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SPU-Net: Selt-Supervised Point Cloud Upsampling
by Coarse-to-Fine Reconstruction With
Self-Projection Optimization

Xinhai Liu™, Xinchen Liu, Yu-Shen Liu™, Member, IEEE, and Zhizhong Han

Abstract— The task of point cloud upsampling aims to acquire
dense and uniform point sets from sparse and irregular point
sets. Although significant progress has been made with deep
learning models, state-of-the-art methods require ground-truth
dense point sets as the supervision, which makes them limited to
be trained under synthetic paired training data and not suitable
to be under real-scanned sparse data. However, it is expensive
and tedious to obtain large numbers of paired sparse-dense point
sets as supervision from real-scanned sparse data. To address this
problem, we propose a self-supervised point cloud upsampling
network, named SPU-Net, to capture the inherent upsampling
patterns of points lying on the underlying object surface. Specif-
ically, we propose a coarse-to-fine reconstruction framework,
which contains two main components: point feature extraction
and point feature expansion, respectively. In the point feature
extraction, we integrate the self-attention module with the graph
convolution network (GCN) to capture context information inside
and among local regions simultaneously. In the point feature
expansion, we introduce a hierarchically learnable folding strat-
egy to generate upsampled point sets with learnable 2D grids.
Moreover, to further optimize the noisy points in the gener-
ated point sets, we propose a novel self-projection optimization
associated with uniform and reconstruction terms as a joint
loss to facilitate the self-supervised point cloud upsampling.
We conduct various experiments on both synthetic and real-
scanned datasets, and the results demonstrate that we achieve
comparable performances to state-of-the-art supervised methods.

Index Terms—Point cloud, upsampling,
coarse-to-fine, 2D grids, self-projection.

self-supervised,

I. INTRODUCTION

OINT cloud, as one of the most concise 3D represen-
tations, has drawn increasing research attention due to
its convenient access from various popular depth sensors,
such as LiDARs and RGB-D cameras. However, raw point
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clouds obtained from devices are usually sparse, noisy, and
non-uniform, which leads to a massive challenge for deep
neural networks to deal with such irregular data directly. Given
a sparse, noisy, and non-uniform point cloud, the task of
upsampling aims to generate a dense and uniform point set
as a trusted representation of the underlying object surface.
Therefore, point cloud upsampling, as an amended operation,
is meaningful for many downstream applications like render-
ing, analysis, reconstruction and other general processing.

Current point cloud upsampling methods with deep learning,
such as PU-Net [1], MPU [2], PU-GAN [3], PUGeo-Net
[4] and Dis-PU [5], have achieved outperforming results on
some synthetic datasets such as ShapeNet [6] and Vision-
Air repository [7]. However, these methods usually require
ground-truth dense point sets as the supervision to train the
neural network. And the supervision is usually constructed by
sampling on synthetic CAD models from publicly available
datasets [1], [3], which is unavailable for the real-scanned
data. Due to the absence of paired ground-truth dense point
sets, the aforementioned methods cannot be trained under the
real-scanned datasets such as ScanNet [8] and KITTI [9].
In addition, when data distributions from synthetic object data
do not match those from real scans, upsampling networks
trained on synthetic object data do not generalize well to
real (sparse) scans. For example, the supervised methods
trained on synthetic object data, such as PU-Net [1] and
PU-GAN [3], easily changed the origin topological structure
of underlying object surface on the real-scanned data or
scene point clouds. Therefore, it is promising to propose a
self-supervised point cloud upsampling method, which does
not require dense point sets as the supervision and can keep
the original data distributions.

Recently, some unsupervised image super-resolution meth-
ods [10], [11] have been proposed and achieved outperforming
performances in generating high-resolution images. However,
due to the irregular and unordered nature of point clouds,
it is non-trivial to directly apply these image super-resolution
methods to the unsupervised point cloud upsampling. Specifi-
cally, there are two challenges in the unsupervised point cloud
upsampling with deep learning models. (1) How fo establish
practical self-supervised information without the supervision
of dense point sets? Previous methods, such as PU-GAN [3]
and L2G-AE [12], first generate a dense point set with deep
networks and then downsample the dense point set back into a
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sparse point set, where some supervision is usually applied to
the sparse point sets. However, there is no direct supervision
for the dense point sets in the unsupervised upsampling task,
which makes it difficult to capture the inherent upsampling
patterns. To resolve this issue, we propose a coarse-to-fine
reconstruction framework to formulate the self-supervised
point cloud upsampling. Specifically, we first downsample
the input patch into some coarse patches and then capture
the inherent upsampling patterns by reconstructing the input
patch itself from the coarse patch. Next, a dense patch can be
obtained by aggregating multiple fine patches, which follow
the distribution of the input patch. (2) The point clouds upsam-
pled by deep networks should be a faithful representation of
the underlying object surface. Due to the irregular nature of
the point cloud and network bias in the generation of dense
point clouds from sparse ones, it is inevitable to bring some
noisy points around the underlying surface when generating
the upsampled dense point set, especially for unsupervised
upsampling methods. Therefore, some specific loss functions
are needed to constrain the spatial distribution of generated
points, including uniformity and flatness. To resolve these
challenges, we propose a novel self-projection optimization to
constrain the noisy points around the underlying surface to the
surface itself, and associate it with uniform and reconstruction
terms as a joint loss to facilitate the generation of upsampled
points.

To address the above challenges, we propose the coarse-to-
fine reconstruction strategy to explore the upsampling patterns
with only sparse point sets. In our approach, we intro-
duce two key components to support the coarse-to-fine point
upsampling, named point feature extraction and point feature
expansion, respectively. In the point feature extraction mod-
ule, we integrate self-attention with the graph convolutional
network (GCN) to fully capture the spatial context of points
within local regions. Furthermore, in the point feature expan-
sion, a hierarchical folding operation with learnable grids is
proposed to expand the point features gradually. And to refine
the final distribution of generated dense points, a joint loss
function is designed to constrain multiple geometry attributes,
including uniformity, noise, and overall shape. In general, our
contributions are summarised as follows.

o We propose a self-supervised point cloud upsampling net-
work (SPU-Net) which can be trained without the super-
vision of 3D ground-truth dense point clouds. SPU-Net
repeatedly upsamples from downsampled patches, which
is not restricted by the paired training data and can
preserve the original data distribution.

« We propose a coarse-to-fine reconstruction framework
to capture the inherent upsampling patterns inside local
patches, which introduces a novel self-supervision way to
learn to upsample point clouds.

o To constrain the distribution of generated points without
the ground-truth dense point sets, we introduce a novel
self-projection optimization, which interactively projects
the generated points onto the underlying object surface
along the projection direction.

To evaluate the performances of SPU-Net, we adopt four

widely used metrics to compare with the state-of-the-art
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methods under a variety of synthetic and real-scanned datasets.
Experimental results show that our self-supervised method
achieves good performance, comparable to the supervised
methods in both qualitative and quantitative comparisons.

II. RELATED WORK
A. Traditional Point Cloud Upsampling Methods

Traditional methods have tried various optimization strate-
gies to generate the upsampled point clouds without using deep
learning models. For example, Alexa et al. [13] upsampled the
point set by computing the Voronoi diagram and adding points
at the vertices of this diagram. Afterward, the locally optimal
projection (LOP) operator [14], [15] has been proved to be
effective for point resampling and surface reconstruction based
on L median, especially for point sets with noise and outliers.
Furthermore, Huang et al. [16] introduced a progressive strat-
egy for edge-aware point set resampling. To fill large holes
and complete missing regions, Dpoints [17] developed a new
point representation. In general, all these methods are not in a
data-driven manner, which heavily relies on shape priors, such
as normal estimation and smooth surface assumption.

B. Deep Learning Based Point Cloud Upsampling Methods

In recent years, deep neural networks have achieved out-
performing performances in various point cloud process-
ing tasks, including shape classification [18]-[21], object
detection [22], [23], semantic scene segmentation [24]-[26],
point cloud reconstruction [12], [27], [28] and point cloud
completion [29]-[33]. In the field of point cloud upsam-
pling, Yu er al. [1] as a pioneer, first proposed a deep
neural network PU-Net to upsample point set, which works
on patches by learning multi-level per-point features and
expanding the point set via multi-branch convolutions. Later,
they designed another edge-aware point cloud upsampling
network named EC-Net [34] to achieve point expansion
by minimizing the point-to-edge distances. Wang et al. [2]
presented a multi-step progressive upsampling network to
maintain the patch details further. Li ef al. [3] proposed a
GAN-based framework to generate high-quality upsampled
point sets. Recently, Qian et al. [4] incorporated discrete dif-
ferential geometry to guide the generation of points in the
point cloud upsampling. Li ef al. [S] proposed a two-step
point upsampling strategy, including dense point cloud gener-
ating and point spatial refining. Existing methods can already
generate high-quality upsampled point clouds under synthetic
datasets with the supervision of dense point sets. However,
these supervised methods require the ground-truth dense point
clouds as the supervision information and are not suitable for
the real-scanned data. Liu er al. [12] proposed a deep neural
network named L2G-AE in representation learning, which
can be applied for unsupervised point cloud upsampling by
reconstructing overlapped local regions. However, L2G-AE
concentrated on the capturing of global shape information
via local-to-global reconstruction, which limits the network
in capturing inherent upsampling patterns and generating
high-quality upsampled point sets. To fully explore the spa-
tial patterns inside sparse point sets, we present SPU-Net
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The architecture of SPU-Net. Given an input patch with N points, we first downsample the input patch into r coarse patches P;, each with N/r

points, where r is the upsampling rate. And then, we generate a fine patch Q; for each coarse patch P; in a coarse-to-fine reconstruction framework, which
consists of point feature extraction and expansion. Finally, we obtain the dense target patch 7 by aggregating all the fine patches. In addition, C and C’
are the number of feature channels that are 480 and 128, respectively, in the implementation; Lyec, L,y and Esp denote the reconstruction, uniform, and

self-projection terms, respectively.

to upsample from downsampled patches in a coarse-to-fine
reconstruction framework, enabling us to generate high-quality
upsampled point clouds in a self-supervised manner.

C. Unsupervied Point Cloud Analysis Methods

Recently, several methods have investigated unsupervised
or self-supervised learning strategies for point cloud analy-
sis [35]-[37]. The auto-encoder, such as FoldingNet [38] and
L2G-AE [12], is a widely used framework for unsupervised
point cloud learning, which adopts the input point cloud itself
as the reconstruction target. During the self-reconstruction
process, the corresponding point features are obtained, which
can be applied in various applications, such as shape clas-
sification [38], semantic segmentation [39], [40], and shape
generation [39]. Based on the encoder-decoder architecture,
some works conducted self-supervised information as the opti-
mization target, such as coordinate transformation [41], defor-
mation reconstruction [42], and part partition [43]. In addition,
the generative adversarial network [44] was also applied to
distinguish the generated point set or the real point set. In this
work, we adopt the generalized encoder-decoder framework
to build our self-supervised upsampling network based on
local patches. In order to capture the inherent upsampling
patterns, the key issue is how to reproduce the upsampling
process without requiring the supervised dense point sets.
To resolve this issue, we propose a coarse-to-fine reconstruc-
tion framework to reproduce point cloud upsampling inside
local patches. Specifically, we first downsample the input patch
into several subsets, and then the coarse-to-fine reconstruction
framework is applied to upsample the subsets. By repeating the
downsampling and upsampling steps, our method can generate
dense upsampled point sets.

III. THE SPU-NET METHOD
A. Overview

Given a 3D point cloud, we take the same patch-based
approach as PU-Net [1] and PU-GAN [3]. We first build

N, local patches according to the geodesic distance for the
3D point cloud, as shown in Figure 1. For each local patch
S = {si}f.\’:1 with N points, our goal is to output a dense
and uniform point set 7 = {tl-}{’:v1 with rN points, while
keeping the original data distribution, where s;, ¢; are the
coordinates of 3D points and r is the upsampling rate. Without
the supervision of ground-truth dense point sets, we propose
a coarse-to-fine reconstruction framework to reproduce the
upsampling process inside each local patch. By upsampling
the sparse patch to obtain the fine patch, we are able to capture
the inherent upsampling patterns for generating dense patch 7°
that is uniformly distributed on the underlying object surface.

Figure 1 illustrates the architecture of our SPU-Net. For
an input patch S, we first downsample S into r different
coarse patches {Pi,...,P;,..., P}, each with N/r points
(Section III-B). We then introduce the coarse-to-fine frame-
work to explore the inherent upsampling patterns inside local
patches (Section III-C), which contains two main components:
point feature extraction and point feature expansion. Lastly,
we present the patch-based training strategy with a joint loss
function formed by reconstruction, uniform, self-projection
terms (Section III-D).

B. Point Set Downsampling

Without the supervision of dense point sets, we have to
construct some self-supervision to support deep networks to
capture the inherent upsampling patterns. To take advantage
of the input patch without supervision, we propose a coarse-
to-fine reconstruction framework to generate the upsampled
dense patch. Specifically, as shown in Figure 1, we first
downsample the input patch S into some coarse patches
P; to formulate the self-supervision with the input patch
itself. Since the goal of point cloud upsampling is to gen-
erate a dense and uniform point set from a sparse input,
a relatively uniform initial input is beneficial for this task.
And the downsampling method largely determines the ability
of deep networks to capture the surface distribution of 3D
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The coarse-to-fine reconstruction framework. Given a coarse patch 7; with N/r points, we aim to generate the corresponding fine patch Q; with

N points. In this framework, there are two main components: point feature extraction and point feature expansion. Here, D and C are the numbers of feature

channels that are 64 and 480, respectively, in the implementation.

shapes, which should cover the distribution of the entire
input patch as uniformly as possible. Here, the farthest point
sampling (FPS) algorithm as a uniform downsampling strategy
is adopted in our method, which can generate more uniform
coarse patches than other sampling methods such as random
sampling and voxel-grid sampling. Specifically, we repeat the
process of picking out N/r points from the input local patch
S for r times with the FPS algorithm. Finally, we denote
the downsampled coarse patches as {P1,...,Pj,...,Pr}.
From the downsampled coarse patches, we can reveal the
inherent upsampling process by reconstructing the input
patch itself, which makes it possible to infer more dense
patches.

C. Coarse-to-Fine Reconstruction

In the coarse-to-fine reconstruction framework, there are
two main components: point feature extraction and point
feature expansion. In the point feature extraction, we integrate
self-attention with the graph convolution network (GCN) to
simultaneously capture the spatial context of points both inside
and among local regions. In the point feature expansion,
we propose a hierarchical learnable folding strategy to facili-
tate the feature propagation from sparse to dense in the feature
space.

1) Point Feature Extraction: To capture the context infor-
mation from discrete points, it is important to extract the
spatial correlation of points inside local regions. The graph
convolutional network (GCN) [18], [19], [45], [46] has been
widely applied to capture the context information inside
local regions in existing methods. However, these methods
often ignore capturing the correlation among local regions.
To simultaneously extract the context information both inside
and among local regions, we propose a point feature extrac-
tion module, which integrates self-attention units with GCNss,
as shown in Figure 2.

Given a coarse patch P; with the size of N/r x 3 as
input, three GCNs are first employed to capture the local
contexts inside local regions by building a local graph around
each point p{ . We introduce a hierarchical feature extraction

strategy with multiple semantic levels. Suppose the input

feature map of a GCN at level [ € {0, 1,2, 3} is F' = {f }1—1
with the size of M x C4, where f; I'is the i-th point feature
in F!. In particular, the feature map F° at level 0 is the raw
points from P;. To calculate the point feature f 1 we first
dynamically build a local region N/ ! with K nelghbors around
each point feature f with the k-NN algorithm. And then,
we formulate the propagation of point feature f Faeqo,1,2)
as

ey

it = max (o (ho(f'; — f1).
leN!

Here, (fl

to center point f, I hg indicates the learnable parameters in
multi-layer-perceptrons (MLPs), ¢ is a non-linear layer, such
as ReLU [47], and max is a max-pool operation. The max-
pool layer is applied to aggregate point features in the local
region ./\fl.l.

Following previous works [3], [12], we integrate self-
attention units to capture the correlation between local regions.
As shown in Figure 2, the self-attention unit cooperates with
the GCN to capture the detailed spatial context information
inside local patches. Suppose that the input feature map is F'
with the size of M x C;. Three MLPs are used to embed
F! into different feature spaces, X, Y and H, respectively.
In particular, X and Y are applied to calculate the attention
values with simple matrix multiplication, and the updated

f ) can be regarded as the edge from point f !

N
feature map F is calculated as

F' = F' + softmax(YX ) H. 2)
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After multiple self-attention units, the correlation among
local regions is captured at different semantic levels. We then
aggregate the multi-level point features by concatenation as

F=MLP(FloF o F oF) (3)

To further explore the correlation in the aggregated feature
F , we add another self-attention unit to obtain the final point
feature F.

2) Point Feature Expansion: The target of point feature
expansion is to construct the mapping from current points
to more points, which is widely used in some point-wise
applications, such as semantic segmentation [45], point cloud
reconstruction [44] and point cloud upsampling [3]. In gen-
eral, current point feature expansion methods can be roughly
categorized into the interpolating-based method [45], folding-
based method [38] and reshaping-based method [44]. Existing
point interpolating-based methods often use the point interpo-
lation relationship to guide the expansion of point features.
However, in many scenarios, the interpolation relationship
between point sets is usually unknown. In addition, reshaping-
based methods usually first expand the feature dimensions
with deep networks, such as MLPs or fully-connected (FC)
layers, and then generate the target point features via a
simple reshaping operation. In recent years, the folding-based
method has been developed, which first duplicates point fea-
tures and then concatenates 2D grids to guide point feature
expansion.

Compared with other feature expansion methods, the
folding-based method is more flexible and has achieved
satisfactory performances in various applications [29], [38].
However, previous fixed 2D grids are not adaptive to various
feature distributions. To resolve this problem, we propose
novel learnable 2D grids as the latent code to cooperate
with fixed 2D grids in guiding the point feature expansion.
As shown in Figure 2, given an input feature map with the
size of M x C4, we first duplicate the point features and then
concatenate two kinds of grids. In particular, the latent code
is initialized from a standard normal distribution and can be
optimized in the network training process. Moreover, in order
to smooth the point feature expansion process, we introduce
the hierarchical folding strategy. By using two upsampling
blocks, we hierarchically obtain the upsampled point features
F,, and F,, with an upsampling rate /7. With subsequent
MLPs, the point features F,, are applied to reconstruct the
fine patches.

D. Loss Function

1) Joint Loss: In our SPU-Net, we optimize the upsampled
point set with a joint loss L i, consisting of reconstruction
term L,ec, uniform term L,,; and self-projection term Lg),.
Overall, we train our SPU-Net by minimizing the joint loss
function in an end-to-end manner as

»Cjoint = aLrec + BLuni +y L:Sp» 4)

where o, f and y are hyper-parameters in training.
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2) Reconstruction Term: For an input local patch S, we first
downsample the input patch into some coarse patches, and then
we repeat upsampling from each one of the coarse patches to
explore the inherent upsampling patterns in a self-supervised
manner. Assume that Q; = {qJ}N | is the upsampled fine
patch from the j-th coarse patch P;. Thus, we formulate the

reconstruction term using chamfer distance (CD) for Q; as

Z Z min ||sl—q’||z

S 68‘1:

+Z Q” 2 min [ls; —q; lo- (5)

i=1 EQ

ﬁrec = dCD(S, Qj

3) Uniform Term: The reconstruction term encourages the
upsampled fine patch Q; to fit the input patch S. However,
the target dense patch 7 = {Qi,...,9;,..., 9,} should
be uniformly distributed on the underlying object surface.
Similar to [1], [3], we introduce a uniform term to improve
the uniformity of the final target patch 7 with size of r N x 3.
Specifically, we first use the farthest sampling to pick M seed
points in 7 and apply the ball query of radius ry to build
a local region (denoted as 7;,j = 1,..., M) in 7 around
each seed. Thus, the number of points roughly relies on the
small disk of area nr§ on the underlying surface. In addition,
the patch 7 is normalized in a unit sphere with an area of
712, So, the expected number of points 7 in T; is rNrg.
Suppose the local region 7; satisfies the regular hexagonal
distribution and the distance d; x is for k-th point in 7;. So,
the expected point-to-neighbor distance d should be roughly

/27 rd/(|T [+/3). To measure the deviation of |7;| from 71 and

dj i from d , we calculate the uniform term with chi-square as

M
»Cuni(lfj) = Z Unumber(,]}) : Udistance(lfj)
j=1

Z ITI

j=1 k=1

2 ‘7}‘ d: _dAZ
) Z( j,de ) ) (6)

4) Self-Projection Term: The reconstruction term and uni-
form term optimize the geometric shape and surface distri-
bution of the generated upsampled point sets, respectively.
However, due to the irregular nature of the point cloud and
network bias in the generation of dense point clouds from
sparse ones, it is inevitable to bring some noisy points in
the generated upsampled point sets. To resolve this problem,
we propose a novel self-projection loss function to constrain
the generated points to lie roughly on the underlying object
surface. Inspired by the traditional directed projection (DP)
algorithm [48], each point in the generated set can be pro-
jected to the underlying object surface by directed projection.
Differently, our SPU-Net is a learning-based method, which
constrains the generated point by loss functions. Therefore,
our self-projection loss term aims to characterize the local
distribution of points and penalize the noise distribution,
where the projection process of points is implicit. Considering
the distribution differences between input sparse patches and
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TABLE I
THE EFFECTS OF THE POINT DOWNSAMPLING STRATEGIES
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Fig. 3. The illustration of the optimization effect of the self-projection loss
term L. During the training, the noisy point ¢; can be gradually optimized to
the underlying object surface by from (a) to (d) minimizing the self-projection
term Lyp, where L) is calculated by measuring the local distribution of noisy
point ¢;, neighbor point ¢ ; and local center ¢; in the local region N;i.

generated dense patches, we formulate the function inside local
regions in a self- projection manner. Suppose the generated
fine patch is Q = {g; } L, with a size of N x 3. We first
build a local region N; around the i-th point of Q with the
k—nearest—neighbors algorithm. Then, we calculate the center
point q; = W_ Zq eN; (g;) of the local region N; to be
the projection target "of the current point g ;. Therefore, the
self-projection optimization is formulated with chi-square as

2 I(g: —q,)* — (@ —q,)°|

Lop = INIZ‘Z 1+ (q; —q,)?

@)

Here g is the weight of each point in the local region

1
> 14+(gi—q;
Nj. As shown in Figure 3, (¢; — qj)2 and (q; — qj)2 indicate
the real distribution and the target distribution of the local
region, respectively.

IV. EXPERIMENTS

In this section, we first investigate how some key
hyper-parameters affect the point cloud upsampling perfor-
mance of our SPU-Net. Then, we evaluate SPU-Net by
comparing it with state-of-the-art point cloud upsampling
methods qualitatively and quantitatively. In addition, we also
show some upsampling visualizations under KITTI [9], and
ScanNet [8], which illustrates the advantage of our SPU-Net
trained without supervision. And we engage in an ablation
study of network components in SPU-Net to evaluate the
effectiveness of different components. Finally, we conduct a
computational complexity analysis of our approach, where the
SPU-Net is comparable with other compared methods.

A. Datasets and Network Configurations

For a fair comparison, we do both quantitative and qual-
itative comparisons with state-of-the-art methods under the
dataset from PU-GAN [3], which contains 147 3D models
that are formed with 120 objects in the training dataset and
27 objects in the test set. And we follow the same patch-based
training strategy as in PU-Net [1], and PU-GAN [3].
By default, we crop 24 patches for each training model and
set the number of patch points N = 256, the upsampling rate
r = 4. Moreover, as for the uniform term, the number of seed
points M is 50, and we cropped the same set of 7; with radius
rq = /p for each p € {0.4%,0.6%,0.8%, 1.0%, 1.2%} as
in [3]. We train the network for 200 epochs with the Adam
algorithm [49]. Moreover, we set the learning rate as 0.0001,

Metric FPS RS MS VS

CD (10-3) 038 052 055 0.66

HD (10~3) 224 419 427 1720

P2F (10~3) 587 757 722 9.9

UNI (10-3) 894 1489 99 14.60
TABLE II

THE EFFECTS OF THE NUMBER OF REGION POINTS K

Metric K=5 10 15 20
CD (1073) 0.45 038 039 041
HD (10— 7) 3.03 224 251 248
P2F (10~3) 5.91 587 6.04 6.12
UNI (10-3) 1247 894 9.65 9.90

and we gradually reduce both rates by a decay rate of 0.7 per
50k iterations until 10~°. The batch size is 24, and «, f,and y
are empirically set as 100, 10, and 0.01 in Eq. (4), respectively.
We implemented our network with TensorFlow and trained it
on Nvidia 2,080 Ti GPU.

To evaluate the performance of point cloud upsampling,
we employ the same four evaluation metrics as PU-GAN [3],
including uniformity (UNI), point-to-surface (P2F), Chamfer
distance (CD), and Hausdorff distance (HD). For quantitative
evaluation, we use Poisson disk sampling to sample 2,048
points as training data for each 3D object and 8,192 points
as the ground truth upsampled point cloud in the testing
phase.

B. Parameters

All the experiments in parameter comparisons are evaluated
under the dataset from PU-GAN, where Chamfer distance
(CD), Hausdorff distance (HD), point-to-surface (P2F), and
uniformity (UNI, p = 1.2%) are adopted as evaluation
metrics. For each point cloud with 2,048 points, we sample
N, = 24 seed points with FPS and build local patches
according to geodesic distance. We initialize the network
hyper-parameters, as depicted in the network configurations.
Given an input patch, we first downsample this patch into
some coarse patches, which should cover the input patch
with a uniform distribution in the downsampling process.
Thus, the sampling methods influence the neural network to
capture inherent upsampling patterns. In Table I, we report the
results of three different sampling strategies, including farthest
point sampling (FPS), random sampling (RS), mixing of these
two sampling strategies (MS) and voxel-grid sampling (VS).
The results show that FPS can generate relatively uniform
distributions to cover input patches and facilitate point cloud
upsampling. The qualitative upsampling results with different
downsampling strategies are also illustrated in Figure 4, where
the FPS can promote better upsampling results than other
strategies.

Then, we investigate the impact of the number of local
points K in GCNs of the point feature extraction. Specifically,
we range the number of local region points K from 5 to 20.
Table II illustrates the results of different K. The best
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TABLE III
QUANTITATIVE COMPARISONS WITH THE STATE-OF-THE-ARTS
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. Uniformity for different p (10~3) P2F CD HD
?
Methods Supervised? o6 08%  1.0% 13% | (10-%) | (10-%) | (10-%)
PU-Net [1] Yes 29.74 3133 3386 36.94 4043 6.84 0.72 8.94
MPU [2] Yes 7.51 741 8.35 9.62 11.13 3.96 0.49 6.11
PU-GAN [3] Yes 3.38 3.49 3.44 391 4.64 2.33 0.28 4.64
Dis-PU [5] Yes 247 1.93 2.21 2.75 3.48 2.01 0.22 2.83
EAR [50] No 1684 2027 2398 2615 29.18 | 582 052 737
L2G-AE [12] No 24.61 34.61 4486 5531 6494 39.37 6.31 63.23
Ours (Train2Test) No 4.53 4.82 5.68 6.69 7.95 5.97 0.38 2.24
Ours (All2Test) No 4.71 5.02 591 7.03 8.50 5.79 0.37 2.55
Ours (Test2Test) No 4.82 5.14 5.86 6.88 8.13 6.85 0.41 2.18
Input GT FPS Random Voxel-grid TABLE IV
THE EFFECTS OF THE NUMBER OF PATCHES AND THE NUMBER
h h h OF POINTS INSIDE EACH PATCH
Metric N =128 256 384 512 Np,=12 18 30 36
CD (1079) 0.45 038 044 041 0.59 043 040 039
HD (103) 3.26 224 276 250 4.53 2.71 237 238
P2F (10~7) 5.84 587 655 7.04 6.32 623 631 625
UNI (10~5) 16.89 894 931 876 22.00 11.70 882 828
TABLE V

Fig. 4. The visualization of upsampling results in different downsampling
strategies under the PU-GAN dataset.

4,096 points 2,048 points 1,024 points 512 points 256 points

Inputs

16,384 points 8,192 points 4,096 points 2,048 points 1,024 points

SPU-Net

Fig. 5. The upsampling results with varying input sizes from 256 points to
4,096 points.

performance achieves at K = 10, which can effectively
capture the local region context inside local regions.

Moreover, we also evaluate the robustness of our SPU-Net
under different sparsity input point clouds. Figure 5 shows
the upsampling point sets with varying sizes of input points
from 256 to 4,096. Our method is stable even for input with
only 256 points.

Subsequently, we explore the number of sampled points N
in each input patch, which influences the distribution of local
patches in point clouds. In the experiment, we keep the settings
of our network as depicted in the network configuration section
and modify the number of patch points N from 128 to 512. The
results are shown in Table IV, where the upsampling metrics
on the benchmark have a tendency to rise first and then fall.
In general, the network reaches the best performance when
N = 256. Then, we keep the point number N = 256 and
investigate the effect of the number of patches N, for each 3D

THE EFFECTS OF THE NUMBER OF LOCAL POINTS kg IN
CALCULATING GEODESIC DISTANCE

Metric kp =3 4 5 6
CD (10-3) 0.39 039 038 047
HD (10~3) 225 230 224  3.18
P2F (10~3) 6.10 6.09 587 593
UNI (10~3) 9.11 930 894 13.64

shape. We changed the number of patches N, from 12 to 36.
From the results shown in Table IV, the three metrics slightly
fluctuate when N, goes from 18 to 36, which shows that these
patch number settings can cover the entire input point cloud
well. On the contrary, the patch number N, = 12 can not
cover all the information of point clouds.

Therefore, we employ the number of patches N, = 24 and
the number of patch points N = 256 as the setting of
our network in the following experiments. Then, as shown
in Table V, we show the effect of the number of local
points k, in calculating geodesic distance. We ranged the
local point k, from 3 to 6. The above results suggest that
kg = 5 is more suitable for our network and achieves the best
performances.

Finally, to investigate the ratio of loss functions, we range
the ratio a, f and y of loss functions Lec, Lyyi and Ly, as
shown in Table VI. The initialized loss ratios are a = 100,
f =10 and y = 0.01. From the experimental results, there is
a trade-off between the loss function ratio and the evaluation
metric. Therefore, we choose the initialization loss function
ratio as the final loss setting.

C. Results on Synthetic Dataset

We compare our SPU-Net with several state-of-the-art
upsampling methods both quantitatively and qualitatively,
including EAR [50], PU-Net [1], MPU [2], PU-GAN [3],
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Unsupervised methods

(a) Inputs

(2048 points) () PU-Net

(c) MPU

(d) PU-GAN

(e) EAR (f)L2G-AE  (g) SPU-Net

Fig. 6. The visualization results of upsampling from 2,048 points to 8,192 points under the dataset provided by [3]. With only a sparse point cloud as input,
our SPU-Net can also achieve comparable results as supervised methods, where the neural network and loss function simultaneously act on the generated

point clouds.

TABLE VI
THE EFFECTS OF THE LOSS FUNCTION RATIO a, f AND y

Metric a=>50 100 200 pS=5 20 v =0.005 0.02
CD (10— %) 0.49 0.38  0.39 0.39 0.40 0.37 0.38
HD (10—9) 3.36 224 2.64 2.36 2.26 2.32 2.35
P2F(10~ %) 9.16 587 5.55 5.43 6.55 6.04 6.13
UNI (1077) 13.81 894 9.46 9.53 9.21 8.12 10.83

Supervised
Selecting . Upsampling PU-GAN: W;

o

Raw points (ladder-back) Unsupervised

i—
SPU-Net: %—«@:;

Fig. 7. The upsampling results of a real-scanned object (bed) from the
ScanNet dataset [8]. The supervised methods (e.g., PU-Net [1] and PU-
GAN [3]) destroy the surface distribution of raw points (the ladder-back of
the bed). In contrast, our SPU-Net keeps the origin point distribution.

Dis-PU [5] and L2G-AE [12]. For EAR, we use its demo
code and generate the best results by fine-tuning the associated
parameters. Note that, for the recent work PUGeoNet [4],

4 4LRA
AdAAA

The visualization of different settings in the folding operation.

Baseline

Input

Fig. 8.

we cannot report the comparison results due to the unavailable
code and trained model so far. In addition, as for recent
Dis-PU [5], we report the quantitative results tested with
public code and trained model. In Table III, our SPU-Net
achieves comparable results with existing supervised upsam-
pling networks, such as PU-Net [1], and outperforms another
unsupervised method L2G-AE [12]. All evaluation metrics
are the same as the ones employed in PU-GAN, where the
uniformity is evaluated with varying scales p. And we report
multiple testing results of our SPU-Net under different training
datasets, including only the training dataset (Train2Test), only
the test dataset (Test2Test), and the entire dataset (All2Test).
In addition, we also show the qualitative comparisons in
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Fig. 9. The upsampling results under the ISDB dataset [51]. For each input sparse point cloud, we generate a 8,192 dense point set from 2,408 input points.

Figure 6, which shows that our SPU-Net can generate upsam-
pled point sets with more details.

To further evaluate our SPU-Net, we also visualize some
upsampling results from ISDB [51]. ISDB contains about
104 articulated models of animals and humans, some of that
have slight differences between models, which is challenging
for the point cloud upsampling task. For each shape, we first
sample 2,048 points from the 3D mesh with Poisson Disk
Sampling [52]. We aim to generate a dense point set with
8,192 points for each sparse input set with 2,048 points.
Here, we also evaluate some supervised methods with the
trained models under the dataset from PU-GAN, including
PU-Net [1] and PU-GAN [3]. For our SPU-Net, we directly
train our network under the ISDB dataset. From the results
in Figure 9, we find that our SPU-Net can well preserve the
detailed information of the input sparse point clouds.

D. Results on Real-Scanned Dataset

To evaluate the performance of SPU-Net, we directly
train the network under the real-scanned datasets, including
KITTT [9] and ScanNet [8]. As for preparing training data,
we first apply FPS to sample a certain number of seed points
and then use KNN to build local patches around these points.
Different from supervised methods, our method can be directly
trained under real-scanned data, and SPU-Net can preserve
the details of raw data as shown in Figure 7. Figures 11
and 12 show our upsampling results on real-scanned point sets.
From the results, our SPU-Net can generate dense and uniform
upsampled point sets from sparse ones. In particular, all results
under the real-scanned data are directly trained on the raw
points without ground-truth dense point sets. Therefore, our
SPU-Net can expand the training data from synthetic data to
the real-scanned data.
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Fig. 10. The effect of the self-projection term. There are six test 3D point clouds from the dataset of PU-GAN [3]. For each point cloud, we show the
sparse input point cloud (left), the upsampled point cloud without the self-projection term (middle), and the upsampled point cloud with the self-projection
term (right). The red boxes show the details brought about by the self-projection term.

Input SPU-Net Input SPU-Net

.
S

et

©
i

= S, T Py %ﬁ“—ﬂ
3 . A s

Fig. 11. The upsampling results (x4) under KITTI dataset [9]. We divide the real-scanned scenes into small patches with 256 points for each in training.

E. Ablation Study unit) and loss function terms, we remove each of them and
To evaluate the components in SPU-Net, including the generate upsampling results for testing models. Specifically,
coarse-to-fine framework (i.e., removing the self-attention we remove the self-attention unit (No self-attention, NSA),
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SPU-Net

Input

4223

Input SPU-Net

Fig. 12. The upsampling results (x4) under ScanNet dataset [8]. We pick out objects from indoor scenes and divide them into small pathches with 256 points

for each for training.

TABLE VII
THE EFFECT OF SOME KEY COMPONENTS IN THE SPU-NET

Metric Baseline NSA NHG NLG AS NRT  NUT NST GP
CD (1073) 0.35 044 068 036 042 4.68 038 065 041
HD (1073) 220 299 511 236 286 3458 255 624 253
P2F (10~9) 5.24 645 395 547 517 4044 449 901 593
UNI (1079) 9.65 1223 3048 997 1115 802.64 1349 1938 1035

the learnable grids (No learnable grid, NLG), the hierarchical
grids (No hierarchical grid, NHG), the reconstruction term (No
reconstruction term, NRT), the uniform loss (No uniform term,
NUT) and the self-projection term (No self-projection term,
NST), respectively. All above ablation studies are compared
with the full network pipeline (Baseline) and we also show
the results of adding supervision at the middle folding layer
(AS). Specifically, we apply a single-direction CD loss to
constrain the folding process in the AS setting. In addition,
we also replace the whole coarse-to-fine framework with
the generator of PU-GAN as a new baseline (Generator of
PU-GAN, GP) to show the effectiveness of our coarse-to-
fine framework. The results in Table VII suggest that all
key components play an important role in improving the
performance of our SPU-Net, where the network components
and the loss function work together to capture the inherent
upsampling patterns. In particular, we show the visualization
results in Figure 10, which demonstrate the effectiveness of
the self-projection loss function in optimizing noisy points to
the underlying object surface itself. To intuitively show the
impact of the folding settings, some qualitative results are
displayed in Figure 8, including without hierarchical grids
(w/o HG), only hierarchical grids (HG), adding supervision in
the middle folding layer (AS) and our base model (Baseline).
The results show that the hierarchical grids are important for
constraining the point distribution of point upsampling. And

PU-GCN MPU PU-GAN Dis-PU

oF

Ours

Input

Fig. 13. The comparison of different methods under PU-GAN data with noise
level of 2%. The colored boxes represent some local details of the point cloud
upsampling.

some middle supervision might be helpful for optimizing the
final distribution of points.

1) Noise Effect: The upsampling results under different
levels of noise are revealed in Figure 14. In our SPU-Net,
the proposed network learns to infer the dense points in a
self-supervised manner, which is a challenging task. In order
to constrain the distribution of upsampled points, we intro-
duce a joint loss function, including reconstruction term,
uniform term and self-projection term. Benefitted from the
self-projection term, our SPU-Net is robust to generate
dense points under different noise levels of 0.1%, 0.5%, 1%
and 2%.

As shown in Figure 13, we also visually compare the results
with different methods under PU-GAN data with noise level
2%. Benefit from the joint loss function and coarse-to-fine
upsampling strategy, our SPU-Net can explore upsampling
patterns inside input sparse patches. From the results, our
SPU-Net can keep the details of the input sparse point clouds,
which demonstrates our good generalization ability to noisy
point clouds.
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Noise=0.1% Noise=0.5% Noise=1%

Input

Noise=2%
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Noise=0.1%

Noise=0.5%

Noise=1% Noise=2%

Fig. 14. The result of our SPU-Net under different noise levels of 0.1%, 0.5%, 1%, and 2%. Our SPU-Net is relatively robust to the input.

Input GT PU-Net PU-GCN

MPU Dis-PU Ours

PU-GAN

Fig. 15.

TABLE VIII
THE ANALYSIS OF COMPUTATIONAL COMPLEXITY

Methods GFLOPs  Training parameters (Mb) ~ Forward time (ms)
PU-Net [1] 15.03 0.81 135.88
MPU [2] 27.52 0.30 368.81
PU-GAN [3] 5.67 0.68 146.16
L2G-AE [12] 15.43 100.18 185.10
Ours (SPU-Net) 1.86 0.68 130.92

2) Local Distribution Comparisons: We compare our
SPU-Net with existing supervised point cloud upsampling
methods under the PU-GAN dataset in Figure 15. There are
some situations that existing supervised methods cannot solve
very well. In some local regions, such as the ladder-back
of the chair and the fingers of the hand, our SPU-Net can
obtain a relatively clean distribution in the coarse-to-fine point
upsampling.

F. Computational Complexity

In this section, we do a computational complexity analysis
of our SPU-Net by comparing it with some state-of-the-art
upsampling methods. In Table VIII, we adopt the GFLOPs,
training parameters, and forward time as the evaluation met-
rics. The compared methods include PU-Net [1], MPU [2],
PU-GAN [3] and L2G-AE [12]. We reproduce their results
using their released code, where the statistical analysis
is conducted using the built-in functions in TensorFlow.
Before the evaluation, we initialize the batch size of all
methods to 1. The comparison in Table VIII demonstrates
that our method is efficient in terms of computational
performance.

Some comparisons of different upsampling methods under PU-GAN dataset.

V. CONCLUSION

In this paper, we propose a novel self-supervised point cloud
upsampling method to generate dense and uniform point set
from sparse inputs without the supervision of ground-truth
dense point clouds. Our coarse-to-fine reconstruction frame-
work effectively facilitates point cloud upsampling by point
feature extraction and point feature expansion. In addition,
our self-projection optimization successfully projects noisy
points onto the underlying object surface itself, which greatly
improves the quality of point cloud upsampling in an unsuper-
vised manner. Our experimental results demonstrate that our
method can achieve good performance on both synthetic and
real-scanned datasets, even comparable results to the state-of-
the-art supervised method.

ACKNOWLEDGMENT

The code
SPU-Net

is available at https://github.com/liuxinhai/

REFERENCES

[1] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-Net: Point
cloud upsampling network,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2790-2799.

[2] W. Yifan, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung,
“Patch-based progressive 3D point set upsampling,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp- 5958-5967.

[3] R.Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-GAN: A point
cloud upsampling adversarial network,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2019, pp. 7203-7212.

[4] Y. Qian, J. Hou, S. Kwong, and Y. He, “PUGeo-Net: A geometry-centric
network for 3D point cloud upsampling,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 752-769.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 28,2022 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.



LIU et al.: SPU-Net: SELF-SUPERVISED POINT CLOUD UPSAMPLING BY COARSE-TO-FINE RECONSTRUCTION

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Li, X. Li, P.-A. Heng, and C.-W. Fu, “Point cloud upsampling via
disentangled refinement,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 344-353.

A. X. Chang et al., “ShapeNet: An information-rich 3D model reposi-
tory,” 2015, arXiv:1512.03012.
VisionAir. ~ Accessed:  Jun.
http://www.infra-visionair.eu/
A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. NieBner, “ScanNet: Richly-annotated 3D reconstructions of indoor
scenes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 5828-5839.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1231-1237,
2013.

Y. Yuan, S. Liu, J. Zhang, Y. Zhang, C. Dong, and L. Lin, “Unsuper-
vised image super-resolution using cycle-in-cycle generative adversarial
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2018, pp. 701-710.

T. R. Shaham, T. Dekel, and T. Michaeli, “SinGAN: Learning a
generative model from a single natural image,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 4570-4580.

X. Liu, Z. Han, X. Wen, Y.-S. Liu, and M. Zwicker, “L2G auto-
encoder: Understanding point clouds by local-to-global reconstruction
with hierarchical self-attention,” in Proc. ACM Int. Conf. Multimedia,
2019, pp. 989-997.

M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Computing and rendering point set surfaces,” IEEE Trans. Vis. Comput.
Graphics, vol. 9, no. 1, pp. 3-15, Feb. 2003.

Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Trans. Graph.,
vol. 26, no. 3, p. 22, Jul. 2007.

H. Hui, L. Dan, Z. Hao, U. Ascher, and D. Cohen-Or, “Consolidation
of unorganized point clouds for surface reconstruction,” ACM Trans.
Graph., vol. 28, no. 5, pp. 1-7, 2009.

H. Huang, S. Wu, M. Gong, D. Cohen-Or, and H. Zhang, “Edge-aware
point set resampling,” ACM Trans. Graph., vol. 32, no. 1, pp. 1-12,
2013.

S. Wu, H. Huang, M. Gong, M. Zwicker, and D. Cohen-Or, “Deep points
consolidation,” ACM Trans. Graph., vol. 34, no. 6, pp. 1-13, 2015.

Y. Liu, B. Fan, S. Xiang, and C. Pan, “Relation-shape convolutional
neural network for point cloud analysis,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8895-8904.

X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker, “Point2Sequence: Learning
the shape representation of 3D point clouds with an attention-based
sequence to sequence network,” in Proc. AAAI Conf. Artif. Intell.,
vol. 33, 2019, pp. 8778-8785.

X. Wen, Z. Han, X. Liu, and Y.-S. Liu, “Point2SpatialCapsule: Aggre-
gating features and spatial relationships of local regions on point clouds
using spatial-aware capsules,” IEEE Trans. Image Process., vol. 29,
pp. 8855-8869, 2020.

X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker, “Fine-grained 3D shape
classification with hierarchical part-view attention,” IEEE Trans. Image
Process., vol. 30, pp. 1744-1758, 2021.

C. R. Qi, X. Chen, O. Litany, and L. J. Guibas, “ImVoteNet: Boost-
ing 3D object detection in point clouds with image votes,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 4404-4413.

S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From points to parts: 3D
object detection from point cloud with part-aware and part-aggregation
network,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 8,
pp. 2647-2664, Aug. 2021.

Q. Hu et al., “RandLA-Net: Efficient semantic segmentation of large-
scale point clouds,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11108-11117.

H. Shi, G. Lin, H. Wang, T.-Y. Hung, and Z. Wang, “SpSe-
quenceNet: Semantic segmentation network on 4D point clouds,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 4574-4583.

X. Wen, Z. Han, G. Youk, and Y.-S. Liu, “CF-SIS: Semantic-instance
segmentation of 3D point clouds by context fusion with self-attention,”
in Proc. 28th ACM Int. Conf. Multimedia, Oct. 2020, pp. 1661-1669.
B. Ma, Z. Han, Y.-S. Liu, and M. Zwicker, “Neural-pull: Learning
signed distance functions from point clouds by learning to pull space
onto surfaces,” in Proc. Int. Conf. Mach. Learn., 2021, vol. 139,
pp. 7246-7257.

28, 2021. [Online].  Available:

(28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

4225

Z. Han, B. Ma, Y.-S. Liu, and M. Zwicker, “Reconstructing 3D shapes
from multiple sketches using direct shape optimization,” IEEE Trans.
Image Process., vol. 29, pp. 8721-8734, 2020.

X. Wen, T. Li, Z. Han, and Y.-S. Liu, “Point cloud completion by skip-
attention network with hierarchical folding,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1939-1948.

X. Wang, M. H. Ang, and G. H. Lee, “Cascaded refinement network for
point cloud completion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 790-799.

X. Wen et al., “PMP-Net: Point cloud completion by learning multi-step
point moving paths,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2021, pp. 7443-7452.

X. Wen, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu,
“Cycle4Completion: Unpaired point cloud completion using cycle trans-
formation with missing region coding,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 13080-13089.
P. Xiang et al., “SnowflakeNet: Point cloud completion by snowflake
point deconvolution with skip-transformer,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 5499-5509.

L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “EC-Net:
An edge-aware point set consolidation network,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 386—402.

J. Sauder and B. Sievers, “Self-supervised deep learning on point clouds
by reconstructing space,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 12962-12972.

C. Sharma and M. Kaul, “Self-supervised few-shot learning on point
clouds,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 7212-7221.
B. Eckart, W. Yuan, C. Liu, and J. Kautz, “Self-supervised learning
on 3D point clouds by learning discrete generative models,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 8248-8257.

Y. Yang, C. Feng, Y. Shen, and D. Tian, “FoldingNet: Point cloud auto-
encoder via deep grid deformation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 206-215.

Z. Han, X. Wang, Y.-S. Liu, and M. Zwicker, “Multi-angle point cloud-
VAE: Unsupervised feature learning for 3D point clouds from multiple
angles by joint self-reconstruction and half-to-half prediction,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 10441-10450.
K. Hassani and M. Haley, “Unsupervised multi-task feature learning
on point clouds,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2019, pp. 8160-8171.

X. Gao, W. Hu, and G.-J. Qi, “GraphTER: Unsupervised learning
of graph transformation equivariant representations via auto-encoding
node-wise transformations,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2020, pp. 7163-7172.

I. Achituve, H. Maron, and G. Chechik, “Self-supervised learning for
domain adaptation on point clouds,” in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV), Jan. 2021, pp. 123-133.

L. Zhang and Z. Zhu, “Unsupervised feature learning for point cloud
understanding by contrasting and clustering using graph convolutional
neural networks,” in Proc. Int. Conf. 3D Vis. (3DV), Sep. 2019,
pp. 395-404.

P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning
representations and generative models for 3D point clouds,” in Proc.
Int. Conf. Mach. Learn., 2018, pp. 40-49.

C.R.Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 5099-5108.

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and
J. M. Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, pp. 1-12, Nov. 2019.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines,” in Proc. Int. Conf. Mach. Learn., 2010,
pp- 807-814.

Y.-S. Liu et al., “Automatic least-squares projection of points onto point
clouds with applications in reverse engineering,” Comput.-Aided Des.,
vol. 38, no. 12, pp. 1251-1263, Dec. 2006.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1-13.

H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang,
“Edge-aware point set resampling,” ACM Trans. Graph., vol. 32, no. 1,
pp. 1-12, Jan. 2013.

R. Gal, A. Shamir, and D. Cohen-Or, “Pose-oblivious shape signature,”
IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 2, pp. 261-271,
Mar. 2007.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 28,2022 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.



4226

[52] M. Corsini, P. Cignoni, and R. Scopigno, “Efficient and flexible sampling
with blue noise properties of triangular meshes,” IEEE Trans. Vis.
Comput. Graphics, vol. 18, no. 6, pp. 914-924, Jun. 2012.

Xinhai Liu received the B.S. degree in computer
science and technology from the Huazhong Univer-
sity of Science and Technology, China, in 2017.
He is currently pursuing the Ph.D. degree with
the School of Software, Tsinghua University. His
research interests include deep learning, 3D shape
analysis, and pattern recognition.

Xinchen Liu received the B.S. degree in soft-
ware engineering from the Hefei University of
Technology, China, in 2019. He is currently
pursuing the master’s degree with the School of
Software, Tsinghua University. His research interests
include deep learning, point cloud completion, and
upsampling.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Yu-Shen Liu (Member, IEEE) received the B.S.
degree in mathematics from Jilin University,
China, in 2000, and the Ph.D. degree from the
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2006.
From 2006 to 2009, he was a Postdoctoral
Researcher with Purdue University. He is currently
an Associate Professor with the School of Software,
Tsinghua University. His research interests include
shape analysis, pattern recognition, machine learn-
ing, and semantic search.

Zhizhong Han received the Ph.D. degree from
Northwestern  Polytechnical ~ University, China,
in 2017. He was a Postdoctoral Researcher with
the Department of Computer Science, University
of Maryland, College Park, USA. Currently, he is
an Assistant Professor of computer science with
Wayne State University, USA. His research interests
include 3D computer vision, digital geometry
processing, and artificial intelligence.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 28,2022 at 00:47:37 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


