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Abstract— Learning discriminative shape representation
directly on point clouds is still challenging in 3D shape analysis
and understanding. Recent studies usually involve three steps:
first splitting a point cloud into some local regions, then
extracting the corresponding feature of each local region,
and finally aggregating all individual local region features
into a global feature as shape representation using simple
max-pooling. However, such pooling-based feature aggregation
methods do not adequately take the spatial relationships (e.g.
the relative locations to other regions) between local regions into
account, which greatly limits the ability to learn discriminative
shape representation. To address this issue, we propose a
novel deep learning network, named Point2SpatialCapsule, for
aggregating features and spatial relationships of local regions
on point clouds, which aims to learn more discriminative shape
representation. Compared with the traditional max-pooling
based feature aggregation networks, Point2SpatialCapsule can
explicitly learn not only geometric features of local regions but
also the spatial relationships among them. Point2SpatialCapsule
consists of two main modules. To resolve the disorder problem
of local regions, the first module, named geometric feature
aggregation, is designed to aggregate the local region features
into the learnable cluster centers, which explicitly encodes the
spatial locations from the original 3D space. The second module,
named spatial relationship aggregation, is proposed for further
aggregating the clustered features and the spatial relationships
among them in the feature space using the spatial-aware capsules
developed in this article. Compared to the previous capsule
network based methods, the feature routing on the spatial-aware
capsules can learn more discriminative spatial relationships
among local regions for point clouds, which establishes a
direct mapping between log priors and the spatial locations
through feature clusters. Experimental results demonstrate that
Point2SpatialCapsule outperforms the state-of-the-art methods
in the 3D shape classification, retrieval and segmentation tasks
under the well-known ModelNet and ShapeNet datasets.

Manuscript received July 27, 2019; revised March 20, 2020 and August 19,
2020; accepted August 19, 2020. Date of publication September 7, 2020; date
of current version September 16, 2020. This work was supported in part by
the National Key Research and Development Program of China under Grant,
2018YFB0505400, Grant 2019YFB1405703, and Grant TC190A4DA/3; in
part by NSFC under Grant 61672307; and in part by the Tsinghua-Kuaishou
Institute of Future Media Data. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Riccardo Leonardi.
(Corresponding author: Yu-Shen Liu.)

Xin Wen and Xinhai Liu are with the School of Software, Tsinghua
University, Beijing 100084, China (e-mail: x-wen16@mails.tsinghua.edu.cn;
lxh17@mails.tsinghua.edu.cn).

Zhizhong Han is with the Department of Computer Science, University
of Maryland at College Park, College Park, MD 20737 USA (e-mail:
h312h@umd.edu).

Yu-Shen Liu is with the School of Software, BNRist, Tsinghua University,
Beijing 100084, China (e-mail: liuyushen@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TIP.2020.3019925

Index Terms— Point cloud, shape representation, feature aggre-
gation, spatial relationships, capsule network.

I. INTRODUCTION

3D SHAPE representation learning plays a central role
in shape analysis and understanding, which has a wide

range of applications such as shape classification [1]–[5],
retrieval [6]–[9], semantic/instance segmentation [10]–[14],
cross-modal application [15]–[18] and remote sensing
[19]–[23]. Among the multiple representation forms of 3D
shapes, 3D point clouds, benefited from its easy access,
have become one of the most popular 3D shape forms in
recent years. Specifically, the point clouds consist of a set
of unordered points, each of which is composed of 3D
coordinates, possibly with some additional attributes such as
normal, color and material.

However, learning discriminative shape representation
directly on point clouds is still challenging in 3D shape analy-
sis and understanding. Recent studies for learning point cloud
representations usually involve the following three steps. Each
input point cloud is first split into some local regions. Then,
the corresponding features of local regions are extracted using
shared Multi-Layer Perceptron (MLP) [1] or kd-trees [24].
Finally, the extracted local region features are aggregated into
a global feature vector as the shape representation [10], [25],
[26]. Most of the previous methods mainly focus on how to
enhance the process of local region feature extraction, while
often employ a simple pooling-based layer [1], [25], [26] to
aggregate these extracted features. However, such pooling-
based feature aggregation methods do not take adequately
the spatial relationships among local regions into account. So
far, how to aggregate those learned local region features and
their spatial relationships still remain the challenges in existing
methods of point cloud representation learning. In this article,
we argue the importance of learning spatial relationships for
aggregating local region features with respect to the following
two reasons. (1) For point clouds with similar local regions,
the differences in the spatial arrangements of these local
regions are important for learning the discriminative features.
(2) Considering the permutation invariant nature of point
clouds, it is important to learn the intrinsic spatial relationship
between each part and the whole, in order to constitute the
permutation invariant knowledge for point cloud recognition.

The common strategy for feature aggregation in previous
methods [1], [25], [27], [28] is to extract the most significant
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Fig. 1. The illustration of comparison between the max-pooling based
PointNet and the dynamic routing based Point2SpatialCapsule in terms of
local region feature aggregation. Given an example 2D point cloud like a
shape of “P”, the point cloud is split into some local regions (left), from
which the corresponding local region features are extracted with sampling
and grouping (middle). The comparison of two methods is shown at the right
side of this figure. Here, denoted by black dotted line, the max-pooling only
keeps the most significant geometric characteristics in local regions (top right),
while this causes the spatial relationships between local regions are filtered
out. In contrast, the dynamic routing based Point2SpatialCapsule can handle
both the geometric characteristics and the spatial relationships of local regions
(bottom right), denoted by the red dotted line.

characteristics (such as the engine of an airplane) in local
regions of the point cloud step by step, through a deep neural
network with the pooling structure (such as max-pooling).
However, the problem is that the pooling-based methods will
filter out the spatial relationships of different areas on the
feature map [29]. Thus, it only considers the existences of
characteristics in local regions, while the spatial arrangements
between these regions will not be preserved. As a result,
most of the existing methods usually fail to learn the spatial
relationships among the local regions, which further limits the
ability of the network for learning discriminative 3D shape
representation.

To address the aforementioned problem, we propose a
novel deep learning network, named Point2SpatialCapsule,
for aggregating geometric features and spatial relationships
of local regions on point clouds, which aims to learn more
discriminative shape representation. Inspired by the recently
developed capsule network [29], Point2SpatialCapsule
employs the dynamic routing to aggregate the local
region features and their spatial relationships. Fig. 1
illustrates the comparison between our dynamic routing based
Point2SpatialCapsule and the previous feature aggregation
methods like max-pooling used in PointNet [1]. Note that
the max-pooling feature aggregation in PointNet [1] only
considers the existences of characteristics in local regions,
but in contrast our Point2SpatialCapsule can explicitly
handle the spatial relationships between local region features
through dynamic routing of capsule network. This advantage
encourages us to consider adopting capsule network for 3D
point clouds representation learning.

However, the problem is that, the original implementation of
capsule network is designed for 2D image recognition, where
the log priors in capsule network are bounded to the fixed

locations on the 2D feature maps [29]. In contrast, for 3D
point clouds, the locations of random sampled input points
are disordered and their absolute position coordinates may not
always keep consistent. As a result, it is difficult to find a direct
mapping that can generate the features encoded with fixed
spatial locations. What’s worse, the previous capsule based
methods failed to address such problem, most of which directly
generate the capsules from a single global feature vectors.
Such practice leads to the loss of spatial relationships between
local regions. As a result, the log priors in routing algorithm
between capsules can not learn the spatial relationships of local
regions, which greatly limits the representation ability of cap-
sules. In this article, we argue the importance of encoding the
fixed spatial locations into capsules, which aims to efficiently
utilize the representation ability of log priors for learning the
spatial relationships between local regions on point clouds.

In order to solve the above limitations, two novel modules
are specially designed in Point2SpatialCapsule to achieve local
region feature aggregation as follows. (1) The first module,
named geometric feature aggregation, aims to aggregate the
extracted local region features in the feature space. Here,
the term “geometric” indicates that this module aggregates the
geometric information, like the coordinates of central points
and the shapes of local regions represented by the feature
vectors, into the centers of local feature clusters, which aims to
resolve the disorder problem of local regions. (2) The second
module, named spatial relationship aggregation, is to apply
routing algorithm on the learned feature clusters. The term
“spatial-aware” indicates that the capsules are encoded with
the spatial locations, which is to guarantee the direct mapping
between the log priors and the fixed locations in the 3D
space. Therefore, we call them the spatial-aware capsules,
which allows the network to efficiently learn the spatial rela-
tionships between local regions. Fig. 2 shows the visualized
demonstration of the advantage of spatial relationship aggre-
gation. Because of the shifting and rotation of point clouds,
the changing locations of local region features in 3D space
also change the log priors. To resolve this issue, the geometric
feature aggregation clusters the input local region features into
the learnable cluster centers, which are irrelevant to the input
points and relatively invariant in the feature space. Therefore,
the routing algorithm can efficiently learn the log priors for
aggregating the spatial relationships between local regions.
Our main contributions are summarized as follows.
• We propose a novel deep network, i.e. Point2Spatial

Capsule, for learning more discriminative shape repre-
sentations of point clouds. Compared with the traditional
pooling-based methods, Point2SpatialCapsule can explic-
itly learn not only geometric features of local regions but
also the spatial relationships among them.

• We propose the geometric feature aggregation to resolve
the disorder problem of local regions, where the local
region features are aggregated into the learnable cluster
centers, which are explicitly encoded with the spatial
locations from the original 3D space.

• We propose the spatial relationship aggregation to further
utilize the spatial locations encoded in the feature clus-
ters. Compared to the previous capsule network based
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Fig. 2. The illustration of directly applying capsule network to the point
cloud (a) and the clustering based Point2SpatialCapsule (b). The shifting and
rotation of point cloud change the locations of local regions in 3D space
and also change their corresponding log priors. Therefore, routing in 3D
space (green dotted line) will cause the shifting of log priors, making the
routing algorithm fail to learn the spatial relationships between local regions.
In contrast, the geometric feature aggregation aggregates the input local region
features into relatively invariant cluster centers. Therefore, routing between
clusters (red dotted line) can efficiently learn the log priors for aggregating
spatial relationships between local regions.

methods, the spatial relationship aggregation can learn
more discriminative spatial relationships between local
regions by establishing a direct mapping between log
priors and the spatial locations through feature clusters.

The remainder of this article is organized as follows. First,
the related work is introduced in Sec.II. Then we detail the pro-
posed Point2SpatialCapsule in Sec.III. The experiments and
the ablation studies are given in Sec.IV. Finally, we conclude
this article in Sec.V.

II. RELATED WORK

In this section, we mainly review the methods related
to 3D shape representation learning based on deep learning
networks. The existing methods can be roughly divided into
four categories according to various 3D shape forms that
are learned from, including voxels, point clouds, views and
meshes.

A. Point Cloud Based Methods

Recent studies of point cloud representation learning mainly
focus on the local feature extraction and integration. Point-
Net [1] is the pioneering work of introducing deep learning
into point cloud representation learning, which independently
learns the features of each point and aggregates the learned
features into a global feature with the max-pooling layer. After
that, plenty of the follow-up studies [10], [26], [30], [31]
focus on how to better integrate the contextual information of
local regions on point clouds. For example, PointNet++ [25]
designed the hierarchical feature learning architecture based
on PointNet to encode multi-scale local areas. Following
the convolutional structure of PointNet++, successors such

as PointCNN [26] and SpiderCNN [30] investigated some
improved convolution operations which aggregate the neigh-
bors of a given point by edge attributes in the local region
graph. Different from the idea of using convolution structure,
Point2Sequence [10] introduced the sequential model (i.e.
RNN) to capture the fine-grained contextual information of
features in local regions. Specifically, Point2Sequence arranges
the features into a sequence according to the size of the
region scale, and then uses a RNN to capture the contextual
information within the local regions. However, the problem
is that most of the above methods fail to consider the spatial
relationships among different local regions when aggregating
the extracted local region features, where the usual practice for
these methods is to use the pooling layer to learn the global
feature from the local ones.

More recent studies focus on how to improve the local
region feature extraction [3], [32], [33]. These methods have
shown impressive potentials in the semantic segmentation task
on point cloud. For examples, A-CNN [3] was proposed to
annularly arrange the neighbor points and apply the convolu-
tion network on these arranged points to learn the local region
features. RS-CNN [32] designed a shape-aware convolution to
learn the local region features from the relation between points.
Both DensePoint [34] and ShellNet [35] focus on learning
and aggregating the geometric features of local regions under
different region scales. SK-Net [36] and KPConv [37] are
methods trying to address the local feature extraction by
finding the key points in the point clouds. As the methods
to aggregate different kinds of features, GS-Net [38] learns
the geometric relationships between local region features with
the Eigen-Graph, and InterpCNN [39] uses a learnable method
to integrate explicit geometric information with implicit local
region features. However, the max-pooling or concatenation
based operation in these methods still limit their ability to learn
the spatial relationships between these geometric features of
local regions.

The proposed Point2SpatialCapsule mainly focus on how
to aggregate the feature and relationships of local regions
after extracting local features. The usual practice for previous
methods is to apply the strategy of bottom-to-top point cloud
feature aggregation [11], [24], [27], [40], [41]. For example,
Kd-Net [24] performs multiplicative transformations according
to the subdivisions of point clouds based on the kd-trees.
SO-Net [27] employs a SOM to build the spatial distribution of
the input point cloud, which allows hierarchical feature extrac-
tion on both individual points and SOM nodes. However, most
of the above methods use max-pooling as a feature aggregation
method, which inevitably filters out the spatial relationships
among local regions. On the other hand, PVNet [42] is also
a notable method that considers the local feature aggregation,
which focuses on mining the difference in importance between
the local features. It employs high-level global features from
the multi-view data of input 3D shapes to mine the relative
correlations between different local features from the point
cloud data. Same as the above-mentioned methods, PVNet
only learns the different contributions among local regions,
while the spatial relationships among these regions are not
considered.
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B. View-Based Methods

The dominant performance of multi-view based methods
on the task of 3D shape retrieval comes from the research
progress of measuring the similarities between 2D image
features [43]–[46]. As one of the pioneering work, GIFT [44]
adopted the Hausdorff distance to measure the similarity
between the view sets of two 3D shapes. Another notable
research direction is to focus on PANORAMA views of 3D
shapes, where a PANORAMA view can be regarded as the
seamless aggregation of multiple views captured on a circle.
For examples, DeepPano [47] introduced a row-wise max-
pooling to relief the effect of rotation about the up-oriented
direction, and Sfikas et al. [48] introduced CNN for learning
the global features from the PANORAMA views in a consisi-
tent order. To explore the potential of attention mechanism,
the methods like 3DViewGraph [2] have been proposed to
integrate the spatial pattern correlations of unordered views
with attention weights, and Part4Features [7] developed a
novel multi-attention mechanism for aggregating the learned
local parts.

More recently, SeqViews2SeqLabels [8] was proposed to
learn 3D features via aggregating sequential views by RNN,
which aims to eliminate the effect of rotation of 3D shapes.
Compared with the previous pooling based methods, the RNN-
based SeqViews2SeqLabels suffers less from the content
and the spatial location loss. Similarly, as an unsupervised
approaches, VIP-GAN [6] trains an RNN-based neural net-
work architecture to solve multiple view inter-prediction tasks
for each shape.

C. Voxel-Based Methods

Voxel-based methods often rasterize a 3D shape as
a function or distribution sampled on voxels [49]–[51].
For supervised learning the representation of 3D voxels,
3DShapeNets [52] adopted the convolutional restricted Boltz-
mann machine to learn the representation of 3D voxels.
O-CNN [40] learns the representation of 3D voxel based
on a novel octree structure. And Han et al. [53] proposed
a novel permutation voxelization strategy to learn high-level
and hierarchical 3D local features from raw 3D voxels. For
unsupervised learning, methods like VConv-DAE [54] use the
fully convolutional autoencoder for unsupervised learning the
voxel representation by reconstruction. However, the problem
is, considering the induced complexity and limitations of
directly exploiting the sparsity of voxel grids, it is difficult
to introduce the large scale or flexible deep networks for
representation learning. Therefore, more recent methods such
as OctNet [41] and kd-net [24] consider to utilize the scalable
indexing structures for solving this problem, where deep neural
networks can be further adopted for achieving more impressive
results.

D. Mesh-Based Methods

As for mesh-based methods, to explore the effectiveness of
the heat diffusion based descriptor, Xie et al. [55] proposed
a shape feature learning scheme based on auto-encoders,
where the model can extract the features that are insensitive

to the deformations. By fully utilizing the spectral domain,
Xie et al. [56] further proposed to learn a novel binary
spectral shape descriptor with the deep neural network for 3D
shape correspondence. Recently, BoSCC [57] was introduced
for a spatially enhanced 3D shape representation based on
bag of spatial context correlations. And more recently, Deep
Spatiality [58] was also proposed to simultaneously learn 3D
global and local features with novel coupled softmax.

E. Capsule Networks

The ability of capsule network [29] for capturing spatial
relationships comes from the dynamic routing algorithm and
the log priors, which are bound to the absolute location
on the input feature maps. Specifically, the capsule network
learns the log priors by considering the relationships between
the absolute locations on the feature map and the high-level
capsules. Then, through the dynamic routing algorithm, which
is based on the learned log priors, the high-level capsules can
integrate the low-level features and their spatial relationships
among different locations on the feature maps. This advantage
promotes us to consider applying the capsule network to 3D
point cloud representation learning.

So far, the capsule network has shown the great potentials in
many research areas, such as image processing [59], [60] and
natural language processing (NLP) [61]–[63]. However, as for
the application of capsule network in 3D shape representation
learning, there are a few methods proposed in recent years.
For example, 3D-CapsNet [64] adopts the capsule network
for 3D shape classification tasks based on volumetric data,
and 3D-Point-Capsule [65] learns the point cloud represen-
tation and part segmentations in an unsupervised way. And
for supervised learning, 3DCapsule [66] applies the capsule
network as an extension of fully-connected layers for point
cloud classification.

An important problem of the above methods is that they all
build the capsule layers over the global feature (usually pro-
duced by the fully-connected layer or max-pooling) of point
clouds, where the spatial relationships between local region
features have been filtered out by the network. Therefore,
the log priors in routing algorithm cannot learn the spatial
distribution among the extracted local features, which limits
the biggest advantage of capsule network for aggregation
spatial relationships of local regions.

Therefore, to address this problem of previous methods,
Point2SpatialCapsule aggregates the features into clusters in
feature space, and applies the routing algorithm between these
aggregated clusters. In the research of point cloud repre-
sentation learning, methods like PointNetVLAD [67] have
adopted the similar clustering strategy, i.e. NetVLAD [68],
for feature aggregation. However, different from the previous
methods that only cluster features for aggregating regions with
similar geometric characteristics (e.g. shapes), our method
takes one step further to not only considering geometric
characteristics, but also explore the potentials for aggregat-
ing spatial relationships between these regions. Specifically,
Point2SpatialCapsule produces the clusters for both the fea-
tures and their coordinates, in order to explicitly preserve the
features and their spatial location.
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Fig. 3. The architecture of our proposed Point2SpatialCapsule. For input point clouds, (a) the multi-scale local feature extraction first extracts features from
multi-scale areas, (b) then the geometric feature aggregation encodes the extracted multi-scale local region features and their locations into the learnable
clustering centers to produce the feature-spatial embeddings. The spatial relationship aggregation aggregates the feature-spatial embeddings by considering
both the embeddings and their spatial relationships. (c) The task oriented network is adopted for performing on different tasks.

III. SHAPE REPRESENTATION LEARNING

WITH POINT2SPATIALCAPSULE

An overview of shape representation learning network with
Point2SpatialCapsule is shown in Fig. 3. The whole network
consists of three main parts as follows. (1) The first part is the
multi-scale local feature extraction, which is a PointNet++
based network for extracting the features from multi-scale
local regions on point clouds (see Sec. III-A). (2) The second
part is Point2SpatialCapsule, which is composed of two main
modules for aggregating the learned features into the global
shape representation. Here, the first module, i.e. geometric
feature aggregation, is to aggregate local region features into
clusters (see Sec. III-B). The second module, i.e. spatial
relationship aggregation, is to aggregate the feature clusters
and their spatial relationships into global feature representation
(see Sec. III-C). In this section, we will also detail the training
procedure of Point2SpatialCapsule (see Sec. III-D). (3) The
third part is the task oriented network used for various tasks
such as shape segmentation (see Sec. III-E).

A. Multi-Scale Local Feature Extraction

The first part of our network is the multi-scale local fea-
ture extraction, as shown in Fig. 3(a). Given a set of input
points X = {x1, x2, . . . , xn}, by following the practice of
PointNet++ [25] and ShapeContextNet [69], we iteratively
produce a subsampling {xk1 , xk2 , . . . , xkM } with M points
as the centroids of the local regions using farthest point
sampling (FPS), such that the newly added point xk j is
the farthest point (in metric distance) from the rest sampled
points {xk1 , xk2 , . . . , xk j−1}. Then, for each sampled point,
the K nearest neighbor (kNN) searching is employed to find

{Ki |i = 1, . . . , T } neighbors for this point, under T different
scale areas. Followed by a grouping layer, the sampled point
and its neighbors are grouped as a Ki ×3 tensor for scale Ki .
After that, a simple but effective MLP layer is employed to
extract the features of all neighbor points, producing a tensor
with shape Ki ×C . Finally, a max-pooling layer is applied to
integrate the point features in each scale to produce the scale
feature of dimension C for scale Ki . For M points in total and
T scales for each point, the multi-scale local feature extraction
layer produces M × T multi-scale features, forming a tensor
of shape M × T × C as its output.

In the implementation, we apply two layers of multi-scale
local feature extraction for hierarchically extracting features
from point clouds.

B. Point2SpatialCapsule: Geometric Feature Aggregation

In this subsection, we detail the first module of
Point2SpatialCapsule, which aims to aggregate the extracted
features into clusters and encodes these features with spatial
locations.

As shown in Fig. 3(b), before clustering features, the module
of geometric feature aggregation first applies the multi-scale
shuffling to enhance the diversity of features. Then the features
are aggregated into clusters and encoded with the spatial
locations (e.g. the absolute locations in the 3D space) from
the original 3D space.

1) Multi-Scale Shuffling: Different from the previous meth-
ods that apply the pooling-based strategy for integrating
the features extracted from multi-scale regions, we propose the
multi-scale shuffling layer to build the shuffled features. The
reason for adding this layer is demonstrated in Fig. 4,
as explained below. When searching the neighbor points in
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Fig. 4. Illustration of feature similarity between adjacent points. Features
of small scales are not very similar because of the small overlap in sampled
points. On the contrary, the features of large scales are more similar because
of a larger overlap.

Fig. 5. Illustration of the multi-scale shuffling, which is the solution to the
problem of feature similarity.

a large scale, the searched areas of two adjacent centroids
will overlap with each other and output the same neighbor
points. As a result, the adjacent points will tend to have the
similar features for large scale, which can reduce the diversity
of features and introduce an initial clustering center for the
subsequent clustering layer. On the other hand, the features
of small scales between two centroids are dissimilar because
of small overlaps. Therefore, the multi-scale shuffling is
introduced to smooth the perceived range of features between
different scales and enhance the feature diversity, by mixing
the dissimilar features of small scales with the similar features
of large scales. As a result, the multi-scale shuffling can
promote the network to consider all input features equally and
alleviate the problem of similar features.

The effect of multi-scale shuffling is shown in Fig. 5. Specif-
ically, given a point with T scale features of C dimension,
which forms a tensor with the shape T × C , the multi-scale
shuffling periodically rearranges the elements in the T × C
tensor into a tensor of shape r T × (C/r), where r is an
integer. Thus, for M points in total, the multi-scale shuffling
will produce M × r T shuffled features of dimension C/r ,
resulting in a tensor of size (M × r T )× (C/r).

The multi-scale shuffling is inspired by the subpixel con-
volution [70] for image upsampling, where the number of
area scales T can be considered as the size of image, and the
feature dimension C can be regarded as the channels of feature
maps. However, different from subpixel convolution which is
designed for speeding up the calculations and reducing the
amount of parameters in the network, the multi-scale shuffling
used in our method aims to enhance the diversity of scale
features. We will quantitatively explore the importance of the
multi-scale shuffling in ablation studies in Sec. IV-E.

2) Feature Aggregation With Spatial Encodings: The pur-
pose of this layer is to aggregate the shuffled features into
the learnable feature cluster centers, which can be regarded as
the latent embeddings describing the semantic patterns of the
local regions features. To achieve this purpose, we propose to
cluster the features in the feature space and their coordinates
in the original 3D space. After that, the cluster centers in both
the feature space and the 3D space are fused to produce the
feature-spatial embeddings, as illustrated in Fig. 6(a).

Although the traditional clustering methods like k-means
can be adopted to produce the feature cluster centers, their
computational cost may be very high because of the huge
number of features to be clustered. Therefore, inspired by
the recent development of NetVLAD [68], we adopt the soft-
assignment for learning the clustering centers for the input
shuffled local features. Specifically, the network learns Q clus-
ter centers for input features, denoted as {q1, q2, . . . , q Q |qk ∈
R

C/r }, as colored by yellow in Fig. 6(a). For each cluster
center qk , the layer produces a feature embedding C(qk) ∈
R

C/r , which is an aggregated representation over the whole
input shuffled features { p̂i }, denoted by

C(qk) =
n∑

i=1

ewT
k p̂i + bk

∑
k� e

wT
k� p̂i + bk�

( p̂i − qk), (1)

where {wk} and {bk} are the weights and biases, respectively,
that determine the contribution of each local feature to the
cluster center qk . During training, all the weights, biases
and the cluster centers are updated through back-propagation
algorithm.

To explicitly encode the spatial locations of local features
into their cluster centers, we first cluster the coordinates
{xi } of input points into the coordinates cluster centers
{ y1, y2, . . . , yQ | yk ∈ R

C/r }, which is the same process as
described above and colored by green in Fig. 6(a). The spatial
embeddings C(yk) ∈ R

C/r for coordinates is given as

C(yk) =
n∑

i=1

ewT
k xi + b�k

∑
k� e

wT
k� xi + b�k�

(xi − yk). (2)

Then, the produced local feature embedding and its cor-
responding spatial embedding are concatenated to form an
explicit feature-spatial embedding C(sk) = [C(yk) : C(qk)].

C. Point2SpatialCapsule: Spatial Relationship Aggregation

In Fig. 6(b), we show the overall architecture of previous
methods [65], [66] for building the capsules, and compare it
with our proposed Point2SpatialCapsule shown in Fig. 6(a).
The main difference is that Point2SpatialCapsule builds the
spatial-aware capsules based on cluster centers with spatial
encodings, while the previous studies simply build the cap-
sules based on the single representation vector generated by
fully-connection or pooling based local feature aggregator.
As a result, the previous methods fail to preserve the spatial
relationships between local regions, which further limits the
representation learning ability of dynamic routing.

In this subsection, in order to efficiently learn the prior
logs, we first independently generate the spatial-aware cap-
sules from the feature-spatial embeddings using rearrange
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Fig. 6. Comparison of the strategies for applying dynamic routing in local region features between (a) Point2SpatialCapsule and (b) the previous methods [65],
[66]. The previous methods directly use a feature aggregator (e.g. max-pooling) to aggregates all local region features, and generate the capsules based on the
aggregated global feature. In contrast, Point2SpatialCapsule proposes to cluster the local region features and the point coordinates, and then combines them
as spatial-aware cluster centers. The spatial-aware capsules of Point2SpatialCapsule are independently generated according to each cluster centers.

Fig. 7. Illustration of rearrange and squashing layer. The green block is the
3D spatial embedding, while the yellow, blue and red block together constitute
a feature embedding.

and squashing. Then, we propose to apply routing algorithm
between the spatial-aware capsules.

1) Rearrange and Squashing: To build the spatial-aware
capsules from the feature-spatial embeddings produced by
the geometric feature aggregation module, we deviate from
the 2D practice of the original capsule network [29]. In the
original capsule network, the spatial-aware capsule aggregates
its representation vector by collecting the output logits across
different channels at the same location on the feature maps.
In Point2SpatialCapsule, since we have built the feature-
spatial embeddings encoded with the spatial locations, we can
consider that each embedding corresponds to a fixed location,
which is the learnable cluster center. Therefore, we can directly
rearrange the output and use the fully-connected layer with
a squashing activation to produce the spatial-aware capsules.
The rearrange layer is to split the feature-spatial embeddings
C(sk) into several short vectors {ui }. As shown in Fig. 7,
the input feature-spatial embedding is split into K = 3 vectors,
each of which is combined with the spatial embedding. Then,
we follow a squashing layer, as denote by

squashing(ui ) = �ui�2
1+ �ui�2

ui

�ui� , (3)

where the spatial-aware capsules {ui } are generated as the final
output of this layer.

2) Routing Algorithm: Given the input spatial-aware cap-
sules, we follow [29] to apply dynamic routing algorithm to

obtain the digit capsule. Specifically, the digit capsule v j is the
output of weighted sum of the prediction vector ûi j followed
by the squashing layer, which can be formulated as

ûi j = Wij ui , (4)

v j = squashing(
∑

i

ci j ûi j ), (5)

where ui is the i th spatial-aware capsule and Wij is a learnable
matrix. The coupling coefficients [29] ci j is determined by the
iterative dynamic routing process, denote by

ci j = ebi j

∑
k ebik

. (6)

In 2D capsule network, the {bi j } are log priors that only
depend on the fixed locations and the type of two capsules.
In our network, because the disordered input features are
clustered as the feature-spatial embeddings by soft-assignment,
these features are bounded to the fixed locations (which are the
cluster centers) in the feature space. Therefore, the dynamic
routing can learn the log priors between these centers and the
digit capsules.

Before training, all of the log priors {bi j } are initialized to
zero. During training, {bi j } are learned discriminatively at the
same time with other parameters in the network, by adding
the scalar product of vi j and ûi j , i.e.

bi j ← bi j + vi j · ûi j . (7)

D. Point2SpatialCapsule: Training

Following the practice of [29], Point2SpatialCapsule uses
the reconstruction loss and the classification loss for super-
vised point cloud representation learning.

The length of each digit capsule indicates the probability
that the characteristic represented by this capsule exists in the
input point clouds [29]. During training, the margin loss Lcls
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is adopted for shape classification defined as

Lcls =
∑

j

Tj max(0, m+ − �v j�)2

+
∑

j

λ(1 − Tj ) max(0, �v j� − m−)2, (8)

where Tj = 1 if class j is the true label; otherwise, Tj = 0.
m+, m− and λ are the hyper parameters.

We further reconstruct the input point clouds using four
fully-connected layers, with each layer followed by a relu acti-
vation and batch normalization except for the last layer. The
digit capsule corresponding to the true label is used as the
input representation vector to the reconstruction network.
The chamfer loss between the original point cloud X and
the reconstructed point cloud X̂ = {x̂i } is adopted as the
reconstruction loss Lrec , as denoted by

Lrec = 1

|X|
∑

x∈X

min
x̂∈X̂
�x − x̂� + 1

|X̂|
∑

x̂∈X̂

min
x∈X
�x̂ − x�. (9)

The total loss for training is the weighted sum of margin loss
and the reconstruction loss, as denote by

L = Lcls + αLrec, (10)

where α = 0.0001 for all the experiments in this article.

E. Model Adjustments for Part Segmentation

The goal of part segmentation is to predict a semantic label
for each point in the point cloud. There are two alternative
ways for acquiring the per-point feature for each point from
the global feature: duplicating the global feature with N times
[1], [31], or performing upsampling by interpolation [25], [27].
In this article, we follow the second way to duplicate the
vectors in digit capsules belonging to the true label. Then we
concatenate the duplicated vectors with the shuffled features.
The interpolation layers are used for propagating the features
from shape level to point level by upsampling, as shown
in Fig. 8.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: The 3D shape classification and retrieval
experiments are conducted on two subsets of the Princeton
ModelNet dataset [52], i.e. ModelNet40 and ModelNet10.
The ModelNet40 dataset contains 12,311 shapes which belong
to 40 categories. We follow the same training and split
settings as [27], which contains 9,843 shapes for training and
2,468 shapes for testing, respectively. The ModelNet10 dataset
is a relatively small dataset which contains the 10 com-
mon categories of ModelNet40. Following [27], we split
the ModelNet10 into 2,468 training samples and 909 testing
samples. Since the original ModelNet provides CAD mod-
els represented by vertices and faces, we use the prepared
ModelNet10/40 data from [25] for fair comparison. To fur-
ther evaluate the effectiveness of Point2SpatialCapsule on 3D
shapes collected with real scan acquisition, we also conduct
experiment on ScanNet dataset [71]. Specifically, we extract

Fig. 8. Illustration of the segmentation network in our Point2SpatialCapsule.

14 out of 20 categories in terms of instance labels from
ScanNet dataset, where the labels that we did not use are
typically not common classes (e.g. wall/floor). We use the
objects in the training split of ScanNet as our training set,
and the objects in validation split as our validation set. The
total number of objects in training set is 12,412 and in test
set is 3,457. The part segmentation task is conducted on the
ShapeNet part dataset [72], which contains 16,881 models
from 16 categories and is split into training, validation and
testing following PointNet++. There are 2048 points sampled
for each 3D shape, where each point in a point cloud object
belongs to certain one of 50 part classes and each point cloud
contains 2 to 5 parts.

2) Classification and Retrieval Settings: Because the length
of representation vector in digit capsule indicates the prob-
ability that certain characteristic exists in the input point
clouds. In the case of Point2SpatialCapsule, the characteristic
of digit capsule is the class label. Thus, we choose the digit
capsule v j with the biggest length �v j� as the predicted
label for shape classification. For the shape retrieval task,
we use the Euclidean distances between the length vectors
V = [�v1�, �v2�, . . . , �vm�] of point clouds for similarity
measurement. Such similarity measurement is in accordance
with the way how capsule stores information. What’s more,
a direct comparison between the length vectors requires less
computational cost than comparing representation vectors in
capsules.

3) Implementation Details: In this article, we use two
multi-scale local feature extraction layer for hierarchically
extracting features from point clouds. For the first feature
extractor, the input is 1024 points associated with their x, y
and z coordinates, from which 512 points is sampled using
farthest point sampling. For each sampled point, we select
[8, 16, 32, 64] nearest neighbor points of four scales. The
MLPs used in the first block have [32, 32, 64] units for each
layer. The second feature extractor samples 256 points out of
the 512 points. The number of points for kNN search is the
same as the first block. The MLPs for the second block have
the units of [64, 64, 128] for each layer. The parameter r for
multi-scale shuffling is 2. The number of the cluster centers
is Q = 64 and the dimension is C = 256. In the rearrange
and squashing layer, we split each embedding into 16
16-dimensional short vectors, which form 1024
16-dimensional spatial-aware capsules in total.
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TABLE I

THE SHAPE CLASSIFICATION ACCURACY (%) COMPARISON ON
MODELNET10 (MN10) AND MODELNET40 (MN40)

B. 3D Shape Classification

1) ModelNet: Table I compares Point2SpatialCapsule with
the existing state-of-the-art methods of point cloud based
representation learning in terms of shape classification accu-
racy under ModelNet10 and ModelNet40, respectively. For
convenience, we arrange the results according to the different
types of input (e.g. multi-views, 1024 points, 2048 points,
and normals). From Table I, we draw two conclusions to
demonstrate the superiority of Point2SpatialCapusule over
other methods as follows.:
• On the one hand, in the context of point cloud

based representation learning, our Point2SpatialCapsule
achieves the best result (93.4% on MN40) under the
most widely adopted experimental settings (i.e. 1024pts
input without normals). Moreover, when comparing
Point2SpatialCapsule with other methods across differ-
ent experimental settings based on point cloud input,
it still achieves the best classification performance
(93.7% on MN40), which proves the superiority of our

method over the current studies. We specially note that
Point2SpatialCapusule outperforms the baseline method
PointNet++ (i.e. the backbones of multi-scale local
feature extraction module in Point2SpatialCapsules) by
2.7%. Specially, Point2Capusule with additional normal
vectors achieves the best results (93.7% on MN40),
which reach the highest classification accuracy across all
experiment settings based on point cloud inputs.

• On the other hand, when comparing Point2Spatial
Capuslue with some recent multi-view based methods,
Point2SpatialCapuslue still has the ability to achieve an
equivalent classification performance, where the high-
est accuracy of multi-view based studies is 93.8% [2]
and our Point2SpatialCapsule achieves 93.7%. Note that
multi-view based methods can leverage more information
(such as texture, illumination and RGB colors) compared
with point cloud based methods. As a result, multi-view
based methods usually achieve better classification perfor-
mances than point cloud based methods. Such conclusion
can also be drawn from Table I by comparing other point
cloud based methods with different multi-view based
methods. However, the 2D view inputs significantly limit
the potential applications of multi-view based methods in
other 3D deep learning tasks (e.g. 3D semantic segmenta-
tion, 3D instance segmentation and 3D object detection).
In contrast, point cloud based methods can be directly
applied to a wider range of 3D applications than multi-
view based methods.

In detail, we point out that both PointNet++ and
Point2SpatialCapsule use a multi-scale local feature extrac-
tion strategy, where the difference lies in the method used
for aggregating local features. The PointNet++ applies
max-pooling for aggregating the local features, while
Point2SpatialCapsule uses the geometric feature aggregation
with spatial relationship aggregation for learning the global
representation. Therefore, the improvement in classification
accuracy of Point2SpatialCapsule proves the effectiveness of
the proposed network for local feature aggregations.

3DCapsule [66] is the work most related to our
Point2SpatialCapsule in Table I. As already discussed in
Sec.II, 3DCapsule simply applies the capsule network on the
global features produced by a pooling/full-connected layer,
which falls into the scenario of information loss of the
spatial locations. In contrast, our Point2SpatialCapsule applies
dynamic routing on the feature-spatial embeddings generated
by the geometric feature aggregation module, which can
aggregate both the features and their spatial location. The
experimental results in Table I shows the implementation of
capsule network in our Point2SpatialCapsule is more effective
than the implementation of 3DCapsule.

Both PointCNN and DGCNN are CNN-based neural net-
works, which aim to preserve the spatial locations and
spatial relationships of local regions. However, both of
them use the max-pooling for aggregating the local region
features, which filters out the spatial locations and rela-
tionships, especially when aggregating the local features
into the global features. Therefore, the dynamic routing
based Point2SpatialCapsule yields better performance than
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the PointCNN and DGCNN, which demonstrates the superior
advantages of Point2SpatialCapsule for preserving the spatial
locations and relationships.

As seen in Table I, our Point2SpatialCapsule outperforms
most of the xyz-input methods on point clouds. Specifically,
our result is ranked the first place under ModelNet10 (95.8%),
and ranked the second place under ModelNet40 (93.4%) which
is slightly lower than RS-CNN [32] by 0.2%. As claimed
in [32], RS-CNN performed “ten voting tests with random
scaling and averages the predictions” during testing. In con-
trast, we only apply the single model prediction for fair
comparison with most of the existing methods [24], [27], [66].
Moreover, when using additional normal vectors as the input,
the proposed Point2SpatialCapsule can achieve the best perfor-
mance among all reported results under ModelNet10 (95.9%)
and ModelNet40 (93.7%), respectively. This convincingly ver-
ifies the effectiveness of Point2SpatialCapsule.

When compare Point2SpatialCapsule with graph-based
neural networks (e.g. AGCN, 3D-GCN and SPH3D-GCN),
Point2SpatialCapsule still leads the best performance on Mod-
elNet dataset. Although these graph-based neural network have
greatly improved the performance of learning the relationships
between discrete points, these networks still fail by using
pooling-based feature aggregation, which loses information.
And this is exactly addressed by our Point2SpatialCapsule (as
we have discussed in the Introduction Section). More specif-
ically, most of these graph-based neural networks still aggre-
gated the learned features/weights between points/regions by
pooling-based layer (i.e. both RS-CNN and 3D-GCN used the
channel-wise max-pooling to aggregate relationships between
center point and its neighbors), which can only preserve the
most prominent features. In contrast, the Point2SpatialCapsule
uses the dynamic routing technic to allow the network preserve
all the features with their spatial relationships. By resolving
these issues, Point2SpatialCapsule consistently outperforms
these state-of-the-art methods on point cloud representation
learning.

2) ScanNet: We typically compare Point2SpatialCapsule
with three commonly used baselines (i.e. PointNet,
PointNet++ and DGCNN), where PointNet++ is part
of the backbone of Point2SpatialCapsule and DGCNN is
a graph-based neural network. The results of all compared
methods are produced by following their source code released
by each paper, as shown in Table II. From the comparison
we can find that Point2SpatialCapsule outperforms the other
three methods by a non-trivial margin. Since objects in
ScanNet are obtained by real scans, they are usually sparse
and incomplete (as illustrated in Figure 9). Therefore, in order
to correctly predict labels for 3D objects, the network is
required to integrate the local region features as a whole
(by dynamic routing), instead of only focusing on prominent
part (by max-pooling layer). And this is the reason that
Point2SpatialCapsule outperforms previous methods on the
real scan dataset.

C. 3D Shape Retrieval

In Table III, we compare the proposed Point2Capusules with
counterpart methods in 3D shape retrieval task, in terms of

Fig. 9. The visual comparison of shape quality between ScanNet dataset and
ModelNet dataset. The classification task on ScanNet objects is more difficult
due to shape incompleteness and point cloud sparsity.

TABLE II

THE SHAPE CLASSIFICATION ACCURACY (%)
COMPARISON ON SCANNET V2

TABLE III

THE SHAPE RETRIEVAL ACCURACY IN TERMS OF MAPS
ON MODELNET10 AND MODELNET40

Fig. 10. The comparison of precision and recall curves obtained by different
methods under (a) ModelNet40 and (b) ModelNet10.

mean average precisions (mAPs). Since most of the methods
focusing on 3D shape retrieval are based on multi-views of 3D
models, in this subsection, we also quote the experimental
results of the multi-view based methods to verify the effective-
ness of Point2SpatialCapsule. Note that, the results of PointNet
and PointNet++ are obtained by following the same training
procedure as described in their original papers, which are
denoted by ∗ in this table.

As shown in Table III, our method has achieved a com-
parable retrieval accuracy compared with multi-view based
methods on both ModelNet10 and ModelNet40. Specifically,
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TABLE IV

THE ACCURACIES (%) OF PART SEGMENTATION ON SHAPENET PART SEGMENTATION DATASET

Fig. 11. Visualization of part segmentation results. In each shape pair, the first row is the ground truth (GT), and the second row is our predicted result.
Parts with the same color are in the same part class.

Point2SpatialCapsule achieves the best retrieval accuracy
89.43% on ModelNet40, among all reported retrieval results.
Point2Capusles achieves the second place result (93.43%) on
ModelNet10, which is slight lower than SPNet [84] by 0.77%.
However, Point2SpatialCapsule still beats SPNet by 4.22% on
ModelNet40 in terms of mAPs, which shows a more balanced
performance of Point2SpatialCapsule over different scales of
datasets. The comparison of precision-recall (PR) curves under
ModelNet40 and ModelNet10 are shown in Fig. 10, where the
results of Point2SpatialCapsule show the high performance for
the 3D shape retrieval task.

The better performance of Point2SpatialCapsule
can be dedicated to the following two reasons. First,
the Point2SpatialCapsule is able to learn to encode the
spatial locations of local features, which can produce a
more discriminative representation for point clouds. Second,
the digit capsules provide a more interpretable features for
representing the point clouds, which is the length vector.
Compared with the traditional single vector representations,
in which the high-level characteristics are implicitly encoded
in the latent feature space, the length of digit capsule explicitly
indicates the probability that the characteristics appear in the
point clouds. Therefore, using the distance between length
vectors of digit capsules is more effective and interpretable
for 3D shape retrieval.

D. 3D Shape Part Segmentation
In Table IV, we also report the performance of

Point2SpatialCapsule on the part segmentation task in terms of

the Intersection over Union (IoU) [1]. As shown in Table IV,
our Point2SpatialCapsule achieves the mean instance IoU of
85.3%, which outperforms the baseline method PointNet++
on 13 categories out of total 16 categories. Note that,
same as PointNet++, Point2SpatialCapsule also employs the
multi-scale sampling and grouping strategy for local fea-
ture extraction. Therefore, the experimental results prove that
Point2Sequence improves the quality of local feature extrac-
tion, and leads to the better performance on the segmentation
task. Fig. 11 visualizes some examples of our segmentation
results, where our results are highly consistent with the ground
truth.

Note that, segmentation application needs discriminative
features of local regions. Although Point2Capsule is proposed
for global shape features by encoding the information of
spatial locations in local regions, rather than producing more
discriminative features of local regions like RS-CNN [32]
and PointCNN [26], we still achieve comparable results in
segmentation results.

E. Ablation Studies

In this section, we keep the settings of the network the same
as described in Sec.III, except for the specified part for ablation
study. We first investigate the influence of each part to our
model, and then we analyze three important hyper-parameters
in terms of classification accuracy on ModelNet40.

1) The Influence of Each Part to Point2SpatialCapsule:
In order to investigate the effect of each part in Point2
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Fig. 12. The visualization of reconstruction results on the test set of ModelNet40. The top roll is the input original point cloud, and the bottom roll is the
reconstructed point cloud from the Point2SpatialCapsule’s reconstruction network.

TABLE V

THE EFFECT OF EACH PART OF POINT2SPATIALCAPSULE

ON MODELNET40

TABLE VI

THE EFFECT OF THE ITERATIONS OF DYNAMIC
ROUTING ON MODELNET40

SpatialCapsule, we develop and evaluate three different vari-
ations of our model as follows. (1) ‘No-Multi’ is the model
without multi-scale shuffling, where the output of the multi-
scale feature extractor is the direct input to the soft-assignment
layer. (2) ‘No-VLAD’ is the model without the geometric
feature aggregation, where the output of multi-scale feature
extraction layer is directly reshaped as spatial-aware capsules
and input to the dynamic routing layer. (3) ‘No-Caps’ is the
model without the capsule net, where the output of geometric
feature aggregation module is concatenated as a single vector
and directly fed into the fully-connected layer for shape
classification.

The experimental results are shown in Table V. From the
results we can find that each part of Point2SpatialCapsule
contributes to the model performance. We note that, the No-
VLAD model achieves the worst performance among the four
models, which means that directly applying the capsule net-
work on the point cloud impairs the model’s representational
ability. The result of No-VLAD model supports our point of
view that dynamic routing cannot learn the log priors directly
from the disordered point clouds, and verifies the effectiveness
of the proposed geometric feature aggregation. The results
of No-Multi proves the importance of applying multi-scale
shuffling for smoothing the perceived range between features
of different scales. The significant improvement of Full-Model
compared to the No-Caps verifies the superior advantage of
capsule network for aggregating local features in point cloud
recognition.

TABLE VII

THE INFLUENCE OF THE NUMBER OF CLUSTER CENTERS IN GEOMETRIC

FEATURE AGGREGATION MODULE ON MODELNET40

TABLE VIII

THE INFLUENCE OF RECONSTRUCTION LOSS ON MODELNET40

2) The Analysis of Capsules Net: Following the common
practice of [29], we investigate the influence of iterations in
dynamic routing. As shown in Table VI, we report the model
performance with 1, 3 and 5 iterations of dynamic routing.
According to [29], multiple iterations will increase the model’s
learning ability but may also cause the problem of overfitting.
As for Point2SpatialCapsule, we find that dynamic routing
with 1 iteration is already enough for learning the point cloud
features.

3) The Analysis of Geometric Feature Aggregation: We
also analysis the influence of cluster centers in NetVLAD.
As shown in Table VII, the model achieves the best result
with 64 cluster centers. The explanations are two-fold: (1) the
small number of cluster centers could reduce the representa-
tional ability of feature embeddings; (2) the slight reduce in
performance of the large number of cluster centers is the result
of producing similar feature embeddings, which leads to the
information redundancy and hinders the model learning more
discriminative local features.

4) The Analysis of Reconstruction Loss: In Table VIII,
we discuss the influence of reconstruction loss, where α is the
weight factor as specified in Eq. (10). From the results, we find
that a large α leads to the decreasing of model performance,
which in our opinion is the result of a slower learning process
cause by the large reconstruction loss weight, especially during
the early stage of training. On the other hand, the experimental
results also prove the reconstruction loss useful. Compared
with a small weight (α = 10−5) and the model without recon-
struction (α = 0), the model with α = 10−4 outperforms them
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by 0.65% and 0.98%, respectively. In Fig. 12, we visualize
the reconstruction results on the test set of ModelNet40, from
which we can find that Point2SpatialCapsule can learn to
produce a relatively satisfactory result, despite of the simple
reconstruction network employed in the model.

V. CONCLUSION

In this article, we propose a spatial-aware network, named
Point2SpatialCapsule, to jointly aggregate geometric feature
and spatial relationships of local regions on point cloud.
The proposed Point2SpatialCapsule has a wide range of
potential applications, which can be combined with other
local feature extraction methods of multi-scale regions for
learning the global shape representation of 3D point clouds.
Compared with the previous feature aggregation methods,
Point2SpatialCapsule has the ability to integrate both the
geometric features of local regions and the spatial relationships
among them. The features of local regions are aggregated
by spatial-ware capsules with dynamic routing, which can
preserve the spatial relationships between the extracted fea-
tures. Experiments show that our network can achieve superior
performance on point cloud classification, retrieval and part
segmentation tasks under differen datasets.
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