rarely been explored, due to the lack
of fine-grained 3D shape benchmarks. To address this issue,
we first introduce a new 3D shape dataset (named FG3D dataset)
with fine-grained class labels, which consists of three categories
including airplane, car and chair. Each category consists of
several subcategories at a fine-grained level. According to our
experiments under this fine-grained dataset, we find that state-
of-the-art methods are significantly limited by the small variance
among subcategories in the same category. To resolve this
problem, we further propose a novel fine-grained 3D shape
classification method named FG3D-Net to capture the fine-
grained local details of 3D shapes from multiple rendered views.
Specifically, we first train a Region Proposal Network (RPN)
to detect the generally semantic parts inside multiple views
under the benchmark of generally semantic part detection. Then,
we design a hierarchical part-view attention aggregation module
to learn a global shape representation by aggregating generally
semantic part features, which preserves the local details of 3D
shapes. The part-view attention module hierarchically leverages
part-level and view-level attention to increase the discriminability
of our features. The part-level attention highlights the important
parts in each view while the view-level attention highlights
the discriminative views among all the views of the same
object. In addition, we integrate a Recurrent Neural Network
(RNN) to capture the spatial relationships among sequential
views from different viewpoints. Our results under the fine-
grained 3D shape dataset show that our method outperforms
other state-of-the-art methods. The FG3D dataset is available at
https://github.com/liuxinhai/FG3D-Net.

Index Terms— Fine-grained shape classification, 3D objects,
generally semantic part, dataset, attention, recurrent neural
network.

I. INTRODUCTION

LEARNING a shape representation from multiple rendered
views is an effective way to understand 3D shapes [1]–
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Fig. 1. The illustration of our FG3D-Net. In FG3D-Net, we first render each
3D shape into multiple views that are propagated into a Region Proposal
Network (RPN) [6] to generate a set of region proposals. Then, the extracted
region proposals are used in two different branches including generally
semantic part detection (top branch in blue box) and fine-grained classification
(bottom branch in brown). In the generally semantic part detection branch,
we predict the semantic score and the bounding box location for each region
proposal. According to the semantic scores, several region proposals are
selected to extract the global feature of the input 3D shape in the fine-
grained classification branch. Specifically, we introduce a novel module named
hierarchical part-view attention aggregation to effectively capture the fine-
grained 3D shape details for fine-grained classification.

[4]. Influenced by the great success of Convolutional Neural
Networks (CNNs) in the recognition of 2D images under large-
scale datasets, such as ImageNet [5], 2D CNNs are intuitively
applied to learn the representation for 3D shapes. For example,
the pioneering MVCNN [1] first projects a 3D shape into
multiple views from different viewpoints and then obtains
a global 3D shape representation by aggregating the view
features with a view pooling layer, where the view features are
extracted by a shared CNN. Previous view-based methods have
achieved satisfactory performance for 3D shape recognition
under large variance among different categories. However, it is
still nontrivial for these methods to capture the small variance
among subcategories in the same category, which limits the
discriminability of learned features for fine-grained 3D shape
recognition.

Fine-grained 3D shape recognition, which aims to discrim-
inate 3D shapes within the same category, such as airliners,
fighters and seaplanes within the airplane category, is quite
challenging. Specifically, there are two major issues that limit
the performance of fine-grained classification of 3D shapes. On
the one hand, many large-scale image datasets (e.g. CUB-200-
2011 [7] and Stanford dog dataset [8]) have been developed for
fine-grained object classification and recognition in 2D area,
but large-scale 3D object datasets are still eagerly needed for
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fine-grained 3D shape classification. Recently, several well-
known large-scale 3D shape repositories, such as ShapeNet [9]
and ModelNet [10], have been developed for learning shape
representations in various applications. While they contain
large numbers of 3D objects from different categories, they
are not well organized for fine-grained 3D shape classification.
On the other hand, existing view-based methods for learning
3D shape representations are still suffering from capturing the
fine-grained details from multiple views in a more compre-
hensive way, which is necessary for fine-grained classification
of 3D shapes. Intuitively, subtle and local differences are
usually exposed in parts on the objects, so it is vital to leverage
the parts in fine-grained 3D shape classification.

Previous multi-view methods such as MVCNN [1] and
RotationNet [3] usually extract a feature from pixel-level
information in each view first, and then aggregate the extracted
view features into a global shape representation. However,
these methods do not capture part-level semantics from mul-
tiple views. To address this problem, our recent work named
Parts4Feature [11] utilized a region proposal network to detect
generally semantic parts from multiple views and then learned
to directly aggregate all generally semantic parts into a global
shape representation. However, there are still several unre-
solved issues in Parts4Feature, which limits its performance
in fine-grained 3D shape classification. First, Parts4Feature
cannot capture the correlation of generally semantic parts
in the same view, which makes it unable to filter out the
meaningless generally semantic parts. Second, Parts4Feature
ignores view-level information such as the importance of each
view and the spatial relationship among sequential views,
which is important for learning the fine-grained 3D shape
features.

To solve the above-mentioned issues, in this paper we
propose a novel fine-grained 3D shape classification method,
named FG3D-Net, as shown in Fig. 1, which leverages a
hierarchical part-view attention aggregation module to capture
the fine-grained features. Similar to [11], we first employ a
region proposal neural network to detect generally semantic
parts in each one of multiple views, which is considered to
contain rich local details of 3D shapes. By introducing the
supervision information of bounding boxes from other 3D
segmentation datasets, our FG3D-Net is able to explore the
fine-grained details inside local parts. Then, to aggregate all
these extracted generally semantic parts, we leverage semantic
information at different levels including part-level, view-level,
and shape-level. Specifically, we introduce part-level attention
to highlight the important parts in each view and view-level
attention to highlight discriminative views among all the views
of the same object. To take advantage of sequential input
views as used in [12], we employ a Recurrent Neural Network
(RNN) to encode the spatial relationship among views. In
order to eliminate the impact of the initial view in the RNN
inputs, we integrate a global 3D shape feature with a max-
pooling operation as [1], which is invariant to the permutation
of views.

In addition, we introduce a new fine-grained 3D shape
dataset that consists of three object categories including Air-
plane, Car, and Chair, where dozens of subcategories are

Fig. 2. There are three shape categories in our fine-grained dataset including
Airplane, Car and Chair. Specifically, 13 shape subcategories are included
in the Airplane category such as airliner, fighter and seaplane, 20 shape
subcategories such as bus, jeep and scooter, are involved in the Car category,
and the Chair category consists of 33 shape subcategories including bistro,
captain, rocker, etc.

constructed in each category. All 3D objects in the dataset are
collected from several online repositories and are organized
under the WordNet [13] taxonomy. Different from existing
3D datasets such as ShapeNet [9] and ModelNet [10], our
dataset is organized as a fine-grained 3D shape classification
benchmark, where each 3D object is strictly assigned to one
single subcategory in its category. Our main contributions are
summarized as follows.

• We present a new fine-grained 3D shape dataset (named
FG3D dataset) consisting of three categories including
Airplane, Car and Chair, which contains tens of thou-
sands of 3D shapes with unique sub-category labels. This
enables the learning of fine-grained features for fine-
grained 3D shape classification.

• We propose a novel deep neural network named FG3D-
Net to extract a global 3D shape representation that
captures the fine-grained local details from generally
semantic parts. FG3D-Net further includes a part-level
and view-level attention mechanism to highlight the more
semantic generally semantic parts in each view and the
more distinctive views for each object, respectively.

• We show that FG3D-Net outperforms state-of-the-art
techniques in the fine-grained 3D shape classification
task.

II. RELATED WORK

A. 3D Shape Datasets

3D shapes are widely used in various applications, such
as robotics [14] and 3D modeling [15]. In recent years, 3D
shape understanding has attracted a lot of research interest.
However, due to the inherent complexity of 3D shapes, 3D
shape understanding is still a challenging problem in 3D
computer vision. Benefiting from deep learning models, deep
neural network based methods have achieved significant per-
formance in 3D shape recognition. These methods require
large-scale 3D datasets which are crucial for training deep
neural networks and evaluating their performance. Researchers
have been working on building some large-scale repositories
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[10], [16]–[18], which are widely adopted to evaluate deep
neural networks in various applications. With the development
of web-scale datasets, ShapeNet [9] has collected a large-scale
set of synthetic 3D CAD models from online open-sourced
3D repositories, including more than three million models and
three thousand object categories. Some other 3D repositories
[19]–[22] were also proposed, which contain semantic labels
for the segmented components of 3D shapes. Recently, PartNet
[23] provided more fine-grained part annotations to support
fine-grained 3D shape segmentation tasks. However, there is
still no suitable 3D shape benchmark for the fine-grained 3D
shape classification task so far.

To address this problem, some previous studies introduced
several fine-grained image datasets and evaluated the results of
fine-grained 3D shape classification. FGVC-Aircraft [24] has
collected ten thousand images of aircraft spanning 100 aircraft
objects. The Car dataset [25] contains 16,185 images from
196 subcategories of cars. Unfortunately, previous 3D fine-
grained datasets usually represent each 3D shape with a single
2D image, which can be regarded as the benchmarks of
fine-grained 2D image classification. Therefore, in this paper,
we present a fine-grained 3D shape dataset containing 3D
shapes represented by 3D meshes, where these shapes can be
easily translated into other 3D data formats such as rendered
views, point clouds and volumetric voxels. In Fig. 2, we show
all the subcategories in our fine-grained dataset of three
categories including airplanes, cars and chairs, respectively.
The construction of the fine-grained dataset will be illustrated
in Section III. FG3D DATASET. With the help of this proposed
fine-grained 3D shape dataset, we can evaluate the ability of
algorithms in capturing shape details under fine-grained 3D
shape classification.

B. Fine-Grained Classification

Fine-grained classification aims to classify many
subcategories under a same basic-level category such as
different cats, dogs or cars. Due to the large intra-subcategory
variance and the small inter-subcategory variance, fine-
grained classification is a long standing problem in computer
vision. Recently, deep learning based methods have been
widely applied to fine-grained image classification and
achieved significant improvement over traditional methods.
From the perspective of fine-grained image classification,
current methods can be summarized into three categories:
(1) ensemble of networks based methods, (2) visual attention
based methods, (3) part detection based methods.

Firstly, ensemble of networks based methods were proposed
to learn different representations of images for better clas-
sification performance with multiple neural networks. MGD
[26] trained a series of CNNs at multiple levels, which focus
on different regions of interests in images. B-CNN [27] was
proposed with a bilinear CNN model, which jointly combined
two CNN feature extractors. Spatial Transformers [28] were
proposed with a learnable model that consists of three parts
including localization network, grid generator, and sampler.
The discriminative parts inside images were captured by four
parallel spatial transformers on images and passed to the part
description subnets.

Secondly, influenced by attention mechanisms, researchers
also focus on searching discriminative parts dynamically,
rather than dealing with images directly. AFGC [29] employed
an attention mechanism for fine-grained classification system,
which utilized the information of multi-resolution corps to
obtain the location and the object on the input images.

Finally, subtle and local differences are usually shown in
discriminative parts of objects. Therefore, discriminative part
detection is very important for fine-grained shape classifica-
tion. The R-CNN family approaches [6] employed a popular
strategy that first generates thousands of candidate proposals
and then filters out these proposals with confidence scores and
bounding box locations. Zhang et al. [30] proposed to detect
discriminative parts for fine-grained image classification and
trained a classifier on the features of detected parts. Recently,
some studies [31], [32] focused on detecting discriminative
parts under the weakly supervised setting, which means nei-
ther object nor part annotations are needed in both training
and testing phases. In [31], part detectors were trained by
finding constellations of neural activation patterns computed
using convolutional neural networks. Specifically, the neural
activation maps were computed as part detectors by using the
outputs of a middle layer of CNN. All these methods have
been proposed to accomplish fine-grained classification of 2D
images. However, the fine-grained classification of 3D shapes
has been rarely explored so far.

To address this issue, we propose FG3D-Net to learn fine-
grained global 3D shape features by capturing geometry details
in generally semantic parts.

C. Deep Learning Based Methods for 3D Shapes

Benefiting from the advances in deep learning, deep learning
based methods have achieved significant performance in 3D
shape understanding tasks such as shape classification and
recognition. In general, current methods can be categorized
into mesh-based, voxel-based, point cloud-based, and view-
based deep learning methods. To directly learn 3D features
from 3D meshes, circle convolution [33] and mesh convolution
[34] were proposed to learn local or global features. Similar to
images, voxels also have a regular structure that can be learned
by deep learning models, such as CRBM [35], SeqXY2SeqZ
[36] and DSO-Net [37], fully convolutional denoising autoen-
coders [38], CNNs [39] and GANs [40]. These methods
usually employ 3D convolution to better capture the contextual
information inside local regions. Moreover, Tags2Parts [41]
discovered semantic regions that strongly correlate with user-
prescribed tags by learning from voxels using a novel U-Net.
As a series of pioneering work, PointNet [42] and PointNet++
[43] inspired various supervised methods [44]–[48] to under-
stand point clouds. Through self-reconstruction, FoldingNet
[49] and LatentGAN [50]–[52] learned global features with
different unsupervised strategies. Similar to the light field
descriptor (LFD), GIFT [2] measured the difference between
two 3D shapes using their corresponding view feature sets.
Moreover, pooling panorama views [53], [54] or rendered
views [1], [4], [11] are more widely used to learn global fea-
tures. Different improvements from camera trajectories [55],
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TABLE I

THE STATISTICS OF OUR FG3D DATASET WHICH CONSISTS OF 3 CATEGORIES AND 66 SUBCATEGORIES

TABLE II

THE DATASET COMPARISON BETWEEN OUR FG3D AND SHAPENET

view aggregation [12], [52], [56], [57], pose estimation [3]
have been presented. Parts4Feature [11] integrated a Region
Proposal Network (RPN) to detect generally semantic parts
in multiple views and then aggregated global shape feature
from these generally semantic parts. However, it is still hard
for current methods to fully explore the fine-grained details
of 3D shapes in the fine-grained classification task. In FG3D-
Net, we introduce a hierarchical part-view attention aggrega-
tion strategy to extract more discriminative information from
generally semantic parts.

III. FG3D DATASET

To evaluate the performance in fine-grained 3D shape classi-
fication, we introduce a fine-grained 3D shape (FG3D) dataset.
Different from previous datasets such as ShapeNet [1], FG3D
aims to evaluate the fine-grained recognition of sub-categories
within the same basic category, where 3D shapes may exhibit
large intra-subcategory variance and small inter-subcategory
variance.

A dataset for fine-grained 3D shape classification needs to
fulfill six crucial properties [18], [23]: (1) a large number of
shapes for deep networks to capture statistically significant
patterns; (2) ground truth labels that enable to quantitatively
evaluate the performance in a specific task; (3) unique fine-
grained labels for each shape from dozens of subcategories

under the same basic shape category; (4) convenient shape
representation as input; (5) 3D file format which deals with
the challenges of 3D shape recognition; (6) expandability,
i.e., make it easy for the collection to grow over time,
to keep the dataset challenging as the performance of learning
algorithms improves. To build the FG3D dataset, we collect a
large quantity of 3D shape files and classify each 3D shape
into one unique subcategory, which strictly follows the above
requirements.

Existing datasets are usually composed of 3D shapes from
different basic categories such as ShapeNet [9] and ModelNet
[35], but they do not satisfy the aforementioned property
(3). Although ShapeNet includes multiple subcategories under
each basic category, some 3D shapes have multiple or incorrect
subcategory labels. This makes it impossible to use ShapeNet
for fine-grained 3D shape classification. In addition, the image-
based datasets such as FGVC-Aircraft [24] and Car [25] do not
satisfy property (5), since they do not contain any 3D shapes.

FG3D is complementary to current datasets by addressing
fine-grained classification and satisfisying the properties (1)-
(6). From the perspective of fine-grained visual classification,
FG3D exhibits considerable variation within subcategories, but
limited variation among different subcategories under each
category. Hence, fine-grained classification on FG3D is a
challenging task. To show the differences with ShapeNet,
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Fig. 3. The framework of FG3D-Net. A sequence of views are first rendered from multiple viewpoints around the input 3D shape in the sequential view
capturing module (a). In module (b), all the views are propagated into a region proposal network to generate region proposals and to compute the corresponding
proposal features with RoI pooling (b). Then, generally semantic parts in each view are detected by predicting the semantic scores and bounding box (bbox)
locations with several FC layes in module (c). Next, in the hierarchical part-view attention aggregation module (d), the top K region proposals according
to the semantic scores are selected to extract the global feature for the input 3D shape. There are three different semantic levels in the feature aggregation
mechanism, including part-level, view-level, and shape-level. Two bilinear attention mechanisms are integrated to explore the correlation among features in
different semantic levels. In addition, an RNN layer is applied to enhance the correlation of view features by taking advantage of the sequential input views.
Finally, the global shape representation is extracted by a max-pooling layer, which is applied to the fine-grained classification of 3D shapes in the module (e).

we compare FG3D with ShapeNet for the three categories
in FG3D in TABLE II. FG3D contains more 3D objects and
subcategories to support the fine-grained classification task.

As shown in TABLE I, FG3D consists of three basic
categories including Airplane, Car and Chair, which con-
tain 3,441 shapes in 13 subcategories, 8,235 shapes in 20 sub-
categories, and 13,054 shapes in 33 subcategories, respectively.
We represent each 3D shape by an object format file (.off) with
polygonal surface geometry. One can easily convert the .off
files into other shape representations, such as rendered views,
voxels and point clouds. All shapes in FG3D are collected
from multiple online repositories including 3D Warehouse
[58], Yobi3D [59] and ShapeNet [9], which contain a massive
collection of CAD shapes that are publicly available for
research purpose. By collecting 3D shapes over a period of
two months, we obtained a collection of more than 20K
3D shapes in three shape categories. We organized these 3D
shapes using the WordNet [13] noun “synsets” (synonym sets).
WordNet provides a broad and deep taxonomy with over
80K distinct synsets representing distinct noun concepts. This
taxonomy has been utilized by ImageNet [5] and ShapeNet [9]
to formulate the object subcategories. In our dataset, we also
introduce the taxonomy into the collection of 3D shapes,
as shown in Fig. 2.

For evaluation, we split the shapes in each categories into
training and testing sets. Specifically, the 3D shapes in airplane
are split into 3,441 for training and 732 for testing. The cars
category contains 7,010 shapes for training and 1,315 shapes
for testing. The chairs category contains 11,124 shapes for
training and 1,930 shapes for testing.

IV. FG3D-Net

A. Overview

As shown in Fig. 3, The framework of FG3D-Net consists
of five main modules including (a) sequential view capturing,

Fig. 4. The generation of ground-truth generally semantic parts from seg-
mentation. According to the segmentation ground-truths, we first individually
render each 3D part into 2D views with different colors. Then, we extract the
bounding boxes of the colored parts using image processing. Finally, we obtain
the ground-truth bounding-boxes of each 3D part in the 2D views.

(b) region proposal generation, (c) generally semantic part
detection, (d) hierarchical part-view attention aggregation and
(e) fine-grained classification. In particular, the modules (b)
and (c) compose a region proposal network (RPN) and coop-
erate to complete the detection of Generally Semantic Parts
(GSPs) from multiple rendered views, which are pre-trained
under several part segmentation benchmarks. To construct
the region proposal network, we follow the similar strategy
as in Parts4Feature [11] which also detects the GSPs from
multiple views. By introducing the part information from other
segmentation data, our FG3D-Net can integrates the fine-
grained details inside local parts.

For each input 3D shape M from the training set, a view
sequence v is first obtained by rendering V views {vi } around
M, such that v = [v1, · · · , vi , · · · , vV ] and i ∈ [1, V ],
as shown in the module (a) of Fig. 3. Then, a shared con-
volutional neural network (e.g., VGG19 [60]) abstracts all the
views into feature maps of the high-dimensional feature space.
By applying a sliding window on the feature maps, numerous
region proposals {r j

i } are calculated for each view vi , where
the corresponding proposal features {c j

i } are extracted by a
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RoI (Region-of-Interest) pooling layer and j ∈ [1, N]. With
proposal features c j

i , module (c) learns to predict both the
semantic scores and bounding box locations of GSPs within
multiple views. Finally, according to the semantic scores, part
features {ck

i } of the top K region proposals {rk
i } in each

view vi of v are selected for extracting the global shape
feature f of M with the module (d). The global shape feature
f is propagated through a Fully Connected (FC) layer to
provide the classification probability p for fine-grained 3D
shape classification.

B. Generally Semantic Parts (GSPs)

A generally semantic part (GSP) in FG3D-Net indicates
a local part in rendered views of a 3D shape. GSPs do not
distinguish between different semantic part classes or shape
categories, such as the wings of airplanes or the wheels of
cars. Different from semantic parts in 3D shape segmentation,
a generally semantic part in FG3D-Net represents a local
visual part in 2D views, rather than shape parts in 3D. By
learning the shape representation form GSPs, our method
exploits the fine-grained details of multiple views at three
different feature abstration levels, including part-level, view-
level, and shape-level.

In the pre-training stage of GSPs detection, all ground-
truth GSPs are generated from several 3D shape segmentation
benchmarks. By learning the GSPs from other 3D segmen-
tation datasets, we are able to detect the GSPs in multiple
views under our fine-grained classification benchmark without
requiring ground-truth GSP supervision in the FG3D dataset.
Specifically, we use three 3D shape segmentation benchmarks
including ShapeNetCore [61], Labeled-PSB [21], [62], and
COSEG [62] to construct the generally semantic part detection
benchmark and provide ground-truth GSPs. Here, we follow
[63] to split the 3D shapes into training and testing set.

Fig. 4 shows the pipeline to generate the ground-truth
bounding boxes for GSPs. Based on the segmentation ground-
truth in 3D, we represent each segmented 3D part with a
different color. To extract the bounding box for each 3D
part, we render each colored 3D part into 2D images. With
a simple image processing step, we apply a region property
measurement function to calculate the bounding box of the
colored parts. To reduce the impact of data noise, we apply a
data cleaning step to eliminate the influence of some small
parts whose bounding boxes are smaller than 0.45 of the
max bounding box in the same part category. In addition,
another benefit of using GSPs is eliminating the impact of
some incorrect segmentations, where 3D parts may have
wrong segmentation labels in the datasets. So far, we have
obtained the bounding boxes of the ground truth GSPs within
multiple views, where the ground-truth GSPs are applied to
train modules (b) and (c) for generally semantic part detection,
as shown in Fig. 3.

C. Region Proposal Network

A Region Proposal Network (RPN) takes an image as input
and outputs a set of rectangular object proposals, each with
an objectness score. As shown in Fig. 3, the modules (a)

and (b) of our FG3D-Net comopse a RPN, which is adjusted
for detecting GSPs from the multiple views of 3D shapes.
Similar to [6], the RPN detects a set of generally semantic
part proposals with corrsponding semantic scores for each
view. Specifically, in module (b), a large number of region
proposal candidates {r j

i } are first generated for each view vi

and the corresponding proposal feature {c j
i } are calculated

by a Region-of-Interest (RoI) pooling layer. To complete
the regeion proposal generation, there are a Convolutional
Neural Network (CNN) layer, a region proposal calculation
layer and a RoI pooling layer in the module (b). Then,
in module (c), all the proposal features {c j

i } are applied to
predict both the semantic scores and locations of GSPs with
several stacked Fully Connected (FC) layers. According to
the predicted semantic scores, the features {ck

i } of the top K
proposals are selected for hierarchically learning the 3D shape
representations in module (d).

To review the details of the RPN, a Convolutional Neural
Network (CNN) first abstracts multiple input views into the
feature maps. The CNN layer is modified from a VGG-
19 network proposed in [60], and it produces a feature map ci

for each view vi . Secondly, a region proposal layer calculates
the region proposals {r j

i } by sliding a small window over
the corresponding feature map ci . At each sliding-window
location, which is centered at each pixel ci , a region r j

i
is proposed by regressing its location tD and predicting a
semantic probability pD with an anchor. The location tD

is a four dimensional vector representing center coordinates,
width and height of the part bounding box. All of the above
modifications are adjusted from previous Faster-RCNN [64].

To train RPN for predicting the semantic scores pD of
GSPs, we assign a binary label to each region proposal r j

i to
indicate whether r j

i is a GSP. Specifically, we assign a positive
label if the IoU (Intersection-over-Union) overlap between r j

i
and any ground-truth GSP in vi is higher than a threshold
SD . Note that a single ground-truth box may assign positive
labels to multiple anchors; otherwise, we use a negative label.
In each view vi , we apply RoI pooling over region proposal
location tD on feature maps ci . Hence, the features {c j

i } of
all N region proposals {r j

i } are high dimensional vectors,
which we forward to the generally semantic part detection
module as shown in Fig. 3. To reduce the computational cost,
we represent each generally semantic part feature in the top
K proposals with a high dimensional feature vector f k

i that is
calculated by f k

i = M AX ({ck
i }). Therefore, we finally select

the features { f k
i } of the top K region proposals {rk

i } according
to corrsponding semantic scores pD , which are propagated to
the hierarchical part-view attention aggregation module.

With the above definitions, an objective function is
employed to optimize the part detection following the multi-
task loss in Faster-RCNN [6]. Denote that the ground-truth
semantic scores and box locations of positive or negative
samples in the RPN are p∗ and t∗, respectively. The loss
function is formulated as

L(pD, p∗, tD, t∗) = Lsem(pD, p∗)+ λLreg(tD, t∗), (1)
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Fig. 5. The demonstration of part-level attention. By calculating the attention
values among generally semantic parts, we aggregate K parts features { f k

i }
in the same view into a view feature f i . Firstly, we compute the bilinear
similarity score q(k, k′) between f k

i and f k′
i with a softmax layer. Then,

we multiply the scores q(k, k′) to the input part features to highlight the
discriminative features. Here, ⊗ indicates multiplication. Finally, a weighted
sum is applied to aggregate the highlighted parts features into a view feature
f i .

where Lsem measures the accuracy in terms of semantic scores
by calculating the cross-entropy loss with part labels, while
Lreg measures the accuracy of location in terms of the L1
distance [6]. In the experiment, λ works well with a value
of 1. By introducing the architecture of RPN [6], FG3D-Net
has the special ability to detect GSPs from multipe views by
being pre-trained under other segmentation benchmarks.

D. Hierarchical Part-View Attention Aggregation

In order to extract shape features with fine-grained distinc-
tion, the hierarchical part-view attention aggregation module
(d) is the key component of FG3D-Net, as shown in Fig. 3,
which hierarchically learns the global representation f of the
input 3D shape from the features { f k

i } of generally semantic
parts. To propagate the features from low-level to high-level,
it is important to preserve the detailed information in different
levels. Thus, in module (d), there are three different semantic
levels including part-level, view-level and shape-level, where
the fine-grained relationship among features are explored. To
aggregate shape features from low to high, some special
designs are introduced including part-level attention, view-
level attention and view feature enhancement.

1) Part-Level Attention: The target of part-level attention is
to aggregate the features of GSPs detected from the same view.
As shown in Fig. 5, we first select the top K GSP features
{ f k

i } of view vi to extract the corresponding view feature
f i . Traditional approaches sucha as [1] usually aggregate
multiple features by simple max-pooling or mean-pooling
operations. However, simple pooling operation suffers from
the content information loss within generally semantic parts.
As summarized by some previous methods [65]–[68] for
fine-grained classification of 2D images, detailed information
about local parts usually determines the discriminability of
learned object features. To resolve this issue, we propose a
bilinear similarity attention to aggregate generally semantic
part features { f k

i } into view feature f i for view vi in the
view sequence v. The part-level attention is designed to take
advantage of the relationships among part features to facilitate
the feature aggregation procedure. Specifically, a shared matrix
Sp is learned to evaluate the mutual correlations among the
K generally semantic part features { f k

i } of view vi . Here
the learnable matrix Sp is shared across all views, which
aims to capture the general patterns among GSPs in each one

Fig. 6. The demonstration of view-level attention. Similar to the part-level
attention, we calculate the bilinear similarity scores θ(i, i ′) among the view
features from the same 3D object to aggregate view features { f i } into a shape
feature f . By applying a multiply operation ⊗ and a weighted sum operation,
the global feature f is obtained by considering the importance of different
view features.

of multiple views. In addition, the learning of Sp can also
explore the local patterns of GSPs from different 3D shapes.
By applying an attention value to each GSP, the part-level
attention can highlight the important GSPs in each view to
facilitate feature aggregation.

Given the GSP features { f k
i } of view vi , the corresponding

context of f k
i is formed by

Rcontext
i,k = { f k

i }, k ∈ [1, K ]. (2)

For each candidate f k
i , there is a score q(k, k ′) measuring the

similarity between f k
i and f k′

i as follows

q(k, k ′) = ex p( f k
i Sp f k′

i
T
)

∑K
n=1 ex p( f k

i Sp f n
i

T )
, (3)

where Sp is the learnable matrix. All q(k, k ′) form the bilinear
similarity attention matrix with a size of K × K , which
represents the correlation among the K GSPs. Without extra
selection of highly related ones, the context ek

i fused for f k
i

is a weighted average over all the candidate parts, as denoted
by

ek
i =

K∑

k′=1

q(k, k ′) f k′
i . (4)

With the context vector of GSPs in view vi , the view feature
f i can be calculated by

f i =
K∑

k=1

ek
i , (5)

where the view features { f i } are propagated to both the view-
level attention and the view feature enhancement module.

2) View-Level Attention: In the view-level, we apply a
similar strategy to effectively aggregate view features f i into
3D global features f as depicted in Fig. 6, which contains
the global information of an entire 3D shape from multiple
views. To learn the attention value of view features from the
same 3D object, one learnable parameter matrix Sv is also
learned to capture the correlation among views. Therefore,
by calculating the bilinear similarity among view features,
the attention values are captured, which can also leverage the
importance of views in the feature aggregation.

Given the view features { f 1, f 2, · · · , f i , · · · , f V }, a sim-
ilarity score θ(i, i ′) measuring the similarity between f i and
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Fig. 7. The demonstration of the view feature enhancement. To enhance the
view features, we first add the global shape feature f to f i by duplicating,
where ⊕ indicates the sum operation. Then, we adopt a GRU (RNN) to capture
the spatial correlation among views. Therefore, we obtain the enhanced view
features { yi } which are aggregated into the final global shape representation
g by a max-pooling layer.

f i ′ is computed as

θ(i, i ′) = ex p( f i Sv f i ′
T )

∑V
l=1 ex p( f i Sv f l

T )
, (6)

where Sv is also a learnable matrix to capture the correlation
among views. The learned θ(i, i ′) are the bilinear similarity
attention matrix with a size of V ×V . According to the learned
similarity scores, the context ēi of view vi is fused from f i
with a weighted average over the views

ēi =
V∑

i ′=1

θ(i, i ′) f i ′ . (7)

Finally, the 3D global feature f is computed as

f =
V∑

i=1

ēi . (8)

Through the hierarchical part-view attention mechanisms,
we obtain the global shape representation f , which can
be applied for 3D shape recognition. However, the spatial
correlation among sequential views is not fully explored. To
take advantage of the prior information of the view sequence v,
we additionally utilize a recurrent neural network to enhance
current 3D global feature f .

3) View Feature Enhancement: An important prior infor-
mation of sequential input views v is the spatial information
among them, where the rendering viewpoints are continuously
distributed around the shape in 3D space as shown in Fig. 3. To
benefit from the powerful ability of learning from sequential
data, FG3D-Net employs a Recurrent Neural Network (RNN)
to learn the enhanced view features { yi } from previous view
features { f i } and global feature f .

With the view features { f 1, f 2, · · · , f i , · · · , f V } aggre-
gated from the part level, we first integrate the global shape
information by

f ′
i = f i + f . (9)

The integrated features f ′
i form a feature sequence f ′

v =
{ f ′

1, f ′
2, · · · , f ′

i , · · · , f ′
V }. A RNN takes the sequential view

features as input and captures the spatial correlation among
views. The RNN consists of a hidden state h and an optional
output y, which operates on the view feature sequence f ′

v .
Here each item f ′

i is a 512-dimensional feature vector and

the length of f ′
v is V which is also the number of steps in

the RNN. At each time step t ∈ [1, V ], the hidden state ht of
the RNN is updated by

ht = G RU(ht−1, f ′
t ), (10)

where G RU is a non-linear activation function named gated
recurrent unit [69].

A RNN can learn the probability distribution over a
sequence by being trained to predict the next item in the
sequence. Similarly, at time step t , the output yt of the RNN
can be represented as

yt = Wa ht , (11)

where Wa is a learnable weight matrix. After forwarding the
entire input feature sequence, as shown in Fig. 7, the output
sequence { y1, y2, · · · , yi , · · · , yV } is acquired, which con-
tains the content information and the spatial information of the
entire view feature sequence. To avoid a dependency on the
choice of the initial input view feature in the RNN, we learn
a more general global shape feature g by adopting a max-
pooling layer,

g = max
i∈[1,V ]{ yi }. (12)

Through the view feature enhancement, a global representation
g is extracted from GSPs in multiple views. Following a FC
layer, g is applied to predict 3D shape labels with the cross-
entropy loss function, where the softmax function outputs the
classification probabilities p. Suppose that there are C shape
subcategories of an individual category in the classification,
so each probability p(c) can be defined as

p(c) = ex p(Wc g + ac)∑
c′∈[1,C] ex p(Wc′ g + ac′)

, (13)

where W and a are the weights of the FC layer to be learned.
The objective loss function is the cross-entropy between the
predicted probability p and the corresponding ground truth p′,

L( p, p′) = −
∑

c∈[1,C]
p′(c)log( p(c)). (14)

E. Training

There are two different tasks in our FG3D-Net including
generally semantic part detection and fine-grained shape clas-
sifcation. To leverage the performance of the two tasks, we use
an alternating strategy to train FG3D-Net. First, we train
the region proposal network to detect generally semantic
parts inside shape views under the processed segmentation
benchmarks. Then, while fixing the parameters in the region
proposal network, we only update parameters inside the hier-
archical part-view attention aggregation branch, as shown
in Fig. 1. By repeating the above two steps, we can apply
our FG3D-Net to extract discriminative shape features for
3D shapes for fine-grained 3D shape classification. Therefore,
the optimization target Ltotal of FG3D-Net consists of a sum
of two parts,

Ltotal = L(pD, p∗, tD, t∗)+ ψL( p, p′), (15)

where ψ is a hyperparameter to balance loss terms.
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TABLE III

THE KEY PARAMETERS IN FG3D-NET

V. EXPERIMENTS

In this section, we conduct comprehensive experiments
to validate FG3D-Net for fine-grained classification of 3D
shapes. We first explore how some key parameters affect
the performance of FG3D-Net and then discuss results of an
ablation study to justify our architecture. Finally, under our
FD3D dataset, we compare the fine-grained shape classifica-
tion performance of FG3D-Net with state-of-the-art methods
with different 3D shape representations.

A. Network Configuration

As shown in TABLE III, we illustrate the key parameters
in our FG3D-Net. In the experiment, we apply default V =
12 views of each 3D shape M, where the viewpoints are
uniformly distributed around the shape and each view size is
224×224×3. After the generally semantic part detection with
SD = 0.7, the features of top K = 20 parts in each view are
propagated to the hierarchical part-view attention aggregation
module, as shown in Fig. 3. Following some parameter settings
as in Faster RCNN [6], the size of the abstracted feature map
ci is 12 × 12 × 512 for each view. To generate anchors on
the feature map, We apply 6 scales and 3 aspect ratios to
yield 6 × 3 = 18 anchors at each pixel, which ensures a wide
coverage of sizes to accommodate region proposals for GSPs
that may be partially occluded in some views. The 6 scales
relative to the size ofthe views are [1,2,4,8,16,32], and the 3
aspect ratios are 1 : 1, 1 : 2, and 2 : 1. In general, all anchors
lead to N = 2592 = 12 × 12 × 18 proposal candidates {r j

i } in
each view vi . And each region proposal feature c j

i extracted
by RoI pooling are with size of 512 × 7 × 7. In the part-view
attention mechanisms, the learnable bilinear matrices Sp , Sv
are with size 512×512, and the demensions of all features are
512. In the view feature enhancement module, the GRU cell
[69] is adopted in our RNN and the dimension of the hidden
state is initialized with 4,096. And the hyperparameters λ, ψ
are set to 1 in the loss function. For all experiments, we train
our network on a NVIDIA GTX 1,080Ti GPU using ADAM
optimizer with an initial learning rate of 0.00001 and a batch
size of 1.

B. Parameter Setting

There are several important hyperparameters settings in
FG3D-Net. To investigate the influence of these hyperparame-
ters, we performed comparisons with different settings under
the category of airplane, which contains 4,173 3D shapes from

TABLE IV

THE EFFECT OF THE VIEW NUMBER V ON THE PERFORMANCE IN FG3D-
NET

TABLE V

THE EFFECT OF THE NUMBER OF GENERALLY SEMANTIC PARTS K ON THE

PERFORMANCE IN FG3D-NET

TABLE VI

THE EFFECT OF RNN CELL TYPES (CTS) ON THE PERFORMANCE IN

FG3D-NET

13 subcategories. We first explore the number of input views
V , which determines the coverage of input 3D shapes from
different view angles. In this experiment, we keep all other
hyperparameters fixed and modify the number of rendered
views V from 3 to 20. All views are obtained by rendering
around each 3D shape as shown in MVCNN [1]. The results
are listed in TABLE IV, which shows the accuracy trend
with increasing the number of views. With V = 12 or V =
20 views as input, FG3D-Net reaches the similar instance
accuracy of 93.99%. This is because 12 views have already
covered most of the details of 3D shapes. In addition, 12 views
have been widly used as input of view-based methods, such
as MVCNN [1], SeqViews2SeqLabels [12], 3D2SeqViews
[57] and Parts4Feature [11]. For fair comparison with these
methods and leveraging the computational complexity of the
whole network, we also adopt 12 views as input in our
FG3D-Net.

In the following experiments, we keep the number of input
views V = 12. In TABLE V, we study the effect of the number
K of generally semantic parts in the hierarchical part-view
attention aggregation module in Fig. 3 (d), where K ranges
from 5 to 40. The best accuracy 93.99% is reached at K = 20,
which can achieve a better coverage of the fine-grained details
of 3D shapes.

To investigate the effect of the RNN cell type (CT) in
our view feature enhancement step, we show the results with
different RNN cells in TABLE VI. We observe that the GRU
cell outperforms other RNN cells such as BasicRNN, LSTM
and BidirectionRNN. In particular, in the BidirectionRNN cell,
there are two GRU cells of different directions.

Moreover, we explore the effect of the RNN’s hidden
state dimension (Dim) which affects the learning ability of
the recurrent neural network. As depicted in TABLE VII,
the dimension of GRU cells is modified from 512 to 5,120.
The best performance is achieved at Dim = 4096, which can
better capture the spatial correlation of sequential views.
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TABLE VII

THE EFFECT OF THE DIMENSION (DIM) OF GRU CELLS ON THE PERFOR-
MANCE

TABLE VIII

THE EFFECT OF THE ATTENTION MECHANISM ON THE PERFORMANCE
UNDER AIRPLANE IN FG3D-NET

Fig. 8. The classification confusion matrix under Airplane.

Fig. 9. The classification confusion matrix under Chair.

C. Ablation Study

In order to reveal the effect of the novel elements in FG3D-
Net, such as attention mechanisms at different semantic levels,
we performed ablation studies to justify their effectiveness. We
evaluate the performance of FG3D-Net with only part-level
attention (OPA), only view-level attention (OVA), no attention
(NA) or no RNN (NR). Specifically, when we remove the
attention mechanism, we set all attention values to the same
constant. For example, we set the part-level attention value
to 1

20 in OVA and the view-level attention value 1
12 in OPA.

TABLE VIII illustrates the effectiveness of our attention
mechanisms in learning highly discriminative representations
for 3D shapes. The results show that both part attention
and view attention play an important role in extracting fine-
grained details from multiple views. Without the RNN layer,

Fig. 10. The classification confusion matrix under Car.

Fig. 11. The intuitive display of classification accuracies under the FG3D
Dataset, including instance accuracies (Ins-Air, Ins-Cha, Ins-Car) and class
accuracies (Cla-Air, Cla-Cha, Cla-Car).

the performance of FG3D-Net drops significantly. This is
mainly caused by the reduction of network parameters and
the lack of spatial correlations among views. In other words,
the spatial correlation among views is important for the fine-
grained classification of 3D shapes.

As for the components of neural networks, there is a Region
Proposal Network in the GSP detection procedure, which
contains a VGG-19 network, a RoI pooling layer and four FC
layers. And for the subsequent networks, we select 20 GSPs
from each view of total 12 views. The GSPs detected from
multiple views play an important role in capturing the fine-
grained details of 3D shapes, but it also increases the complex-
ity of our method. To better demonstrate the effectiveness of
our method, we have evaluated the computational complexity
of FG3D-Net on a NVIDIA GTX 1,080Ti GPU. Specifically,
the model size and the average forward time are 832Mb and
358.19ms, respectively, where our FG3D-Net adopts 12 views
of a 3D shape as input.

D. Fine-Grained Visual Classification

We carry out the experiments in the fine-grained clas-
sification of 3D shapes under the proposed FG3D dataset
with three categories including Airplane, Car and Chair. As
shown in TABLE I, there are 4,173, 8,325 and 13,054 shapes
in the categories, which are split into training and testing
sets. To evaluate the performance of FG3D-Net, we com-
pare our method with several state-of-the-art 3D shape
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TABLE IX

WE COMPARE FINE-GRAINED SHAPE CLASSIFICATION ACCURACY(%) FOR AIRPLANE, CHAIR AND CAR CATEGORIES IN OUR FG3D DATASET

Fig. 12. The results of generally semantic part detection, where the semantic score of each part is larger than 0.8.

Fig. 13. Visulization of the part-level attention mechanism. There are 9 views from the 3 categories of our FG3D dataset, where the top 20 GSPs are drawn
in each image. The corresponding bilinear similarity attention map q(k, k′) among GSPs in each view with a size of 20 × 20 is shown on the right of the
view. We hightlight the discriminative GSPs with red bounding boxes and use arrows to indicate the corresponding columns on the attention maps.

classifcation methods, which are trained under different 3D
shape representations including point clouds, rendered views,
and 3D voxels. In TABLE IX, we conduct the numeri-

cal comparisons including PointNet [42], PointNet++ [43],
Point2Sequence [71], DGCNN [72], RS-CNN [73], MVCNN
[1], SeqViews2SeqLabels [52], RotationNet [3], View-GCN

Authorized licensed use limited to: Tsinghua University. Downloaded on August 28,2021 at 02:39:07 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FG3D-NET WITH HIERARCHICAL PART-VIEW ATTENTION 1755

Fig. 14. Visualization of the view-level attention mechanism. There are three
3D shapes selected from three different categories in our FG3D dataset. In
each row, we show the 12 views of each 3D shape on the left and the attention
map θ(i, i ′) of the views with a size of 12 × 12 on the right. We hightlight
the discriminative views with red bounding boxes and use arrows to indicate
the corresponding columns on the attention maps.

[76] and Parts4Feature [11]. For these methods, we reproduce
network structures using the public source code and evaluate
them under our FG3D dataset.

In the comparison with other methods, we adopt MVCNN
[1] as our baseline. MVCNN is the pioneering study in 3D
shape recognition from multiple views, which has achieved
satisfactory performance in shape classifcation. MVCNN
leverages 12 views rendered around each 3D shape as input.
We follow this camera setting and evaluate the performance
of other view-based methods, including RotationNet [3],
3D2SeqViews [57], 3DViewGraph [75], View-GCN [76],
SeqViews2SeqLabels [12] and Parts4Feature [11]. RotationNet
learns the best camera setting to capture the view-specific
feature representation for 3D shapes, which has obtained supe-
rior performance to previous state-of-the-art methods under
ModelNet40 and ModelNet10. Recent View-GCN [76] also
achieves high performances via view-based graph convolution
network under ModelNet benchmarks. Therefore, we have
compared FG3D-Net with RotationNet and View-GCN under
the FG3D dataset using the same view sequence obtained
from each 3D shape in this work. To utilize the sequential
views, SeqViews2SeqLabels adopts a recurrent neural net-
work to aggregate multiple views of 3D shapes. However,
SeqViews2SeqLabels cannot explore the fine-grained informa-
tion among GSPs extracted from the views. Parts4Feature also
detects generally semantic parts inside views similar to FG3D-
Net. However, Parts4Feature cannot fully explore the fine-
grained correlation among features at different semantic levels.
In particular, there is no view-level feature in Part4Feature,
which results in a lack of view-level information in feature
aggregation.

In addition, we include methods that take other data formats
as input. For point-based methods, we choose the pioneering
PointNet [42] and PointNet++ [43] as the comparison targets.
We further include state-of-the-art methods such as SO-Net
[70] and Point2Sequence [71]. To translate our FG3D dataset
into point clouds, we apply Poisson Disk Sampling [77]
to obtain 1,024 points for each 3D shape. All point-based
methods are trained with 1,024 points as input under FG3D.
VoxNet [74], also listed in TABLE IX, is the poineering work
in voxel-based methods for 3D shape recognition.

As shown in TABLE IX, our FG3D-Net outperforms other
state-of-the-art methods and achieves the highest classification
accuracies in all three categories. The results suggest that
FG3D-Net can take advantage of generally semantic part
detection to integrate fine-grained details in multiple views.
With a hierarchical aggregation strategy, we fully explore the
correlation of features at different semantic levels.

To better demonstrate our classification results, we visu-
alize the confusion matrix of our classification result under
Airplane, Chair and Car in Fig. 9, Fig. 8 and Fig. 10,
respectively. In each confusion matrix, an element in the
diagonal line means the classification accuracy in a class, while
other elements in the same row means the misclassification
accuracy. The large diagonal elements show that FG3D-Net
is good at classifying large-scale 3D shapes. And to show
the classification accuracies more intuitively, we draw the
accuracy bar of FG3D-Net under different basic categories
as illustrated in Fig. 11. From the accuracy bar, FG3D-Net
achieves higher performances than other compared methods.

VI. VISUALIZATION

In this section, we visualize some important properties of
our FG3D-Net. Firstly, we show examples of detected GSPs
under our FG3D testing set. In Fig. 12, we draw the bounding
box of GSPs whose semantic score is larger than 0.8. We
observe that FG3D-Net can extract the bounding boxes of
discriminative GSPs, which supports representation learning
of 3D shapes.

There are two attention mechanisms in FG3D-Net, includ-
ing part-level and view-level attention. To learn the global
representation of 3D shapes, these attention mechanisms are
important to preserve the fine-grained details inside GSPs from
multiple views. To intuitively show the effectiveness of these
attention mechanisms, we draw some samples of part-level
attention in Fig. 13 and view-level attention in Fig. 14, respec-
tively. In Fig. 13, we show the attention map q(k, k ′) of 9
views from 3 different categories. In each view, we draw the
bounding boxes of top 20 GSPs, where the most discriminative
GSPs with large attention values are in red. We use arrows to
indicate the correspondence of GSPs and attention values in
the attention map q(k, k′), where each column represents the
attention value of each GSP. Similar to the part-level attention,
we visualize the view-level attention in Fig. 14, which shows
the 12 views and the corresponding view attention map θ(i, i ′)
of a 3D shape in each row. We also use arrows to indicate the
correspondence of views and attention values on the attention
maps. The visualization results show that both part-level
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attention and view-level attention are effective to capture the
fine-grained information in the feature aggregation.

VII. CONCLUSION AND FUTURE WORK

We proposed FG3D-Net, a novel model to learn 3D gobal
features via hierarchical feature aggregation from GSPs. To
evaluate the performance of FG3D-Net, we introduced a new
fine-grained 3D shape classification dataset. In the existing
methods, the fine-grained details of generally semantic parts
and the correlation of features in different semantic levels are
usually ignored, which limits the discriminability of learned
3D global features. To resolve these disadvantages, FG3D-
Net employs a region proposal neural network to detect GSPs
from multiple views, which identifies discriminative local parts
inside views to learn the fine-grained deails of 3D shapes.
In addition, we leverage part-level and view-level attention
mechanisms to effectively aggregate features in different
semantic levels, which utilize the correlations among features
to hightlight the discriminative features. Finally, a recurrent
neural network is adopted to capture the spatial information
among views from multiple viewpoints, which takes advan-
tage of prior information about the sequential input views.
Experimental results show that our method outperforms the
state-of-the-art under the proposed 3D fine-grained dataset.

Although FG3D-Net learns 3D shape global features from
GSPs to achieve high performance in fine-grained shape classi-
fication, it still suffers from three limitations. First, FG3D-Net
can only detect the limited types of GSPs, since the number
of 3D shapes in the existing segmentation benchmarks is still
limited. For example, the performance of our FG3D-Net may
be further improved by integrating the fine-grained parts from
PartNet [23]. Second, the number of categories in our FG3D
dataset is somewhat small, where only three categories are
currently included. Thus, FG3D-Net merely performs well
under the current input setting and on a small number of
shape categories, even with the help of bilinear similarity
attention and RNN. Third, there is no validation set in the
spliting of our FG3D dataset. A good validation set can help
to obtain better hyperparameters in the network. In the future,
it is worth to explore unsupervised methods to detect GSPs
inside multiple views and to further extend our FG3D dataset,
including adding more categories and making a partition of
validation set.
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