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Abstract—Neural implicit functions including signed distance
functions (SDFs) and unsigned distance functions (UDFs) have
shown powerful ability in fitting the shape geometry. However, in-
ferring continuous distance fields from discrete unoriented point
clouds still remains a challenge. The neural network typically fits
the shape with a rough surface and omits fine-grained geometric
details such as shape edges and corners. In this paper, we propose
a novel non-linear implicit filter to smooth the implicit field
while preserving high-frequency geometry details. Our novelty
lies in that we can filter the surface (zero level set) by the
neighbor input points with gradients of the signed distance field.
By moving the input raw point clouds along the gradient, our
proposed implicit filtering can be extended to non-zero level sets
to keep the promise consistency between different level sets, which
consequently results in a better regularization of the zero level set.
Since the unsigned distance function is non-differentiable at the
zero level set and lacks a stable gradient field, we further propose
a gradient immutable training schema to migrate the filter to
the unsigned distance function learned from point clouds. By
leveraging the UDF training schema, we also improve sparse-view
reconstruction results. We conduct comprehensive experiments in
surface reconstruction from objects, complex scene point clouds,
and multi-view images, and we further extend to the point normal
estimation and point cloud upsampling tasks. The numerical and
visual comparisons demonstrate our improvements over the state-
of-the-art methods under the widely used benchmarks.

Index Terms—Implicit filtering, signed distance functions,
unsigned distance functions, sparse-view reconstruction, normal
estimation, point cloud upsampling.

I. INTRODUCTION

ECONSTRUCTING surfaces from 3D point clouds is an
important task in 3D computer vision. Recently signed
distance functions (SDFs) learned by neural networks have
been a widely used strategy for representing high-fidelity 3D
geometry. These methods train the neural networks to predict
the signed distance for every position in the space by signed
distances from ground truth or inferred from the raw 3D point
cloud. With the learned signed distance field, we can obtain
the surface by running the marching cubes algorithm [1] to
extract the zero level set.
Without signed distance ground truth, inferring the correct
gradient and distance for each query point could be hard.
Since the gradient of the neural network also indicates the
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direction in which the signed distance field changes, recent
works [2]]-[8] typically add constraints on the network gradient
to learn a stable field. In terms of the rate at which the field
is changing, the eikonal term [2], [3]], [S], [9] is widely used
to ensure the norm of the gradient to be one everywhere. For
the gradient direction constraint, some methods [7], [10] use
the direction from the query point to the nearest point on the
surface as guidance. Leveraging the continuity of the neural
network and the gradient constraint, all these methods could
reconstruct discrete points. However, the continuity cannot
guarantee the prediction is correct everywhere. Therefore,
reconstructed surfaces of previous methods usually contain
noise and ignore geometry details when there are not enough
points to guide the reconstruction, as shown in Fig.

The above-mentioned issue arises from the fact that these
methods overlook the geometric information within the neigh-
borhood but only focus on adding constraints on individual
points to optimize the network. To resolve this issue, we
introduce the bilateral filter for implicit fields that reduces
surface noise while preserving the high-frequency geometric
characteristics of the shape. Our designed implicit filter takes
into account both the position of point clouds and the gradient
of learned implicit fields. Based on the assumption of all input
points lying on the surface, we can filter noise points on the
zero level set by minimizing the weighted projection distance
to gradients of the neighbor input points. Moreover, by moving
the input points along the gradient of the field to other level
sets, we can easily extend the filter to the whole field. This
helps constrain the signed distance field near the surface and
achieve better consistency through different level sets.

Unsigned distance functions differ from signed distance
functions in that they measure the absolute distance from
a query point to the surface. Because unsigned distance
functions are non-differentiable at the zero level set, they do
not have a well-defined zero level set like signed distance
functions do. As a result, filtering each level set based on the
gradient estimated by the neural network becomes challeng-
ing. To address this issue, we propose a gradient immutable
training schema for unsigned distance functions. A new level
set alignment loss function is used to constrain the projected
surface points on the same level set with the query point.

Furthermore, we explore the implicit filter in the multi-view
reconstruction. By leveraging our UDF filter, we learn a better
UDF prior from the points estimated from Structure from
Motion (SfM) methods for the sparse-view reconstruction.

We originally present our implicit filter on the signed
distance function at ECCV 2024 [13], and then extend our
method to the more general unsigned distance function and
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Fig. 1. Visualization of the comparisons on FAMOUS dataset [ 1]]. Our implicit filter can improve the reconstruction by removing the noise and keeping the
12

geometric details compared with other methods, including SAP

multi-view reconstruction. We also explore the performance
of the filtering in point normal estimation and point cloud
upsampling applications. To evaluate the effectiveness of our
proposed implicit filtering, we validate it under several widely
used benchmarks including object and scene reconstructions
from points, sparse-view reconstruction, point normal estima-
tion, and point cloud upsampling. Our contributions are listed
below.

o We introduce the implicit filter on SDFs to smooth the
surface while preserving geometry details for learning
better neural networks to represent shapes or scenes.

o We improve the implicit filter by extending it to non-zero
level sets of signed distance fields. This regularization of
the field aligns different level sets and provides better
consistency within the whole SDF field.

o We propose a new gradient immutable training schema
for extending the filter to the UDFs which allows for the
reconstruction of arbitrary shapes.

o We extend the filter to the implicit field learned from
multi-view images by learning a better UDF prior.

o We conduct experiments on surface reconstruction from
points and sparse-view images, point normal estimation,
and point cloud upsampling. These experiments validate
our implicit filter, demonstrating its effectiveness and
ability to produce high-fidelity reconstruction results.

II. RELATED WORK

With the rapid development of deep learning, neural net-
works have shown great potential in surface reconstruction
from 3D point clouds. In the following, we briefly review
methods related to implicit learning for 3D shapes and re-
constructions from point clouds.

A. Implicit Learning from 3D Supervision

The most commonly used strategy to train the neural net-
work is to learn priors in a data-driven manner. These methods
require signed distances or occupancy labels as 3D supervision
to learn global priors [11]l, [14]-[17] or local priors [18]-
[26]. With large-scale training datasets, the neural network
can perform well with similar shapes, but may not generalize

2], DIGS (9], and NeuralPull [7].

well to unseen cases with large geometric variations. These
models often have limited inputs that can be difficult to scale
for varying sizes of point clouds.

B. Learning Signed Distance Functions

Different from the supervised methods, we can learn signed
distance functions by overfitting neural networks on single
point clouds or multi-view images to learn SDFs [2]], [3],
(7], (101, [12], [27)-[36]. These unsupervised methods rely
on neural networks to infer implicit functions without learning
any priors. Therefore, apart from the guidance of original input
point clouds, we also need constraints on the direction ,
(1on, 1271, or the norm [2], [3]I, of the gradients,
specially designed priors [28], [29)]), or differentiable poisson
solver to infer SDFs. This unsupervised approach heavily
depends on the fitting capability and continuity of neural
networks. However, these SDFs lack accuracy because there
is no reliable guidance available for each query point across
the entire space when working with discrete point clouds.
Therefore, deducing the correct geometry for free space be-
comes particularly crucial. Our implicit filtering enhances
SDFs by inferring the geometric details through the implicit
field information of neighbor points.

C. Learning Unsigned Distance Functions

The unsigned distance field is a representation capable of
modeling arbitrary shapes, including open and multi-layer
surfaces. This capability is first demonstrated by NDF [37],
which learns unsigned distance functions to accurately model
complex shapes by predicting dense point clouds and sub-
sequently reconstructing meshes using other reconstruction
techniques. Subsequent methods have employed specialized
representations to enhance the learning effect of UDFs, such
as defining null areas [38]], exploring the relationship between
two points [39], or some other representations [40]], [41]. Re-
cent advancements have focused on directly learning UDFs by
overfitting neural networks on singular point clouds [42]-[46].
Despite these advances, the inherent properties of UDFs make
them more challenging to learn accurately compared to signed
distance fields (SDFs). The unstable gradient and fuzzy zero
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level set of UDFs make it hard to apply the implicit filtering.
Therefore, we propose a novel gradient immutable training
schema aimed at extending implicit filtering to the learning
of unsigned distance functions, enhancing the robustness and
precision of UDF modeling.

D. Feature Preserving Point Cloud Reconstruction

Early works [47]]-[49]] reconstruct point clouds with sharp
features usually by point cloud consolidation. The key idea of
these methods is to enhance the quality of point clouds with
sharp features. One popular category is the local projection
operation (LOP) [50]] and its variants [47], [48], [S1], [S2]. The
projection operator provides a stable and easily generalizable
method for point cloud filtering, which is also the foundation
of our implicit filter. The difference lies in that we do not need
any normal or other priors and our filtering can be directly
applied to implicit fields to extract high-fidelity meshes. Some
other learning-based methods [53]], [54] try to consolidate
point clouds with edge points in a data-driven manner. Al-
though capable of generating high-quality point clouds, these
methods still require a proper reconstruction method [|55]], [|56]]
to inherit the details in meshes.

With the advancement of deep learning in point cloud recon-
struction, some approaches [5], [9fl, [57], [58] also explored
employing neural networks to reconstruct high-precision mod-
els. FFN [59]], SIREN [5], and IDF [60] introduce high-
frequency features into the neural network in different ways
to preserve the geometric details of the reconstructed shape.
DIGS [9] and EPI [57] smooth the surface by using the
divergence as guidance to alleviate the implicit surface rough-
ness. Compared with these methods, we first introduce local
geometric features through filtering to optimize the implicit
field, so that we can achieve higher accuracy.

ITII. OVERVIEW OF IMPLICIT FILTERING.

Motivation. Learning a continuous implicit field representa-
tion from a point cloud consisting of finite points does not have
a unique solution. The only guidance available comes from
the positions of input points. As a result, the distance field in-
ferred from the point cloud usually contains noise. To address
this issue, we draw inspiration from edge-preserving bilateral
filtering, a technique used in image processing. We propose
leveraging neighboring input points and their gradients to
reduce the field noise while preserving geometric features at
the edges. The main distinction lies in using projected distance
to measure the difference, rather than the absolute coordinates
typically employed as pixel values in image processing.

Overview. Implicit representations applicable to our implicit
filtering involve two types of distance fields: SDFs and UDFs.
We begin by designing the vanilla implicit filter on SDFs in
Sec. which is composed of the zero level set filter and
the field filter. In this section, we clarify the definition of
SDFs and the principle behind implicit filtering. Additionally,
we will provide a detailed description of how to address the
gradient degradation problem and how to sample on the zero
level set during the learning process. In Sec.|V] we explain the
difference between UDFs and SDFs and outline the process

of transitioning the implicit filter to UDFs. This enhances our
method’s generality, allowing the reconstruction of arbitrary
shapes. Subsequently, we extend the UDF filter to sparse-view
reconstruction in Sec. Furthermore, experiments of surface
reconstruction from both points and multi-view images are
carried out in Sec. which also covers the extension to
point normal estimation and point cloud upsampling.

IV. IMmPLICIT FILTER ON SDFs
A. Neural SDFs Overview

This section will briefly describe the concepts we used in
our implicit filtering. We focus on the SDF f : R® — R
inferred from the point cloud P = {p;|p; € R3}¥ ; without
ground truth signed distances and normals. f predicts a signed
distance s € R for an arbitrary query point g, as formulated
by s = fy(q), where 0 denotes the parameters of the neural
network.

The level set S; of SDF is defined as a set of continuous
query points with the same signed distance d, formulated as
Sa = {4l|fe(q) = d}. The goal of our implicit filtering is
to smooth each level set with geometry details. Then we can
extract the zero level set as a mesh by running the marching
cubes algorithm [I]].

B. Level Set Bilateral Filtering

Filtering for 2D images replaces the intensity of each
pixel with the weighted intensity values from nearby pixels.
Different from images, the resolution of implicit fields is
infinite and we need to find the neighborhood on each level
set for filtering. By minimizing the following loss function,

1 N
Laist = 3 D fo(pi)l; )
1=1

we can approximate that all points in P are located on level
set Sp, which makes it feasible to find neighbor points on Sp.
For a given point p on Sy, one simple strategy of filtering is
to average positions of neighbor points N (p,Sy) C P on Sy
by a Gaussian filter based on relative positions as follows:

> open(p.50) Pid[P — pjll)
Y opeN @50 2UIP —psll)

where the Gaussian function ¢

is defined as ¢(||[p — pjl|) =
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Daverage =

exp( and o, is a hy-
perparameter. However, as depicted
in Fig. Pl it is evident that this Proje‘ction °
weighted mean position yields ex-  Distance

cessively smooth surfaces, causing . s
sharp features and details to be =~
further obscured. To keep the geo-
metric details, our filtering operator
suggests measuring the projection
distance to the gradient of neighbor
points as shown in Fig.[2]and Fig.
(b). When calculating weights, it is
vital to account for both the impact
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Fig. 2. By minimizing the
weighted projection distance,
our filter can preserve the
sharp feature but the average
method leads to a wrong re-
sult.
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Fig. 3. Overview of filtering the zero level set. (a) We assume all input points lying on the surface and compute gradients as normals. (b) Calculating

bidirectional projection distances d1 = |n17;j P —pj)l, d2 = |ng (P — pj)| and the weights in Eq.

E} (c) By minimizing Eq. E} we can remove the noise

on the zero level set. The gradient V fy in this figure defaults to be regularized.

of relative positions and the gradient similarity. Following the
principles of bilateral filtering, to compute the filtered point
for p, we simply need to minimize the following distance
equation:

(0, (5~ 2))|¢(15 — s l)b(np. my,)
P EN(,S)

> P —pil)v(np np;) ’

p; EN(B,S)

a(p,S) =

3)

where the gradient n;, n,, and the Gaussian function 1 are
Vo (p;)

— V(P — —

defined as n; = m,nm = Wﬂ/’(nﬁanm) =
—nln,.

exp —1_:07’;(2:-7) . The o, is the hyperparameter for v. The

P is situated on the level set S, and for the mesh surface, it
denotes the zero level set Sp.

In addition to projection to the gradient n,., we observe
that the projection distance to mjp can assist in learning a
more stable gradient for point p which is also adopted in EAR
[47]]. Taking into account the bidirectional projection, our final
bilateral filtering operator can be formulated as follows:

> (d1+d2) ¢(|Ip = pjIDY¥(np, mp; )
(5. 5) = =) @

o([1p = pjlD¥(np, np;)
P;EN(B,S)

where dq = |ngj (® — pj)l,d2 = [nl(p — p;)|. Although
similar filtering methods have been widely studied in applica-
tions such as point cloud denoising and resampling [47]], [54],
there are two critical problems when applying these methods
in implicit fields:

1) Filtering the zero level set needs to sample points on
the level set Sy, which necessitates the resolution of
the equation fy = 0, or the utilization of the marching
cubes algorithm [1]]. Both methods pose challenges in
achieving fast and uniform point sampling. For the
randomly sampled point g on non-zero level set Sy, (q),
we can also not filter this level set since there are no
neighbor points on Sy, (4).

2) The normals utilized in our filtering are derived from the
gradients of the neural network fy. While the network
typically offers reliable gradients, we may find that
Vfo = 0 is also the optimal solution to the minimum
value of Eq. [3] and Eq. ] This degenerate solution is
unexpected, as it implies a scenario where there is no
surface when the gradient is zero everywhere.

We will focus on addressing the two issues in the subsequent
sections.

C. Sampling Points for Filtering

Inspired by NeuralPull [7]], we can pull a query point to the
zero level set by the gradient of the neural network fy. For
a given query point g as input, the pulled location ¢ can be
formulated as follows:

G=q— fo(@)Vfe(a)/lIVfe(a)ll- 5)

The point g and g lie respectively on level set Sy, (g
and Sy as illustrate in Fig. [[b). By adopting the sampling
strategy in NeuralPull, we can generate samples Q = {g;|q; €
R3*}M  on different level sets near the surface and pull
them to Sy by Eq. to obtain Q = {¢ilg; = aq; —
Fo(@:)¥ fo(a)/ 11V fo(@) ||, @; € Q. Hence, we can filter
the zero level set by minimizing Eq. [ across all pulled query
points Q. which is equivalent to optimizing the following loss:

1

Lzero = s . d % Av ’
M ZéeQ vi(4: S0)

(6)

where for each ¢ € Q, N/ (@, So) denotes finding the neighbors
of ¢ within the input points P, since P is assumed to be
located on Sy.

This filtering mechanism can be easily extended to non-zero
level sets in a similar inverse manner. To be more specific, as
for level set S, (q), the neighbor points for query point g € Q
are required. These points should lie on the level set Sy, (g
same as g, allowing us to filter the level set Sy, (q) using the
same filter as described in Eq. @]

However, obtaining NV (q, Sy,(q)) in P is not feasible, since
all input points P are situated on the zero level set instead
of the Sy, (q) level set. To address this issue, we propose a
technique for identifying neighbors of q on level set Sy, (q),
by projecting the input points P inversely onto the specific
level set Sy, (q) based on the gradient, as depicted in Fig.
(). The projected neighbor points can be represented as in
Eq. [/} Filtering across multiple level sets helps to enhance
the performance of our method by optimizing the consistency
between different level sets within the SDF field. We further
showcase this evidence in the ablation study detailed in Sec.

VIL-I

V fo(p)

N P SN (@S} O

N(a,Ss,(q) = P+ fo(q)
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Fig. 4. Overview of sampling points. (a) Sampling query points near the surface. (b) Pulling the query point to the zero level set and input points to the level
set where the query point is located. (c) Applying the filter on each level set. The gradient V fy in this figure defaults to be regularized.
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Fig. 5. (a) Searching neighbors directly for q. (b) Searching neighbors for
NN(q) instead of q.

Based on the above analysis, we can filter the level sets
S,(¢q) by minimizing Eq. @ over all sample points @ through
Eq. [/} equivalent to optimizing the following loss:

1
Lyieta = M quQ dyi(q, Sfe(tl))' ®)

It is worth noting that for a fixed query point g, the
pulled query point ¢ dynamically changes when training the
neural network, which results in a time-consuming process
to repeatedly conduct neighbor searching for ¢. To handle
this matter, we substitute the N (g, Sp) with N (NN(q),So),
where NN(q) denotes the nearest point of g within the point
cloud P as shown in Fig. 5] While this substitution may
introduce a slight bias for training, it also ensures the neighbor
points are close to g, therefore this trade-off between efficiency
and accuracy is reasonable.

D. Gradient Constraint

The other problem of implicit filtering is gradient degen-
eration. Overfitting the neural network requires the SDF to
be geometrically initialized. We can consider the initialized
implicit field as the noisy field and apply our filter directly to
train the network from the beginning to fit the raw point cloud
by removing the ‘noise’. However, if the denoise target is too
complex, gradient degeneration will occur during the training
process. Therefore, we need to add a constraint to the gradient
of the SDF.

There are two ways for training the neural network to pull
query points onto the surface based on NeuralPull [7] and
CAP-UDF [42]]. One is minimizing the distance between the
pulled point ¢ and the nearest point NN (q) as formulated
below:

> i — NN(gi)l2- ©)

i€[1,M]

Lpull = s

The other is minimizing the Chamfer distance between
moved query points and the raw point cloud:

1
Lep = — min ||g; — pjll2+
cD P M]je[l,N]Hq pjll2
CY min p, - dil "
— min C— Gilla.
N i€[1,M] bj — @llz
J€E[1,N]

A stable SDF can be trained by the losses above since
they are trying to move the query points to be in the same
distribution with the point cloud, which can provide the
constraint for our implicit filter. Here we choose Lop since
the filtered points are likely not the nearest points and Lcop
is a more relaxed constraint.

E. Loss Function

Finally, our loss function is formulated as:

L=1"L,ero+ alLfield + aaLgist + aSLCDa (11

where a1, ae, and a3 are the balance weights for our implicit
filtering loss.

V. IMmpLICIT FILTER ON UDFSs
A. Neural UDFs Overview

This section will briefly explain the basic concept of UDFs
and the difference between SDFs and UDFs, which will serve
as the foundation for migrating the filter to UDF learning.
For a UDF fY : R® — R inferred from the point cloud P,
the unsigned distance v € R is predicted for arbitrary query
point g, as formulated by u = f{(q), where 6 denotes the
parameters of the neural network. The level set Uy of a UDF
can be formulated as Uy = {q|fY (q) = d,d >= 0}.

The difference between the signed distance field and the
unsigned distance field is shown in Fig. [] (a) and (b). UDFs
are not differentiable at zero level set compared to SDFs.
Therefore, the gradients learned by UDFs are unoriented
depicted in Fig. [6] (d), which presents two potential scenarios
for UDF learning. Moreover, the unsigned distance field’s
exclusive definition in the positive domain induces omnidirec-
tional orientation of gradient directions at input points, partic-
ularly when such directional flexibility aligns with filtering
objectives. This inherent instability may induce substantial
perturbations in both the learned surface geometry and the
gradients of input points.
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Fig. 6. The illustration of the difference between the signed distance field
and the unsigned distance field is shown in (a) and (b). (c) and (d) show the
difference between the learned zero level set and the gradients of the query
and input points. The gradients of input points in (d) represent the possible
directions.

Based on the above difference analysis, to migrate the
filtering to UDF learning, two problems should be solved:
unoriented gradients on the zero level set and unstable normals
for the input point cloud when filtering the unsigned distance
field. In the following sections, we will focus on these two
problems.

B. Gradient Unoriented Bilateral Filtering

Due to the non-differentiable nature of UDF on the zero
level set, the gradient direction of the input point extracted
from the UDF is unoriented as shown in Fig. [7] The most
intuitive effect of unoriented gradients is that it primarily
impacts the weight calculation in the zero level set filtering,
represented by the Gaussian function ¢ in Eq.[d] Regarding the
computation of the absolute value of the projection distance,
the impact of unoriented gradients is negligible. In filtering
of the other level sets, the unoriented gradients result in the
opposite position of projected input points, as described in
Eq. [71 While the projected points are, by definition, situated
on the same level set as the query point, this may result in
inaccuracies in determining the neighbors of the query point.

Confronted with these two challenges, we employ the same
strategy by considering the gradient of the input points as
bidirectional. For the function 1) we choose the same direction
as the query point g. The modified function can be formulated

as: .
1—|nzn,.
WY (ng,n,,) = exp I_L()’;((T’Z)' (12)
Given that the filtering point is proximal to the desired zero
level set, the formula generally demonstrates efficacy across
various scenarios, with exceptions noted in particular cases
such as exceedingly thin plates.

To obtain the projected neighbor points, we project the
neighbor points along the bidirectional gradients and then find
the nearest points in these projected points. Since there is no
issue with unoriented gradients on other level sets, although
the distant neighbor points identified in this process may not

(@) L¢ep (b) Ours

Fig. 7. The 2D level sets show the unsigned distance field and the normals
of input points learned by Lo p and ours.
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Fig. 8. Gradient immutable training schema

lie on the same side of the zero level set as the query point,
the gradients of these neighboring points are opposite to that
of the query point and are located far away. As a result, the
calculated weights for these points are also small and do not
significantly impact the final outcome.

C. Gradient Immutable Training Schema

Another issue is the unstable normals in the input point
cloud. To filter the zero level set, we need to minimize the
projected distance d, as shown in Fig. [§] (a). However, in
UDF learning, we can achieve this goal by either moving the
position of p or changing the gradient of p;. This flexibility
arises because there are no negative values on one side of the
surface to constrain the approximate direction of the gradient
field, unlike in SDFs. We propose a gradient immutable train-
ing schema for the UDF implicit filtering, as illustrated in Fig.
[](b). The process begins by training the neural network using
Lecp or other methods. Once training is complete, we copy
the parameters from the trained neural network to a locked
version of the network. Next, we extract the gradients of the
input points from this locked, trained network. Additionally,
we synchronize the parameters with the locked network after
a predetermined number of training epochs. This approach not
only stabilizes the extracted gradients but also allows for their
subsequent updates.

D. Loss Function

In the SDF filtering loss function, we use L4;s¢ to constrain
all the points located on the zero level set. Although we can
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still leverage this function, the zero level set of the learned
UDF is fuzzy. This will also impact the projection of the
neighbor point to other level sets. Therefore, we propose a
similar loss function:

11
L T0j — g 1~ - D )
prol = A quQ ZﬁeN(q,Sfe(q>) (f(a) f(P))(13)
where K = |[N(q, Sy, (q))|. to constrain the projected neighbor
point located on the same level set of g. The final loss function
for the UDF implicit filtering can be expressed as:

LU = Lzero+a1Lproj +a2Lfield+a3Ldist+a4LCD7 (14)

where a1, g, a3 and oy are the balance weights for our UDF
implicit filtering loss.

VI. FILTERING UDF PRIOR FOR SPARSE-VIEW
RECONSTRUCTION

A. Overview

Apart from filtering the SDF and UDF learned from point
clouds, we further extend our method to multi-view recon-
struction. Typically a signed distance function f : R? — R
and a radiance function ¢ : R? x S? — R? that encodes the
color associated with the query point ¢ € R3 and a viewing
direction v € S? are learned from images I = {I;}X | with
poses T = {T;}X, of a 3D object. The surface of the 3D
object is also represented as the zero level set Sy of the implicit
field. Volume rendering is used to render novel images from
these two functions and the training target is minimizing the
difference between the rendered and the input images. This
makes it hard to filter the implicit field since our implicit filter-
ing mechanism utilizes the input points as geometric guidance
to achieve high-fidelity surface reconstruction. Although we
can estimate points by SfM, heavily depending on the points
to filter the surface is inconsistent with reconstructing surfaces
from images since the points cannot represent the geometric
details in images perfectly.

B. UDF Prior Filtering

While conventional multi-view reconstruction methods rely
solely on image data, the NeuSurf introduced a UDF prior
which is learned by the points estimated by SfM. The designed
alignment loss function can be formulated as:

1
Lalign = @ Z ‘|f9(q)| - fg(q) ’
q€Q

where @ represents the query points of the volume rendering,
0 and ¢ represent the parameters of the SDF and the UDF
prior network. It aligns Sy and Uy of these two fields. This
learned prior enables better implicit field reconstruction under
sparse-view conditions and also inspires us to optimize the

multi-view reconstruction results by filtering the UDF prior.
Specifically, we propose to filter the UDF prior by lever-
aging SfM-estimated points for sparse-view reconstruction,
as illustrated in Fig. 0] These sparse 3D points serve as
geometric constraints during the filtering process, enabling the
acquisition of an enhanced prior that better aligns with multi-
view reconstruction objectives. Crucially, despite the sparsity

15)

Sparse-view Images Points

Alignment

UDF prior
f U

Fig. 9. UDF prior filtering for sparse-view reconstruction overview.

of SfM points and inherent texture-image complexity sur-
passing point cloud resolution, our findings demonstrate that
a regularized high-fidelity prior can still induce measurable
improvements in surface reconstruction quality under specific
conditions.

VII. EXPERIMENTS

We conduct experiments to assess the performance of our
implicit filter for surface reconstruction from raw point clouds.
The results are presented for general watertight shapes in Sec.
VII-Al real scanned raw data including 3D objects in Sec.

-B| Sec. [VII-D} and complex scenes in Sec. [VII-E] We

further explore the effect of our filter on UDF learning and
sparse-view reconstruction. The results are presented in Sec.
[VII=C] Sec.[VI-E] and Sec. [VI[-F} At the same time, since our
implicit filter smooths the surface and keeps geometric details,
we find we can extend our method to unsupervised point
normal estimation and point cloud upsampling. The normal
estimation and the point cloud upsampling experiments are
shown in Sec. [VII-G| and Sec. [VII-H] respectively. Addition-
ally, ablation experiments are carried out to validate the theory
and explore the impact of various parameters in Sec.
Implementation details. We employ a neural network similar
to OccNet [16] and the geometric network initialization pro-
posed in SAL [2] with a smaller radius the same as GridPull
[10] to learn the SDF. We use the strategy in NeuralPull [7] to
sample queries around each point p in P. We set the weight
as to 10 to constrain the learned SDF and «; and as to 1. The
parameters oy, 0 are set to 15°, maxp, e x'(5,55, ;) ([1P—P;[)
respectively. Instead of filtering the SDFs learned by other loss
functions, we find our loss can directly learn the SDF from
the raw point cloud. All the experiments are trained with our
loss function from the beginning unless otherwise specified.
In the experiment for scenes, we abort the L ;.14 since there
exist open surfaces that cause the gradient orientation of the
input points to be inconsistent.

We utilize the Adam optimizer [61], setting an initial learn-
ing rate of 0.001 and employing a cosine learning rate schedule
with 1k warm-up iterations. For the shape reconstructions
including ABC [62], FAMOUS []11]], ShapeNet [63]], and SRB
[64] datasets, we train the neural network for 40k iterations,
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Fig. 10. Visual comparisons of surface reconstruction on ABC and FAMOUS datasets. Our method can reconstruct objects with sharp edges and less noise

compared with other methods.

and we use a resolution of 2563 for the marching cubes
algorithm . For the 3D Scene dataset, we train the neural
network for 100k iterations to fully converge on each scene.
Since there exist open surfaces, we use a resolution of 5123
to extract the 0.001 level set as the reconstructed mesh. If
not stated otherwise, all other methods of comparison will use
consistent settings.

For the UDFs, we utilize the same network structure as the
SDFs, but we incorporate a non-linear projection defined as
g(z) = |z| before the final output. This adjustment ensures
that we can learn the unsigned distance field effectively. The
parameter synchronization interval is set to 10 epochs. Unlike
the SDFs, the UDFs do not utilize negative values to constrain
the gradient. This limitation can lead to poor training results
when starting from scratch. As a result, we opt to filter the
existing neural network for our UDF experiments. We choose
the LSUDF [43] as our baseline because it provides the more
reliable normal estimation for the input points.

We set the learning rate for the UDF filtering to 0.0005
and employ a cosine learning rate schedule. For the shape
reconstructions, we finetune the neural network for 20k iter-
ations, and we use the surface extraction algorithm proposed
in CAPUDF [42]. The other settings are the same with SDF
learning.

For the sparse-view reconstruction, we follow the setting
the same as NeuSurf [65] and set the coefficient of the prior
loss function to 0.5.

A. Surface Reconstruction for Shapes

Datasets and metrics. For surface reconstruction of general
shapes from raw point clouds, we conduct evaluations on
three widely used datasets including a subset of ShapeNet
[63], ABC [62], and FAMOUS [I1]]. We use the same setting
with NeuralPull for the dataset ShapeNet. For datasets
ABC and FAMOUS, we use the train/test splitting released
by Points2Surf [11] and we sample points directly from the
mesh in the ABC dataset without other mesh preprocessing to
keep the sharp features.

For evaluating the performance, we follow NeuralPull to
sample 1 x 10° points from the reconstructed surfaces and
the ground truth meshes on the ShapeNet dataset and sample
1x10* on the ABC and FAMOUS datasets. For the evaluation
metrics, we use L1 and L2 Chamfer distance (CDyq, and
CDys) to measure the error. Moreover, we adopt normal
consistency (NC) and F-score to evaluate the accuracy of
the reconstructed surface, the threshold is the same with
NeuralPull.

Comparisons. To evaluate the validity of our implicit filter, we
compare our method with a variety of methods including SPSR
[66], Points2Surf (P2S) [11]], IGR [4], NeuralPull (NP) [7],
LPI [67]], PCP 28], GridPull (GP) [[10], SIREN [5]], DIGS [9],
iPSR [68]], NCR [69]], NSH [70], PGR [71]]. The quantitative
results on ABC and FAMOUS datasets are shown in Table
[l and selectively visualized in Fig. Our model reaches
state-of-the-art performance on both datasets, accomplishing
the goal of eliminating noise on each level set while preserving
the geometric details. To more intuitively validate the efficacy
of our filtering, we visualize the level sets on a cross section in
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Fig. [T} We also report the results on ShapeNet which contains
over 3000 objects in terms of C'Dy5 in Table [T, NC in Table
and F-Score with thresholds of 0.002 in Table[[V]and 0.004
in Table [V] Our method outperforms previous methods over
most classes. The visualization comparisons in Fig. [I2] show
that our method can reconstruct a smoother surface with fine
details.

To validate the effect of our filter on sharp geometric
features. We evaluate the edge points by the edge Chamfer
distance metric used in [72]. We sample 100k points uniformly
on the surface of both the reconstructed mesh and the ground
truth. The edge point p is calculated by finding whether
there exists a point g € N (p) satisfied |nyn,| < o, where
N.(p) represents the neighbor points within distance e from
p. The results are shown in Table and visualized in Fig.
[[3] We set ¢ = 0.01 and ¢ = 0.1. We also compare the
sharp reconstruction effect with feature preserving methods,
including RFEPS [73]], NCR [69], PGR [71]. NP [7] is also
used to show the effect without our filtering. The visualization
comparisons in Fig. [T4] show that our sharp reconstruction ef-
fect may not match the performance of RFEPS [73]] due to the
different reconstruction methods, but our method outperforms
other implicit methods in maintaining the sharp features of
the shape. Furthermore, our method excels in various other
aspects, demonstrating its overall superiority.

0.5
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Fig. 11. Visualization of level sets on a cross section.

B. Surface Reconstruction for Real Scans

Dataset and metrics. For surface reconstruction of real point
cloud scans, we follow VisCo [74] to evaluate our method
under the Surface Reconstruction Benchmarks (SRB) [64].
We use Chamfer and Hausdorff distances (C'Dy; and HD)
between the reconstruction meshes and the ground truth. Fur-
thermore, we report their corresponding one-sided distances
(dz and d) between the reconstructed meshes and the input
noisy point cloud.

Comparisons. We compare our method with state-of-the-art
methods under the real scanned SRB dataset, including IGR
[4], SPSR [|66], Shape As Points (SAP) [12], NeuralPull (NP)
[7l, and GridPull (GP) [10]. The numerical comparisons are

TABLE I
COMPARISONS ON ABC AND FAMOUS DATASETS. THE THRESHOLD OF
F-sScoRE (F-S.) 15 0.01.

Methods ABC FAMOUS

CDrs | CDyy F-S. CDyrs | CDjs F-S.
P2S [11] 0.298 0.015 0.598 0.012 0.008 0.752
IGR [4] 2.675 0.063 0.448 1.474 0.044 0.573
NP [7] 0.095 0.011 0.673 0.100 0.012 0.746
PCP [28] 0.252 0.023 0.373 0.037 0.014 0.435
SIREN [5] 0.022 0.012 0.493 0.025 0.012 0.561
DIGS [9] 0.021 0.010 0.667 0.015 0.008 0.772
iPSR [68] 0.019 0.010 0.663 0.020 0.010 0.639
NCR [69] 0.024 0.010 0.643 0.030 0.011 0.667
NSH [70] 0.014 0.009 0.687 0.023 0.008 0.777
PGR [71] 0.011 0.009 0.676 0.012 0.008 0.767
Ours 0.011 0.009 0.691 0.008 0.007 0.778

TABLE 11

COMPARISONS ON SHAPENET DATASET IN TERMS OF C'Dy,o X 100 .
Class SPSR [66] [ NP [7] [ LPI [67] | PCP [28] [ GP [10] Ours
Display 0.273 0.039 0.0080 0.0087 0.0082 | 0.0009
Lamp 0.227 0.080 0.0172 0.0380 0.0347 0.0019
Airplane 0.217 0.008 0.0060 0.0065 0.0007 | 0.0045
Cabinet 0.363 0.026 0.0179 0.0153 0.0112 0.0055
Vessel 0.254 0.022 0.0092 0.0079 0.0033 | 0.0005
Table 0.383 0.060 0.0436 0.0131 0.0052 0.0025
Chair 0.293 0.054 0.0187 0.0110 0.0043 | 0.0070
Sofa 0.276 0.012 0.0164 0.0086 0.0015 0.0027
Mean 0.286 0.038 0.0171 0.0136 0.0086 0.0032

shown in Table [VII, where we achieve the best accuracy in
most cases. The visual comparisons in Fig.[I5]demonstrate that
our method can reconstruct a continuous and smooth surface
with geometry details.

C. Surface Reconstruction for Non-watertight Shapes

Dataset and metrics. To validate our improved implicit filter
for learning UDFs, we conduct evaluations on the car subset
of ShapeNet [|63]], without applying watertight processing.
These models feature a high quantity of multi-layer and non-
closed shapes. We sample 10k points from the surface of
each shape as input data. To evaluate the quality of the
reconstruction, we follow the approach proposed in GIFS [39]],
sampling 100k points from the reconstructed surfaces. We use
Chamfer distance (x10%), Normal Consistency (NC), and F-
Score with thresholds of 0.005 and 0.01 as evaluation metrics.
Comparisons. We compare our implicit filtering method with
the latest works NDF [37], GIFS [39], CAPUDF [42], and
LSUDF [43]]. The numerical comparisons are shown in Table
[VIIT] Our method achieves the best performance, especially on
the term of normal consistency. The visual comparisons are
shown in Fig. [T6] our method can reconstruct more smooth
and continuous non-watertight surfaces.

D. Surface Reconstruction for Large Scans

Dataset and metrics. To evaluate the effect of our implicit
filter on reconstruction of high-frequency details, we select
three models from the ThreedScans dataset [75] following
NSH [70]. We sample 50k points from these meshes as input
points. To evaluate the effect, 1M points are sampled from
the reconstructed and ground truth meshes, and we use the
Chamfer distance (C'Dy,1) and F-score to measure the error.
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Fig. 12. Visual comparisons of surface reconstruction on ShapeNet dataset.
TABLE III TABLE V

COMPARISONS ON SHAPENET DATASET IN TERMS OF NC.

COMPARISONS ON SHAPENET DATASET IN TERMS OF F-SCORE WITH A
THRESHOLD OF 0.004.

Class SPSR [66] [ NP [7] | LPI [67] [ PCP [28] [ GP [10] Ours
Display 0.889 0.964 | 0.9780 0.9775 0.9847 | 0.9880 Class SPSR [66] | NP |7] [ LPI |67] [ PCP [28] [ GP [10] Ours
Lamp 0.876 0.930 0.9503 0.9450 0.9693 0.9692 Display 0.666 0.991 0.9993 0.9958 0.9963 0.9999
Airplane 0.848 0.947 0.9560 0.9490 0.9614 | 0.9800 Lamp 0.648 0.924 0.9954 0.9402 0.9538 | 0.9994
Cabinet 0.880 0.930 0.9576 0.9600 0.9689 0.9711 Airplane 0.619 0.997 0.9998 0.9972 0.9989 0.9971
Vessel 0.861 0.941 0.9564 0.9546 0.9667 | 0.9802 Cabinet 0.598 0.989 0.9938 0.9939 0.9946 | 0.9968
Table 0.833 0.908 0.9527 0.9595 0.9755 0.9780 Vessel 0.633 0.99 0.9985 0.9958 0.9972 0.9999
Chair 0.850 0.937 0.9545 0.9580 0.9733 0.9740 Table 0.442 0.973 0.9866 0.9985 0.9990 0.9995
Sofa 0.892 0.951 0.9713 0.9680 0.9792 0.9829 Chair 0.617 0.969 0.994 0.9991 0.9990 0.9966
Mean 0.866 0.939 0.9596 0.9590 0.9723 0.9779 Sofa 0.725 0.974 0.9982 0.9987 0.9992 0.9987

Mean 0.618 0.976 0.9957 0.9899 0.9923 0.9985

TABLE IV
COMPARISONS ON SHAPENET DATASET IN TERMS OF F-SCORE WITH A TABLE VI
THRESHOLD OF 0.002.
EDGE CHAMFER DISTANCE COMPARISONS ON ABC DATASET,

Class SPSR [66] | NP [7] [ LPI[67] [ PCP [28] | GP [10] | Ours ECDr2 x 100.
Display 0.468 0.989 0.9978 0.9939 0.9963 | 0.9998
Lamp | 0455 | 091 | oomo | oossr | 09455 | asens el LB (I [ERAT LA AT PCEA [STECRT [DOSPTL S
Airplane 0.415 0.996 0.9989 0.9942 0.9976 | 0.9959 : ; : : : ; .
Carg}net 0,30 0,980 0.9849 0.9888 09901 | 0.9955 ECDp» 1.055 2.365 1.255 1.265 1.407 2.493 0.399
Vessel 0.415 0.985 0.9955 0.9935 0.9956 | 0.9998
Table 0.233 0.922 0.9789 0.9969 0.9977 0.9986
Chair 0.382 0.954 0.98977 0.9970 0.9979 0.9952
Sofa 0.499 0968 | 09946 | 09943 | 09974 | 09973  we conduct experiments using the 3D Scene dataset. The 3D
Mean 0407 0961 | 09912 | 09871 | 09896 | 09976  geepe dataset is a challenging real-world dataset with complex

Comparisons. To validate the effect on the meshes with high-
frequency details. We compare our methods with the no-filter
version and NSH [70], which aims to recover the details of the
reconstructed meshes. The detailed comparisons are shown in
Table [IX] and are visualized in Fig. [[7] Our method performs
filtering without excessively smoothing details. High-precision
reconstruction typically requires a higher point density. In
this case, since our neighborhood range is limited and L¢op
constrains our gradient direction, details will be preserved
throughout the reconstruction process.

E. Surface Reconstruction for Scenes

Dataset and metrics. To further demonstrate the advantage of
our method in the surface reconstruction of real scene scans,

topology and noisy open surfaces. We uniformly sample 1000
points per m? of each scene as the input and follow PCP
to sample 1M points on both the reconstructed and the ground
truth surfaces. We leverage L1 and L2 Chamfer distance
(CDp1,CDp5s) and normal consistency (NC) to evaluate the
reconstruction quality.

Comparisons. We compare our method with the state-of-the-
art SDF learning methods CONet [21]], LIG [18], DeepLS
[19], NeuralPull (NP) [7], PCP [28], GridPull (GP)
and UDF learning methods NDF [37], GIFS [39]], CAPUDF
[42], LSUDF [43]. The numerical comparisons in Table [X]
demonstrate our superior performance in all scenes even com-
pared with the local-based methods. We further present visual
comparisons in Fig. [I§] The visualization further shows that
our method can achieve smoother with high-fidelity surfaces
in complex scenes. It should be noted that the surface we
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Fig. 13. Visual comparisons of edge points and reconstruction results.
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Fig. 14. Visual comparisons of shape feature reconstruction results.

extract here is not the zero level set but the 0.001 level set
since the scene is not watertight. For NeuralPull we use the
threshold of 0.005 instead of 0.001 to extract the complete
surface therefore the mesh looks thicker. At the same time,
we visualize the reconstruction results by our UDF learning
filter in Fig. [T8] and represent the quantitative comparisons in
Table [X] These comparisons of UDF learning can validate the
priority of our method on open scene surface reconstruction.

F. Sparse-View Surface Reconstruction

Dataset and metric. To evaluate the effect of the filtered UDF
prior, we conduct experiments under the DTU dataset [76].
Following the settings in previous methods [77], we report
the results reconstructed from 3 images without mask super-
vision under 15 scenes. We measure the Chamfer Distances
on the DTU dataset in the same way as VolRecon [77] to
quantitatively evaluate the reconstruction quality.

Comparisons. We compare our method with the traditional
method Colmap and the state-of-the-art learning-based
methods. The comparisons of Chamfer Distance on the DTU
dataset are shown in Table where our method achieves
better performance compared with other SDF-based methods.
The visual comparisons in Fig. [T9] show that our method can
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Fig. 15. Visual comparisons on SRB dataset.

TABLE VII
COMPARISONS ON SRB DATASET.
SPSR [ IGR [ SIREN | VisCo | SAP [ NP GP [ DIGS o

o6 | @ | 5 | 4 |2 @) | o) | o) | O

_ | CDr | 060 [022] 032 | 021 | 0.12]0.122 | 0.093 | 0.063 | 0.052
% HD | 14.89 | 471 | 8.19 3.00 | 2.38 | 3.243 | 1.804 | 1.447 | 1.232
é da 0.60 | 0.12 | 0.10 0.15 | 0.08 | 0.061 | 0.066 | 0.030 | 0.025
dz | 14.89 | 132 | 2432 | 1.07 | 0.83 | 3.208 | 0.460 | 0.270 | 0.265

5 [ CDpi | 044 |025] 021 0.21 | 0.26 | 0.375 | 0.062 | 0.049 | 0.051
S| HD | 7.24 | 401 | 430 | 406 | 087 |3.127 | 0.648 | 0.858 | 0.751
= da 044 |0.08 | 0.09 0.14 | 0.04 | 0.746 | 0.039 | 0.025 | 0.028
A dy 724 1159 1.77 1.76 | 0.41 | 3.267 | 0.293 | 0.441 | 0.423
CDpry | 027 | 017 | 0.15 0.15 | 0.07 | 0.157 | 0.066 | 0.042 | 0.041

v | HD | 3.10 | 222 218 222 | 1.17 | 3.541 | 1.103 | 0.667 | 0.815
dz 0.27 1 0.09 | 0.06 | 0.09 |0.04 | 0.242 | 0.036 | 0.022 | 0.019

dg 3.10 | 2.61 | 2.76 2.76 | 0.53 | 3.523 | 0.539 | 0.729 | 0.724

o [CDr; | 026 1016 0.17 | 0.17 |0.07 | 0.080 | 0.063 | 0.047 | 0.044
?ﬂ HD | 6.80 | 3.52| 4.64 | 440 | 1.49 | 1376 | 1.129 | 0.971 | 1.089
| da 0.26 | 0.06 | 0.08 | 0.11 |0.05|0.063 | 0.045 | 0.028 | 0.022
© dg 6.80 | 0.81 0.91 0.96 | 0.78 | 0.475 | 0.700 | 0.271 | 0.246
§ CDp; | 020 [0.12] 0.17 | 0.12 | 0.05 | 0.064 | 0.047 | 0.031 | 0.030
& | HD | 461 | 1.17| 0.82 1.06 | 0.98 | 0.822 | 0.569 | 0.496 | 0.554
“g dz 0.20 | 0.07 | 0.12 0.07 | 0.04 | 0.053 | 0.031 | 0.017 | 0.014
o dy 4.61 | 098 | 0.76 0.64 | 0.51 | 0.508 | 0.370 | 0.181 | 0.230

TABLE VIII

COMPARISONS ON SHAPENET CARS DATASET (CHAMFER-L2x 10%).

Method Chamfer-1.2 F-Score NC
Mean Median | F;.005 Fy.01
Input 0.363 | 0.355 48.50 | 88.34 -
Watertight GT 2.628 | 2.293 68.82 | 81.60 -
GT 0.076 | 0.074 95.70 | 99.99 -
NDF [37] 0.202 | 0.193 77.40 | 97.97 | 79.1
GIFS | 0.128 | 0.123 88.05 | 99.31 -
CAPUDFgp4 | 0.141 0.138 84.84 | 99.33 | 81.8
CAPUDF | 0.119 | 0.114 88.55 | 99.82 | 82.5
LSUDF [43] 0.098 | 0.097 92.18 | 99.90 | 85.0
Ours 0.095 | 0.091 92.73 | 99.80 | 86.0

reconstruct high-fidelity meshes even with the guidance of
complex images.

G. Unsupervised Point Normal Estimation

Dataset and metrics. We use the most widely-used dataset
PCPNet for the point normal estimation to evaluate our
filtering. We conduct experiments on three kinds of point
clouds with different sampling methods, including sampling
uniformly on shapes(”Clean”), and two additional settings with
varying point densities (’Stripes” and “’Gradients”). Following
PCPNET [79], we sample 5000 points per shape and compute
the angle root mean square error (RMSE) between the pre-
dicted normals and the ground truth normals as the evaluation
metrics.

Comparisons. We compare our method with both super-
vised and unsupervised methods including PCPNet [79],
HoughCNN [_80], Nesti-Net [81]], IterNet [82], DeepFit [83],
Jet [84], PCA [83], CAPUDF [42], LSUDF [43]. The nu-
merical comparisons presented in Table [XII| indicate that our
method outperforms all other approaches, including those that
rely on large-scale training datasets. The visual comparisons
in Fig. 20] show that our method can learn better normals,
especially on complex or sharp geometry surfaces. These
results indicate that our filter can improve the normals of the
input points by denoising the implicit field.
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Fig. 16. Visual comparisons of multi-layer surface reconstruction on ShapeNet cars.

TABLE IX
COMPARISONS ON THREEDSCANS DATASET.
Dragon Hosmer Eagle
CDrq F-S. CDp1 F-S. CDy,q F-S.
NSH [70 0.068 0.876 0.066 0.866 0.085 0.687
w/o filter 0.075 0.888 0.074 0.809 0.086 0.667
Ours 0.062 0.891 0.063 0.877 0.081 0.709
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Fig. 17. Visual comparisons on the ThreedScans dataset.

H. Unsupervised Point Cloud Upsampling

Dataset and Metric. We evaluate our implicit filtering on
the dataset used in PU-GAN for the task of point cloud
upsampling. Each point cloud is upsampled to 8192 points
from 2048 points. The evaluation metrics include Chamfer
and Hausdorff distances (CD and HD), and Point-to-Surface
distance (P2F).

Comparisons. We also conduct a comparison with super-
vised point cloud upsampling methods including PU-Net [87],
MPU [88]], PU-GAN [86], Dis-PU [89], Grad-PU [90] and
unsupervised methods including EAR [47], L2G-AR [91]],
SPU-Net [92)], APU-LDI [93]], CAPUDF and LSUDF
[43]]. The quantitative comparisons are shown in Table XTI}
We visualize the Point-to-Surface distance in Fig. 21} Our

method effectively preserves the sharp geometric features of
the original shape compared with the other methods.

1. Ablation Studies

We conduct ablation studies on the FAMOUS dataset to
demonstrate the effectiveness of our proposed implicit filter
and explore the effect of some important hyperparameters.
We report the performance in terms of L1 and L2 Chamfer
distance (C Dy, CDro x 10%), normal consistency (NC), and
F-Score (F-S.). We also conduct ablation experiments on the
3D Scene dataset to validate the effectiveness of our designed
UDF implicit filtering.

Effect of Eikonal loss. We select the Lop to prevent the
degeneration of the gradient since it both constrains the value
and the gradient of the SDF. It also guides how to pull the
query point onto the surface. Therefore we omit the Eikonal
term used in previous methods like the IGR [4], SIREN
(5], and DIGS [9] which have no other direct supervision
for the gradient. To verify this selection, we conduct the
following experiments by trade-off these two functions. With
the experimental results in Table we find that only
applying the Eikonal term is not as effective as CD alone.
At the same time combining the Eikonal term with CD does
not further enhance the experiment results, but the difference
is small.

Effect of level set filtering. To justify the effectiveness of
each term in our loss function. We report the results trained
by different combinations in Table [KXV] The Lcp is more
applicable for training SDF from raw point clouds. The zero-
level filter can help remove the noise and keep the geometric
features. Filtering across non-zero level sets can improve the
overall consistency of the entire signed distance field. Since we
assume all input points lie on the surface, the function Lg;s;
is also necessary. Fig. 22] shows a 2D comparison of these
losses, showing that our filter loss functions can reconstruct a
field that is aligned at all level sets and maintains geometric
characteristics.

Effect of the bidirectional projection. To validate our bidi-
rectional projection distance, we report the results in Table
The numerical comparisons show that projecting the dis-
tance to both normals can improve the reconstruction quality.
Note that only using d(p) can also improve the results.
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Fig. 18. Visual comparisons of surface reconstruction on 3D Scene dataset.

Scan 24

Scan 37

(a) Reference Image (b) SparseNeuS

Fig. 19. Visual comparisons of surface reconstruction on DTU dataset.

Weight of level set projection loss. We explore the effect
of the Lop loss function by adjusting the weight a3 in Eq.
We report our results with different candidates {0, 1, 10}
in Table [XVII, where 0 means we do not use the Lop to
constrain the gradient. The comparisons in Table [XVTI| show
that although our implicit filter can directly learn SDFs, it is
better to adopt the L p for a more stable field. However, if the
weight is too large, the filtering effect will decrease. Selecting
the weight ranging from 1 to 10 is recommended, which is
usually adequate. For the weights a;; and ao, setting them to
1 is always necessary.

Effect of filter parameters. We compare the effect of different

(c) VolRecon '

(d) NeuSurf (¢) Ours

parameters o, o, in Table [XVIII] The diagonal weight for o,
means the length of the diagonal of the bounding box for the
local patch mentioned in [54]). The results indicate that the
method is relatively robust to parameter variation in a certain
range.

Effect of UDF filter design. To validate the effectiveness of
the modification we propose to migrate the implicit filter to the
UDF learning, we report the results on the 3D Scene dataset
in Table [XIX] We report the performance without bidirectional
gradient as ”w/o BiG” and without project distance loss func-
tion as "w/o L,,.,;. We also report the results of training from
scratch as “scratch”. The second row shows the results without
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TABLE X
COMPARISONS ON 3D SCENE DATASET, C' D5 x 1000.

Burghers Lounge

Copyroom Stonewall Totempole

CDys | CDpy | NC | CDpy | CDpy | NC

CDps | CDpy | NC | CDpy | CDpy | NC | CDpy | CDypy | NC

27.46
3.055
0.401
1.367
1.339
0.897

0.046
0.056
0.053
0.053
0.014
0.022

0.894
0.833
0.848
0.827
0.934
0.887

0.079
0.045
0.017
0.028
0.031
0.025

0.907
0.835
0.920
0.873
0.929
0.883

9.54
9.672
6.103
4.684
0.432
0.855

SDF

10.97
3.61
0.609
2.327
0.405
0.479

0.045
0.036
0.021
0.030
0.014
0.018

0.892
0.810
0.901
0.857
0.914
0.862

20.46
5.032
0.320
2234
0.266
0.434

0.069
0.042
0.015
0.024
0.014
0.018

0.905
0.879
0.954
0.913
0.957
0.929

2.054
9.58
0.601
2278
1.089
1.604

0.021
0.062
0.017
0.034
0.029
0.032

0.943
0.887
0.950
0.878
0.954
0.923

0.133 | 0.011 | 0.934 | 0.120 | 0.008 | 0.926

0.111 | 0.009 | 0.913 | 0.082 | 0.009 | 0.957 | 0.203 | 0.013 | 0.944

0.014
0.008
0.006

0.910
0.927
0.941

1.168
0.191
0.146

0.027
0.010
0.009

0.901
0.910
0.921

0.393
0.092
0.068

CAPUDF
LSUDF [43

42

UDF

0.269
0.113
0.093

0.013
0.009
0.007

0.908
0911
0.925

0.509
0.066
0.050

0.019
0.007
0.005

0.936
0.962
0.970

2.02
0.139
0.107

0.036
0.009
0.007

0.922
0.955
0.960

Ours(UDF) | 0.127 | 0.008 | 0.923 | 0.079 | 0.006 | 0.937

0.070 | 0.006 | 0.935 | 0.047 | 0.005 | 0.971 | 0.115 | 0.007 | 0.962

TABLE XI
COMPARISONS ON DTU DATASET (LARGE-OVERLAP SETTING). IN THIS TABLE, THE BEST RESULTS ARE IN BOLD, THE SECOND BEST ARE UNDERLINED

Scan ID 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
COLMAP 78 0.90 2.89 1.63 1.08 2.18 1.94 1.61 1.30 2.34 1.28 1.10 1.42 0.76 1.17 1.14 1.52
SparseNequt IEH 1.29 2.27 1.57 0.88 1.61 1.86 1.06 1.27 1.42 1.07 099 087 0.54 1.15 1.18 1.27
VolRecon 1.20 2.59 1.56 1.08 1.43 1.92 1.11 1.48 1.42 1.05 1.19 1.38 0.74 1.23 1.27 1.38
ReTR Im 1.05 231 144 0.98 1.18 1.52 0.88 1.35 1.30 0.87 1.07 0.77 0.59 1.05 1.12 1.17
C2F2NeuS 1.12 242 1.40 0.75 1.41 1.77 0.85 1.16 1.26 076 0091 0.60 046 0.88 0.92 1.11
UFORecon |@ 0.76  2.05 1.31 0.82 1.12 1.18 0.74 1.17 1.11 0.71 0.88 058 0.54 0.86 0.99 0.99
NeuS | 457 449 397 432 463 1.95 4.68 3.83 4.15 2.50 1.52 647 126 557 6.11 4.00
VolSDF Im 4.03 4.21 6.12 0.91 8.24 1.73 2.74 1.82 5.14 3.09 2.08 4.81 0.60 3.51 2.18 3.41
MonoSDF Ig 2.85 3.91 2.26 1.22 3.37 1.95 1.95 5.53 5.77 1.10 599 228 0.65 2.65 2.44 2.93
NeuSurf Iﬁ 0.78 2.35 1.55 0.75 1.04 1.68 0.60 1.14 0.98 0.70 0.74 0.49 0.39 0.75 0.86 0.99
Ours 0.69 2.13 1.30 0.77 1.05 1.39 0.69 1.22 1.02 0.69 0.75 0.49 0.41 0.75 0.91 0.95
0
~
t /
-
=
: ‘ /!V" 1\ 0.02
(a) Input (b) Grad-PU (c) APU-LDI (e) GT Mésh

(e) CAPUDF  (f) Ours

Fig. 20. Visual comparisons of normal estimations on PCPNet dataset.

the gradient immutable training schema as “w/o GITS” and
with the schema but under different synchronization epochs
as ”Sync,,”. The results verify the effectiveness of our design
for UDF learning.

VIII. LIMITATIONS

Given that our implicit filter smooths each level set via
points in the neighborhood, the selection of a neighborhood
with overly intricate geometry could yield inaccurate results
when the points are sparse. This limitation is not uncommon in

Fig. 21. Visual comparisons of point cloud upsampling on PU-GAN dataset.

TABLE XII
COMPARISONS OF NORMAL ESTIMATION ON PCPNET DATASET.
Method Clean  Strip  Gradient | Average
PCPNet [79 9.66 11.47 13.42 11.61
Hough [80 1023 12.47 11.02 11.24
Nesti-Net [31] 6.99 8.47 9.00 8.15
IterNet [82] 6.72 7.73 7.51 7.32
DeepFit [83] 6.51 7.92 7.31 7.25
Jet [84 1223 13.39 13.13 12.92
PCA |85 1229  13.66 12.81 12.92
CAPUDF [42] 7.30 7.74 7.78 7.61
LSUDF [4 6.51 7.45 7.64 7.20
Ours 5.76 6.94 6.79 6.50
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Fig. 22. The 2D level sets show the distance field learned by different losses. The red lines represent the learned zero level set.

COMPARISONS OF POINT CLOUD UPSAMPLING RESULTS ON PU-GAN EFFECT OF WEIGHT a3
DATASET. ’
Method P2F CD _HD az | CDpy | CDpy | F-S. | NC
= 6.84 072 8.94 0 0.008 0.013 | 0.758 | 0.903
2 3.96 0.49 6.11
2 233 028 464 1 0.007 | 0.011 | 0.772 | 0.910
£ 201 022 283 10 | 0.007 | 0.008 | 0.778 | 0.911
i 195 026 246 100 | 0.008 | 0.009 | 0.774 | 0.909
- EAR E|47] 582 052 737 : . . .
2 L2G- 39.37 631 63.23
g SPU-Net (AII2T) 579 037 255 TABLE XVIII
2 CAPUDF [42] 143 024 216 EFFECT OF FILTER PARAMETERS 0y, AND 0.
5 APU-LDI [93] 1.34 0.23 1.68
LSUDF Im 1.02 0.19 1.55 -
Ours 077 012 140 _ CDpy | CDpy | F-S. NC
15 0.007 0.008 0.778 | 0.911
o 30° 0.007 0.011 0.771 | 0.907
Errmer o L Xl R " 45° 0.008 | 0.012 | 0.764 | 0.903
i 60° 0.008 0.010 0.767 | 0.901
_ Loss CDry | CDrp | ES. | NC U max 0.007 | 0.008 | 0.778 | 0.911
w/ Elkonal, w/o CD | 0.009 0.021 | 0.738 | 0.899 P diagonal 0.008 0.011 0.763 0.904
w/ Eikonal, w/ CD | 0.008 | 0.009 | 0.774 | 0.910
w/o Eikonal, w/ CD 0.007 0.008 0.778 0.911 TABLE XIX
EFFECT OF UDF FILTER FRAMEWORK DESIGN.
EFFECT O;FAD?PI;ER)EZT LOSSES wio BiG Wl Lyproj scratch Ours
’ CDyo 0.088 0.090 0.100 0.087
Loss CDp1 | CDpy | F-S. NC NC 94.40 94.47 94.45 94.55
Lol 0.012 | 0.083 | 0.742 | 0.884
Lo 0010 | 0031 | 0.757 | 0.891 wio GITS Syncs Syncio _Syncioo
I CDrso 0.091 0.089 0.087 0.088
cD + Lzero 0.008 0.018 0.772 | 0.905 NC 94.54 94.50 94.55 94 48
Lep + Leero + Lpiera | 0008 | 0011 | 0769 | 0.908 : : : :
Ours 0.007 0.008 0.778 | 0.911
tures. We filter the distance field by minimizing the weighted
TABLE XVI . 1. . .. .
EFFECT OF BIDIRECTIONAL PROJECTION. bidirectional projection distance, where we can generate sam-
pling points on the zero level set and neighbor points on
CDpy CDpa F-S. NC non-zero level sets by the pulling procedure. By leveraging
d(p) 0.010 0.024 0.726  0.890 the Chamfer distance, we address the gradient degeneration
dp;(P) | 0.007  0.008 0.778 0.911 problem. Additionally we extend the implicit filtering to the

the majority of analogous filtering processes. For example, it’s
hard to filter a low-resolution 2D image with complex content.
Meanwhile, processing the neighbor points also increases our
training time.

IX. CONCLUSION

We introduce implicit filtering on SDFs to reduce the noise
of the signed distance field while preserving geometric fea-

UDFs and apply it to the sparse-view reconstruction, point
normal estimation, and point cloud upsampling tasks. The vi-
sual and numerical comparisons demonstrate our effectiveness
and superiority over state-of-the-art methods.
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