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Abstract—Point cloud completion concerns to predict missing part for incomplete 3D shapes. A common strategy is to generate

complete shape according to incomplete input. However, unordered nature of point clouds will degrade generation of high-quality 3D

shapes, as detailed topology and structure of unordered points are hard to be captured during the generative process using an

extracted latent code. We address this problem by formulating completion as point cloud deformation process. Specifically, we design a

novel neural network, named PMP-Net++, to mimic behavior of an earth mover. It moves each point of incomplete input to obtain a

complete point cloud, where total distance of point moving paths (PMPs) should be the shortest. Therefore, PMP-Net++ predicts

unique PMP for each point according to constraint of point moving distances. The network learns a strict and unique correspondence

on point-level, and thus improves quality of predicted complete shape. Moreover, since moving points heavily relies on per-point

features learned by network, we further introduce a transformer-enhanced representation learning network, which significantly

improves completion performance of PMP-Net++. We conduct comprehensive experiments in shape completion, and further explore

application on point cloud up-sampling, which demonstrate non-trivial improvement of PMP-Net++ over state-of-the-art point cloud

completion/up-sampling methods.

Index Terms—Point clouds, 3D shape completion, transformer, up-sampling

Ç

1 INTRODUCTION

AS one of the widely used 3D shape representations, point
clouds can be easily obtained through depth cameras or

other 3D scanning devices. Due to the limitations of view-
angles or occlusions of 3D scanning devices, the raw point
clouds are usually sparse and incomplete [1]. Therefore, a
shape completion/consolidation process is usually required
to generate the missing regions of 3D shape for the down-
stream 3D computer vision applications like classification

[2], [3], [4], [5], [6], [7], segmentation [8], [9] and other visual
analysis [10].

In this paper, we focus on the completion task for 3D
objects represented by point clouds, where the missing
parts are caused by self-occlusion due to the view angle of
scanner. Most of the previous methods formulate the point
cloud completion as a point cloud generation problem [1],
[11], [12], [13], where an encoder-decoder framework is usu-
ally adopted to extract a latent code from the input incom-
plete point cloud, and decode the extracted latent code into
a complete point cloud. Benefiting from the deep neural net-
work based point cloud learning methods, the point cloud
completion methods along this line have made huge prog-
ress in the last few years [1], [13]. However, the generation
of point clouds remains a difficult task using deep neural
network, because the unordered nature of point clouds
makes the generative model difficult to capture the detailed
topology or structure among discrete points [13]. Therefore,
the performance of generative models based point clouds
completion is still unsatisfactory.

To improve the point cloud completion performance, in
this paper, we propose a novel deep neural network, named
PMP-Net++, to formulate the task of point cloud completion
from a new perspective. Different from the generative model
that directly predicts the coordinations of all points in 3D
space, the PMP-Net++ learns to move the points from the
source 3D shape to the target one. Through the point moving
process, the PMP-Net++ learns the point-level correspond-
ences between the source point cloud and the target, which
captures the detailed topology and structure relationships
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between the two point clouds. On the other hand, there are
many possible solutions to move points from the source to
the target, which will make the network difficult to train
well. Therefore, in order to encourage the network to learn a
unique optimal arrangement of point moving path, we take
the inspiration from the Earth Mover’s Distance (EMD) and
propose to regularize a transformer-enhanced Point-Mov-
ing-Path Network (named PMP-Net++) under the constraint
of the total point moving distances (PMDs), which guaran-
tees the uniqueness of path arrangement between the source
point cloud and the target one.

A detailed illustration is given in Fig. 1. Taking the task
of completing short line AB to the long line A0B0 for exam-
ple, the generation based neural network aims to predict
the coordinates of A0B0, which is usually optimized by the
chamfer distance (CD) or earth mover’s distance (EMD).
However, due to the discrete nature of point cloud data, the
target matrix representing the line A0B0 has multiple
arrangements, all of which meet the minimum loss of CD
and EMD constraints. As a result, there are multiple optimal
targets for the network, which cannot guide the network to
learn the detailed shape correspondence between the short
line AB and the long line A0B0. In contrast, shape deforma-
tion based neural network can potentially establish a direct
and point-wise correspondence between the source input
(AB) and the target output (A0B0), with the guidance of path
constraint. The reason is further illustrated in Fig. 1c. The
path constraint takes effect between the input and the out-
put of the network. It regularizes the point moving path
and optimizes the network to predict a unique displace-
ment for each point. Under such circumstance, the out-
put of network is the displacement, which is locally
related to each start point and end point. On the other
hand, the output of generation based network is the
coordinate matrix representing line A0B0, and its only
source of supervision is the overall shape constraints
CD/EMD, which takes effect between the output and
the target ground truth.

Moreover, in order to predict the point moving path
more accurately, we propose a multi-step path searching
strategy to continuously refine the point moving path under
multi-scaled searching radius. Specifically, as shown in
Fig. 2, the path searching is repeated for multiple steps in a
coarse-to-fine manner. Each step will take the previously
predicted paths into consideration, and then plan its next

move path according to the previous paths. To record and
aggregate the history information of point moving path, we
take the inspiration from Gated Recurrent Unit (GRU) to
propose a novel Recurrent Path Aggregation (RPA) module.
It can memorize and aggregate the route sequence for each
point, and combine the previous information with the cur-
rent location of point to predict the direction and the length
for the next move. By reducing the searching radius step-
by-step, PMP-Net++ can consistently refine a more and
more accurate path for each point to move from its original
position on the incomplete point cloud to the target position
on the complete point cloud.

The PMP-Net++ proposed in this paper is an enhanced
extension of our latest work PMP-Net [14]. We find that the
point features learned in the moving procedure plays the
key role during the prediction of high quality complete
shape. And the PointNet++[15] based backbone used in
PMP-Net cannot provide more discriminative point fea-
tures, due to its max-pooling based feature aggregation
strategy [4]. Therefore, inspired by the recent success of
Transformer in point cloud representation learning [16], we
introduce a novel transformer based framework into PMP-
Net++ to enhance the point features learned by our

Fig. 1. Illustration of the differences between the generation based methods and the deformation based methods, where the task is to complete a
short lineAB to a long line A0B0 (in (a) and (b)). The differences of the effect between the path constraint and the widely used CD/EMD is further illus-
trated in (c).

Fig. 2. Illustration of path searching with multiple steps under the coarse-
to-fine searching radius. The PMP-Net++ moves point A to point A0 by
three steps, with each step reducing its searching radius, and looking
back to consider the moving history in order to decide the next place to
move.
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network, which aims to predict a more accurate displace-
ment for each point. In all, the main contributions of our
work can be summarized as follows.

� We propose a novel network for point cloud comple-
tion task, named PMP-Net++, to move each point on
the incomplete shape to the complete one to achieve
a highly accurate point cloud completion. Compared
with previous generative completion methods, PMP-
Net++ has the ability to learn more detailed topology
and structure relationships between incomplete
shapes and complete ones, by learning the point-
level correspondence through point moving path
prediction.

� We propose to learn a unique point moving path
arrangement between incomplete and complete
point clouds, by regularizing the network using the
constraint of Earth Mover’s Distance. As a result, the
network will not be confused by multiple solutions
of moving points, and finally predicts a meaningful
point-wise correspondence between the source and
target point clouds.

� We propose to search point moving path with mul-
tiple steps in a coarse-to-fine manner. Each step
will decide the next move based on the aggregated
information from the previous paths and its current
location, using the proposed Recurrent Path Aggre-
gation (RPA) module.

� Compared with our latest PMP-Net, we further intro-
duce a transformer-enhanced point cloud network
into PMP-Net++ to improve the point feature learn-
ing. We conduct comprehensive experiments on
Completion3D[13] and PCN[12] datasets, and further
explore the application on point cloud up-sampling,
all of which demonstrate the non-trivial improve-
ment of PMP-Net++ over the state-of-the-art point
cloud completion/up-sampling methods (including
our latest PMP-Net).

2 RELATED WORK

The deep learning technology in 3D reconstruction [17],
[18], [18], [19], [20] and representation learning [21], [22],
[23], [24] have boosted the research of 3D shape completion,
which can be roughly divided into two categories. (1) Tradi-
tional 3D shape completion methods [25], [26], [27], [28]
usually formulate hand-crafted features such as surface
smoothness or symmetry axes to infer the missing regions,
while some other methods [29], [30], [31], [32] consider the
aid of large-scale complete 3D shape datasets, and perform
searching to find the similar patches to fill the incomplete
regions of 3D shapes. (2) Deep learning based methods [33],
[34], [35], [36], on the other hand, exploit the powerful
representation learning ability to extract geometric features
from the incomplete input shapes, and directly infer the
complete shape according to the extracted features. Those
learnable methods do not require the predefined hand-
crafted features in contrast with traditional completion
methods, and can better utilize the abundant shape infor-
mation lying in the large-scale completion datasets. The
proposed PMP-Net++ also belongs to the deep learning

based method, where the methods along this line can be fur-
ther categorized and detailed as below.

2.1 Volumetric Aided Shape Completion

The representation learning ability of convolutional neural
network (CNN) has been widely used in 2D computer
vision research, and the studies concerning application of
2D image inpainting have been continuously surging in
recent years. A intuitive idea for 3D shape completion can
be directly borrowed from the success of 2D CNN in image
inpainting research [37], [38], [39], extending it into 3D
space. Recently, several volumetric aided shape completion
methods, which are based on 3D CNN structure, have been
developed. Note that we use the term “volumetric aided” to
describe this kind of methods, because the 3D voxel is usu-
ally not the final output of the network. Instead, the pre-
dicted voxel will be further refined and converted into other
representations like mesh [11] or point cloud [40], in order
to produce more detailed 3D shapes. Therefore, the voxel is
more like an intermediate aid to help the completion net-
work infer the complete shape. Notable works along this
line like 3D-EPN [11] and GRNet [40] have been proposed
to reconstruct the complete 3D voxel in a coarse-to-fine
manner. They first predict a coarse complete shape using
3D CNN under an encoder-decoder framework, and then
refine the output using similar patches selected from a com-
plete shape dataset [11] or by further reconstructing the
detailed point cloud according to the output voxel [40].
Also, there are some studies that consider purely volumetric
data for shape completion task. For example, Han et al. [41]
proposed to directly generate the high-resolution 3D volu-
metric shape, by simultaneously inferring global structure
and local geometries to predict the detailed complete shape.
Stutz et al. [42] proposed a variational auto-encoder based
method to complete the 3D voxel under weak supervision.
Despite the fascinating ability of 3D CNN for feature learn-
ing, the computational cost which is cubic to the resolution
of input voxel data makes it difficult to process fine-grained
shapes [1].

2.2 Point Cloud Based Shape Completion

There is a growing attention on the task of point cloud
based shape completion [1], [13], [43], [44] in recent years.
Since point cloud is a direct output form of many 3D scan-
ning devices, and the storage and process of point clouds
require much less computational cost than volumetric data,
many recent studies consider to perform direct completion
on 3D point clouds. Enlighten from the improvement of
point cloud representation learning [15], [45], previous
methods like TopNet [13], PCN [12] and SA-Net [1] formu-
late the solution as a generative model under an encoder-
decoder framework. They adopted encoder like PointNet
[45] or PointNet++ [15] to extract the global feature from the
incomplete point cloud, and use a decoder to infer the com-
plete point cloud according to the extracted features. Com-
pare to PCN [12], TopNet [13] improved the structure of
decoder in order to implicitly model and generate point
cloud in a rooted tree architecture [13]. SA-Net [1] took one
step further to preserve and convey the detailed geometric
information of incomplete shape into the generation of
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complete shape through skip-attention mechanism. Other
notable methods like RL-GAN-Net [34], Render4Comple-
tion [44] and VRCNet [46] focused on the framework of
adversarial learning and variational auto-encoder to
improve the reality and consistency of the generated com-
plete shapes. More recently, the progressive refinement of
3D shape has become a popular idea in the research of point
cloud completion (e.g., CRN [47], PF-Net [35]), as it can help
the network generate 3D shapes with detailed structures.

In all, most of the above methods are generative solution
for point cloud completion task, and inevitably suffer from
the unordered nature of point clouds, which makes it diffi-
cult to reconstruct the detailed typology or structure using a
generative decoder. Therefore, in order to avoid the prob-
lem of predicting unordered data, PMP-Net++ uses a differ-
ent way to reconstruct the complete point cloud, which
learns to move all points from the initial input instead of
directly generating the final point cloud from a latent code.

The idea of PMP-Net++ is also related to the research of
3D shape deformation [48], which mainly considered one-
step deformation. However, the deformation between the
incomplete and complete shapes is more challenging, which
requires the inference of totally unknown geometries in
missing regions without any other prior information. In
contrast, we propose multi-step searching to encourage
PMP-Net++ to infer more detailed geometric information
for missing region, along with point moving distance regu-
larization to guarantee the efficiency of multi-step inference.

3 ARCHITECTURE OF PMP-NET++

An overview of the proposed PMP-Net++ is shown in Fig. 4.
The network basically consists of three parts: (1) the encoder
to extract point cloud features; (2) the feature propagation
module (FP-Module) to predict the point moving path for
each point; (c) the RPA module recurrently fuses and inte-
grates the current step’s point features with the previous
steps’ path information. The details of each part will be
described as below.

3.1 Point Displacement Prediction

3.1.1 Multi-Step Framework

An overview of the proposed PMP-Net++ is shown in Fig. 4.
Given an input point cloud P ¼ fppig and a target point
cloud P 0 ¼ fp0p0jg. The objective of PMP-Net++ is to predict a
displacement vector set DP ¼ fDppig, which can move each
point from P into the position of P 0 such that fðppi þ DppiÞg ¼

fp0p0jg. PMP-Net++ moves each point ppi for K ¼ 3 steps in
total. The displacement vector for step k is denoted by Dppki ,
so Dppi ¼

P3
k¼1 Dpp

k
i . For step k, the network takes the

deformed point cloud fppk�1i g ¼ fppi þ
Pk�1

j¼1 Dpp
j
ig from the

last step k� 1 as input, and calculates the new displacement
vector according to the input point cloud. Therefore, the
predicted shape will be consistently refined step-by-step,
which finally produces a complete shape with high quality.

3.1.2 Transformer-Enhanced Displacement Prediction

At step k, in order to predict the displacement vector Dppki for
each point, we first extract per-point features from the point
cloud. In the previous implementation of our PMP-Net [14],
this is achieved by first adopting the basic framework of
PointNet++ [15] to extract the global feature of input the 3D
shape, and then using the feature propagation module to
propagate the global feature to each point in the 3D space,
and finally producing per-point feature hhk;l

i for point ppki . In
PMP-Net++, we adopt the recent implementation success of
transformer [49] to enhance the point feature learned by the
PointNet++, where we follow the practice of Point Trans-
former [16], and add an additional transformer module
between each set abstraction (SA) layer of PointNet++ based
encoder. The detailed structure and comparison between
PMP-Net and PMP-Net++ is shown in Fig. 5. Specifically, in

Fig. 3. Detailed structure of PMD-module at step k. It mainly consists of three parts: (1) point cloud encoder and (2) feature prorogation module
(FP-module) to extract per-point features; (3) RPA module to recurrently learn and forget the path searching information from the previous steps.

Fig. 4. Illustration of path searching with multiple steps under the coarse-
to-fine searching radius. The PMP-Net++ moves point A to point A’ by
three steps, with each step reducing its searching radius, and looking
back to consider the moving history in order to decide the next place to
move.
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PMP-Net++, the local features (denoted as fxing for conve-
nience) learned by the previous layer of set abstraction is
input to the next transformer module. In transformer mod-
ule, fxing serves as both key and query for the calculation of
self-attention, according to which a set of new local features
fxoutg are produced through several MLPs and element-
wise operations. Note that the position encoding � in Fig. 5c
is used to guide the network to learn the spatial relation-
ships between different local features. We follow the same
practice of previous work [16] to adopt the learnable posi-
tion encoding, which depends on the 3D coordinates
between two points pi and pj

� ¼ MLPðpi � pjju�Þ: (1)

Since our experimental implementation applies three levels
of feature propagation to hierarchically produce per-point
features (see Fig. 3), we use superscript k to denote the step
and the subscript l to denote the level in hhk;l

i . The per-point
feature hhk;l

i is then concatenated with a random noise vector
x̂x, which according to [48] can give point tiny disturbances
and force it to leave its original place. Then, the final point
feature hhk;3

i at step k and level 3 is fed into a multi-layer per-
ceptron (MLP) followed by a hyper-tangent activation
(tanh), to produce a 3-dimensional vector as the displace-
ment vector Dppki for point pp

k
i as

Dppki ¼ tanhðMLPð½hhk;3
i : x̂x�ÞÞ; (2)

where “:” denotes the concatenation operation.

3.1.3 Recurrent Information Flow Between Steps

The information of previous moves is crucial for network to
decide the current move, because the previous paths can be
used to infer the location of the final destination for a single
point. Moreover, such information can guide the network to
find the direction and distance of next move, and prevent it
from changing destination during multiple steps of point

moving path searching. In order to achieve this target, we
propose to use a special RPA unit between each step and
each level of feature propagation module, which is used to
memorize the information of previous path and to infer the
next position of each point. As shown in Fig. 3, the RPA

module in (step k, level l) takes the output ffk;l�1
i from the

last level i-1 as input, and combines it with the feature hhk�1;l
i

from the previous step k� 1 at the same level l to produce
the feature of current level hhk;l

i , denoted as

hhk;l
i ¼ RPAðffk;l�1i ; hhk�1;l

i Þ: (3)

The detailed structure of RPA module is described below.

3.2 Recurrent Path Aggregation

The detailed structure of recurrent path aggregation module
is shown in Fig. 6. The previous paths of point moving can
be regarded as the sequential data, where the information
of each move should be selectively memorized or forgotten
during the process. Following this idea, we take the inspira-
tion from the recurrent neural network, where we mimic
the behavior of gated recurrent unit (GRU) to calculate an
update gate zz and reset gate rr to encode and forget informa-
tion, which is according to the point feature hhk�1;l

i from the
last step k� 1 and the point feature ffk;l�1

i of current step k.
The calculation of two gates can be formulated as

zz ¼ sðWz½ffk;l�1
i : hhk�1;l

i � þ bbzÞ; (4Þ
rr ¼ sðWr½ffk;l�1

i : hhk�1;l
i � þ bbrÞ; (5)

whereWz;Wr are weight matrix and bbz; bbz are biases. s is the
sigmoid activation function, which predicts a value between
0 and 1 to indicate the ratio of information that allowed to
pass the gate. “:” denotes the concatenation of two features.

Different from the standard GRU, which emphasizes
more importance on the preservation of previous informa-
tion when calculating the output feature hhk;l

i at current step,
in RPA, we address more importance on the preservation of
current input information, and propose to calculate the out-
put feature hhk;l

i as

hhk;l
i ¼ zz� ĥ̂h

k;l

i þ ð1� zzÞ � ffk;l�1
i ; (6)

where ĥ̂h
k;l

i is the intermediate feature of current step. It con-
tains the preserved information from the past, which is cal-
culated according to the current input feature. The

formulation of ĥ̂h
k;l

i is given as

ĥ̂h
k;l

i ¼ ’ðWh½rr� hhk�1;l
i : ffk;l�1

i � þ bbhÞ; (7)

where ’ is relu activation in our implementation.

Fig. 6. Detailed structure of RPA module at step k, level l.

Fig. 5. The architecture of encoder used in PMD-module. Moreover, we
also show the comparison with previous work and the detailed structure
of transformer.
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The reason of fusing ĥ̂h
k;l

i with ffk;l�1i instead of hhk�1;l
i is

that, compared with standard unit in RNN unit, the current
location of point should have greater influence to the deci-
sion of next move. Especially, when RPA module needs to
ignore the previous information which is not important in
the current decision making, Eq. (6) can easily allow RPA
model to forget all history by simply pressing the update
gate zz to a zero-vector, and thus enables the RPA module
fully focus on the information of current input ffk;l�1

i .

3.3 Optimized Searching for Unique Paths

3.3.1 Minimizing Moving Distance

As shown in Fig. 7, the unordered nature of point cloud
allows multiple solutions to deform the input shape into the
target one, and the direct constraint (e.g., chamfer distance)
on the deformed shape and its ground truth cannot guaran-
tee the uniqueness of correspondence established between
the input point set and the target point set. Otherwise, the
network will be confused by the multiple solutions of point
moving, which may lead to the failure of capturing detailed
topology and structure relationships between incomplete
shapes and complete ones. In order to establish a unique
and meaningful point-wise correspondence between input
point cloud and target point cloud, we take the inspiration
from Earth Mover’s Distance [50], and propose to train
PMP-Net++ to learn the path arrangement f between source
and target point clouds under the constraint of total point
moving path distance. Specifically, given the source point
clouds X̂ ¼ fx̂xiji ¼ 1; 2; 3; . . . ; Ng and the target point cloud
X ¼ fxxiji ¼ 1; 2; 3; . . . ; Ng, we follow EMD to learn an
arrangement fwhich meets the constraint below:

LEMDðX̂;XÞ ¼ min
f:X̂!X

1

X̂

X

x̂x2X̂
kx̂x� fðx̂xÞk; (8)

In Eq. (8), f is considered as a bijection that minimizes the
average distance between corresponding points in X̂ andX.

Here, a unique correspondence between two point
clouds can be guaranteed by the definition of EMD (Eq. (8)),
which can be explained as follows: (1) deforming point
cloud A into the shape of point cloud B (with the same num-
ber of points) equals to establish a bijection f between point
clouds A and B; (2) the bijection f is unique when the sum
of point displacement reaches the minimum value; (3) the
optimization of Eq. (8) is to minimize the sum of point

displacement, which will yield a unique correspondence,
following the data order determined by the input point
cloud.

According to Eq. (8), bijection f established by the net-
work should achieve the minimum moving distance to
move points from input shape to target shape. However,
even if the correspondence between input and target point
clouds is unique, there still exist various paths between
source and target points, as shown in Fig. 8. Therefore, in
order to encourage the network to learn an optimal point
moving path, we choose to minimize the point moving dis-
tance loss (LPMD), which is the sum of all displacement vec-
tor fDppki g output by all three steps in PMP-Net. The Point
Moving Distance loss is formulated as

LPMD ¼
X

k

X

i

kDppki k2: (9)

Eq. (9) is more strict than EMD constraint. It requires not
only the overall displacements of all point achieve the short-
est distance, but also limits the point moving paths in each
step to be the shortest one. Therefore, in each step, the net-
work will be encouraged to search new path following the
previous direction, as shown in Fig. 8, which will lead to
less redundant moving decision and improve the searching
efficiency.

3.3.2 Multi-Scaled Searching Radius

PMP-Net++ searches the point moving path in a coarse-to-
fine manner. For each step, PMP-Net++ reduces the maxi-
mum stride to move a point by the power of 10, which is,
for step k, the displacement Dppki calculated in Eq. (2) is lim-
ited to 10�kþ1Dppki . This allows the network converges more
quickly during training. And also, the reduced searching
range will guarantee the network at next step not to over-
turn its decision made in the previous step, especially for
the long range movements. Therefore, it can prevent the net-
work from making redundant decision during path search-
ing process.

3.4 Extension to Dense Point Cloud Completion

The deformation of point cloud cannot be directly used for
increasing the number of points. Therefore, the input and the
output point cloudmust have the same resolution. Such char-
acteristic of deformation based PMP-Net++ may become a
problem when tackling 3D shapes with various number of
points. In order to solve this problem, we propose to extend

Fig. 7. Illustration of multiple solutions when deforming input point cloud
(green) into target point cloud (red). The PMD-constraint guarantees the
uniqueness of point level correspondence (a) between input and target
point cloud, and filter out various redundant solutions for moving points (b).

Fig. 8. Illustration of the effectiveness of LPMD. By minimizing the point
moving distance, the network is encouraged to learn more consistent
paths from source to target, which will reduce redundant searching in
each step and improve the efficiency.
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the PMP-Net++ to dense point cloud completion scenarios
by adding noise to the input of each step. To achieve this goal,
in step k, the input point cloud fppki g is concatenated with a
noise vector n̂̂n sampled from a standard normal distribution
Nð0; 1Þ as

fppki g  f½ppki : n̂̂n�g; n̂̂n � Nð0; 1Þ: (10)

As a result, in each time, the point cloud varies from its pre-
vious data when input to the network. Then, by deforming
point clouds multiple times and overlapping the deforma-
tion results together, we can get a dense point cloud with
more points than the original input.

Note that different from the noise in Eq. (2), which aims
to push the points away from their original position in 3D
space, the noise used in the input of each step aims to vary
the final deformation results.

More Discussion. The key idea of extension to dense point
cloud completion is to increase the number of points. Such
practice is commonly adopted in generation based methods.
For PMP-Net, we duplicate points and concatenate with
random noise to increase the number of points. And for the
other methods like TopNet[13] and PCN [12], they also
need to duplicate features and concatenate with 2D grid
code to increase points. The difference between PMP-Net++
and the other methods is that the duplication operation is
settled at different stages in the network.

Note that if we simply repeat point coordinates, and
move them without additional operations, the duplicated
points will produce exactly the same displacement. There-
fore, to solve this problem, in PMP-Net++, we add noise on
each point features to force them moving to different places.
Because the noise-enhanced input points have already been
located at different spatial locations before the movement,
these duplications will not be moved to the same target
points.

3.5 Training Loss

The deformed shape is regularized by the complete ground
truth point cloud through Chamfer distance (CD) and Earth
Mover Distance (EMD). Following the same notations in
Eq. (8), the Chamfer distance is defined as

LCDðX; X̂Þ ¼
X

xx2X
min
x̂x2X̂
kxx� x̂xk þ

X

x̂x2X̂
min
xx2X
kx̂x� xxk: (11Þ

The total loss for training is then given as

L ¼
X

k

LCDðPk; P 0Þ þ LPMD; (12)

where Pk and P 0 denote the point cloud output by step k
and the target complete point cloud, respectively. Note that

finding the optimal f is extremely computational expensive.
In experiments, we follow the simplified algorithm in [12] to
estimate an approximation of f.

4 EXPERIMENTS

In this section, we first evaluate PMP-Net++ on general
completion benchmark PCN [12] and Completion3D [13].
Then we further explore the potential application of PMP-
Net++ on the point cloud up-sampling task. Finally, the
effectiveness of each part of PMP-Net++ will be quantita-
tively evaluated through comprehensive ablation studies.

4.1 Detailed Settings

We use the single scale grouping (SSG) version of PointNet
++ and its feature propagation module as the basic frame-
work of PMP-Net. The detailed architecture of each part is
described in Tables 1 and 2, respectively.

In Table 1, “#Points” denotes the number of down-sam-
pled points, “Radius” denotes the radius of ball query,
“#Sample” denotes the number of neighbors points sam-
pled for each center point, “MLPs” denotes the number of
output channels for MLPs in each level of encoder.

We use AdamOptimizer to train PMP-Net++ with an ini-
tial learning rate 10�3, and exponentially decay it by 0.5 for
every 20 epochs. The training process is accomplished using
a single NVDIA GTX 2080TI GPU with a batch size of 24.
PMP-Net++ takes 150 epochs to converge on both PCN and
Completion3D dataset. We scale all input training shapes of
Completion3D by 0.9 to avoid points out of the range of
tanh activation.

Note that currently the transformer is only involved in
encoder, and we do not observe significant performance
gain when adding transformer in decoder network. Since
the key operation of feature propagation module (FP-mod-
ule in decoder) is the trilinear interpolation (which is not
learnable), the quality of point features produced by the
decoder are mainly relies on the encoder. Therefore, addi-
tional transformer in decoder may not help the network too
much to enhance the quality of point features.

4.2 Point Cloud Completion on PCN Dataset

4.2.1 Dataset and Evaluation Metric

We show that PMP-Net++ learned on sparse point cloud
can be directly applied to the dense point cloud completion.
Specifically, we keep training PMP-Net++ on sparse shape
with 2,048 points, and reveal its generalization ability by
predicting dense complete shape with 16,384 points on
PCN dataset [12]. PCN dataset is derived from ShapeNet
dataset, in which each complete shape contains 16,384
points. The partial shapes have various point numbers, so
we first down-sample shapes with more than 2,048 points
to 2,048, and up-sample shapes with less than 2048 points to

TABLE 1
The Detailed Structure of Encoder

Level #Points Radius #Sample MLPs

1 512 0.2 32 [64,64,128]
2 128 0.4 32 [128,128,256]
3 - - - [256,512,1024]

TABLE 2
The Detailed Architecture of Feature Propagation Module

Level 1 2 3

MLPs [256,256] [256,128] [128,128,128]
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2048 by randomly copying points. Since PMP-Net++ learns
to move points instead of generating points, it requires the
same number of points in incomplete point cloud and com-
plete one. In order to predict complete shape of 16,384
points, we repeat 8 times of prediction for each shape dur-
ing testing, with each time moving 2,048 points. Note that
PMP-Net++ is still trained on sparse point clouds with 2,048
points, which are sampled from the dense point clouds of
PCN dataset.

On PCN dataset, we use the per-point L1 Chamfer dis-
tance (CD) as the evaluation metric, which is the CD in
Eq. (11) averaged by the point number.

4.2.2 Quantitative Comparison

The comparison in Table 3 shows that PMP-Net++ yields a
comparable performance to the state-of-the-art method [47],
and ranks first on PCN dataset. The result of Wang et al.[47]
is cited from its original paper, while the results of other
compared methods are all cited from [40]. Note that most
generation based methods (like Wang et al. [47] and GRNet
[40] in Table 3) specially designed a coarse-to-fine genera-
tion process in order to obtain better performance on dense
point cloud completion. In contrast, our PMP-Net++ trained
on 2,048 points can directly generate arbitrary number of
dense points by simply repeating the point moving process,

and still achieves comparable results to the counterpart
methods. Moreover, we further discuss the effectiveness of
PMD loss by comparing the baseline PMP-Net++ with no
PMD variation, which we remove the PMD loss during
training. From Table 3, we can find that PMD loss effec-
tively improves the performance of PMP-Net++, which is in
accordance with our opinion that point moving path should
be regularized to better capture the detailed topology and
structure of 3D shapes.

4.2.3 Qualitative Comparison

In Figs. 9 and 10, we further demonstrate the advantage of
PMP-Net++ over other methods, by visually compare the
completion results on PCN dataset. Specifically, in Fig. 9,
we compare our PMP-Net++ with other counterparts cross
different object categories. For example, in the third row of
Fig. 9, the task is to predict the complete shape of an incom-
plete lamp. In this task, most of the evaluated methods
failed to preserve the detailed geometries of the lamppost,
where many noise points are distributed around the lamp-
post. Compared with the generative methods in Fig. 9, our
PMP-Net++ can reveal a high quality lamppost. Moreover,
when comparing the PMP-Net++ with PMP-Net, we can
find that PMP-Net++ achieves a better shape prediction at
the bottom and the top of the lamppost. The advantages of

TABLE 3
Point Cloud Completion on PCN Dataset in Terms of Per-Point L1 Chamfer Distance �103 (Lower is Better)

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FoldingNet [51] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet [13] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
AtlasNet [52] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN [12] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
GRNet [40] 8.83 6.45 10.37 9.45 9.41 7.96 10.5 8.44 8.04
CRN [47] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
NSFA [33] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48
PMP-Net [14] 8.66 5.50 11.10 9.62 9.47 6.89 10.74 8.77 7.19
PMP-Net++(no PMD, Ours) 7.74 4.69 10.15 8.78 8.30 6.08 10.28 7.23 6.61
PMP-Net++(Ours) 7.56 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52

Fig. 9. Visualization of point cloud completion comparison with previous methods on PCN dataset.
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inferring and preserving detailed shapes of PMP-Net++
can also be well proved by the observation of the fourth
row: by comparing the reconstruction results of the chair
back, we can find that PMP-Net++ can clearly preserve the
detailed shapes of each beam on the chairback; by compar-
ing the completion results of the chair legs, the results of
PMP-Net++ is also closer to the ground truth than its any
other counterparts. Moreover, the comparison of the sofa
between the PMP-Net and PMP-Net++ visually reveals the
improvements of PMP-Net++ over the PMP-Net. The com-
plete sofa predicted by PMP-Net distributes less points in
the missing region of the sofa than the PMP-Net++.

4.3 Point Cloud Completion on Completion3D
Dataset

4.3.1 Dataset and Evaluation Metric

We evaluate our PMP-Net++ on the widely used bench-
mark of 3D point cloud completion, i.e., Completion3D [13],
which is a large-scaled 3D object dataset derived from the
ShapeNet dataset. The partial 3D shapes are generated by
back-projecting 2.5D depth images from partial views into
3D space. Completion3D dataset concerns the completion
task of sparse point cloud completion, where it generates
only one partial view for each complete 3D object in Shape-
Net dataset, and samples 2,048 points from the mesh surface
for both the complete and partial shapes. We follow the set-
tings of training/validation/test splits in Completion3D for
fair comparison with the other methods.

Following previous studies [1], [12], [13], [40], we use the
per-point L2 Chamfer distance (CD) as the evaluation met-
ric on Completion3D dataset. L2 Chamfer distance is the
CD in Eq. (11) averaged by the point number, where the L1-
norm in Eq. (11) is replaced by L2-norm.

4.3.2 Quantitative Comparison

The quantitative comparison results1 of PMP-Net++ with
the other state-of-the-art point cloud completion methods
are shown in Table 4, in which the PMP-Net++ achieves the
best performance in terms of average chamfer distance
across all categories. The second best published method on
Completion3D leaderboard is VRCNet[46], which achieves
8.12 in terms of average CD, and PMP-Net++ improves
such state-of-the-art performance by 0.17 (also in terms of
average CD). When considering per-category performance,
PMP-Net++ achieves the best results in 7 out of 8 categories
across all compared counterpart methods, which justifies
the better generalization ability of PMP-Net++ across differ-
ent shape categories. Note that, compared with PMP-Net,
PMP-Net++ significantly reduces the average CD loss on
Completion3D dataset by 13.8%, and outperforms the PMP-
Net on all 8 categories in terms of per-category CD. As we
discussed in Section 2, GRNet [40] is a voxel aided shape
completion method, where the completion process utilizes
information from two different data modalities (i.e., point

Fig. 10. Visualization of more completion results using our PMP-Net++ on PCN dataset.

TABLE 4
Point Cloud Completion on Completion3D Dataset in Terms of Per-Point L2 Chamfer Distance �104 (Lower is Better)

Methods Average Plane Cabinet Car Chair Lamp Couch Table Watercraft

FoldingNet [51] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51
PCN [12] 18.22 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73
PointSetVoting [53] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16
AtlasNet [52] 17.77 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62
SoftPoolNet [54] 16.15 5.81 24.53 11.35 23.63 18.54 20.34 16.89 7.14
TopNet [13] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82
SA-Net [1] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84
GRNet [40] 10.64 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86
CRN [47] 9.21 3.38 13.17 8.31 10.62 10.00 12.86 9.16 5.80
PMP-Net [14] 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77
VRCNet [46] 8.12 3.94 13.46 6.72 10.35 9.87 12.48 7.73 6.14
PMP-Net++(Ours) 7.97 3.25 12.25 7.62 8.71 7.64 11.6 7.06 5.38

1. Results are cited from https://completion3d.stanford.edu/results
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cloud and voxels). The better performance of PMP-Net++
over GRNet proves the effectiveness of our method, which
can exploit the abundant geometric information lying in the
point clouds. Other methods like SA-Net [1] in Table 4 are
typical generative completion methods which are fully
based on point clouds, and the nontrivial improvement of
PMP-Net++ over these methods justifies the effectiveness of
deformation based solution in point cloud completion task.

4.3.3 Qualitative Comparison

In Fig. 11, we visually compare PMP-Net++ with the other
completion methods on Completion3D dataset, from which
we can find that PMP-Net++ predicts much more accurate
complete shapes on various shape categories, while other
methods may output some failure cases for certain input
shapes. For example, the input table in Fig. 11 (the third
row) loses half of its legs and surface. The completion
results made by GRNet and PMP-Net almost predict the
right overall shape of the complete desktop, but fail to
reconstruct the detailed structure like clean legs and smooth
surface. On the other hand, methods like FoldingNet [51],
PCN [12], TopNet [13] and SA-Net [1] intend to repair the
desktop but fail to predict a complete overall shape. More-
over, the advantage of deformation based PMP-Net++ over
the generative methods can be well proved by the case of
chair in Fig. 11 (the second row). Generative methods,

especially like GRNet, successfully learn the complete struc-
ture of the input chair, but fail to reconstruct the columns
on the chair back, which is the residual part of input shape.
On the other hand, the deformation based PMP-Net++ can
directly preserve the input shape by moving just a small
amount of point to perform completion on certain areas,
and keep the input shape unchanged. In Fig. 12, we further
visualize more completion results of PMP-Net.

4.3.4 Extension to ScanNet Chairs

To evaluate the generalization ability of PMP-Net++ on point
cloud completion task, we pre-train PMP-Net++ on Comple-
tion3D dataset and evaluate its performance on the chair
instances in ScanNet dataset without finetuning, and com-
parewithGRNet (which is the second bestmethod in Table 4,
and also pre-trained on Completion3D). The visual compari-
son is shown in Fig. 14. Since there is no ground truth for
ScanNet dataset, we typically follow [12] to report partial
metrics (Fidelity and MMD) in Table 5 based on the selected
chairs of Fig. 14. The PMP-Net++ completes shapes with less
noise than GRNet, which benefits from its point moving
practice. Because the differences in data distribution
between Completion3D and ScanNet will inevitably confuse
the network, and the point moving based PMP-Net++ can
simply choose to leave those points in residual part of an
object to stay at their own place to preserve a better shape, in

Fig. 11. Visualization of point cloud completion comparison with previous methods on Completion3D dataset.

Fig. 12. More completion results using our PMP-Net++ on Completion3D dataset.
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contrast, generation based GRNet has to predict new points
for both residual andmissing part of an object.

4.4 Point Cloud Up-Sampling

4.4.1 Dataset and Evaluation Metric

In this section, we experimentally demonstrate the effective-
ness of PMP-Net++ on other similar task, i.e., the point
cloud up-sampling task. The scenario encountered by PMP-
Net++ on this task is the same as the dense point cloud com-
pletion, where the difficulty is to increase the number of
points in order to reveal more detailed geometric informa-
tion of 3D model. Therefore, we adopt the dense completion
version of PMP-Net++ to the up-sampling task. For fair
comparison with the previous counterpart methods, we fol-
low the same practice of PU-GAN to use its dataset and
experimental settings for evaluation. According to PU-
GAN, the dataset is a collection of 147 models from the data-
set of PU-Net, MPU and Vision-air repository, where 120
models are selected for training and the rest 27 models are
used for testing. The commonly used Chamfer distance
(CD) and Hausdorff distance are adopted as our evaluation
metric.

4.4.2 Quantitative and Qualitative Comparison

The quantitative comparison is given in Table 6, from which
we can find that our PMP-Net++ achieves the best perfor-
mance among the compared counterparts. Note that, in
point cloud up-sampling task, we use exact the same net-
work settings and structures as the point cloud completion
on PCN dataset. Therefore, the better results on point cloud
up-sampling of our network proves the generalization abil-
ity of PMP-Net++ to various tasks.

In Fig. 13, we further illustrate the better performance of
PMP-Net++ by visually compare our network with PU-
GAN. For example, in the completion of the head of the
bird (first row of Fig. 13), the up-sampling results of PMP-
Net++ distribute the points more evenly than the PU-GAN.
From the results of PU-GAN, we can still observe several
holes on the bird’s head, while on the result of PMP-Net++,
there is no such incomplete region appearing on the surface
of the bird’s head. Moreover, the up-sampled points using
PMP-Net++ are distributed more evenly compared with the
PU-GAN, especially on the head of the fish in the second
row of Fig. 13.

4.5 Model Analysis

In this subsection, we analyze the influence of different parts
in the PMP-Net++, and compared it with PMP-Net to analy-
sis the effectiveness of the incremental contribution. By
default, we use the same network sittings in PMP-Net [14]
for all experiments, where all studies are typically conducted
on the validation set of Completion3D dataset under four cat-
egories (i.e., plane, car, chair and table) for convenience.

TABLE 5
Quantitative Evaluation of ScanNet Chairs

Methods Fidelity(104) MMD(103)

GRNet [40] 2.95 3.17
PMP-Net++ 2.05 2.65

Fig. 14. Visual comparison of PMP-Net++ and GRNet on ScanNet
chairs.

TABLE 6
Quantitative Comparison on Point Cloud Up-Sampling Task

Methods CD(10�3) HD(10�3)

EAR [56] 0.52 7.37
PU-Net [57] 0.72 8.94
MPU [58] 0.49 6.11
PU-GAN [55] 0.28 4.64
PMP-Net++(Ours) 0.26 4.63

Fig. 13. Visualization of point cloud up-sampling. We typically compare our PMP-Net++ with the state-of-the-art up-sampling method PU-GAN [55],
and demonstrate the advantages of PMP-Net++ for generating better detailed shapes.
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4.5.1 Analysis of RPA Module and PMP Loss

We analyze the effectiveness of RPA module by replacing it
with other units in PMP-Net++. And for PMP loss,we analyze
its effectiveness by removingPMP loss from the network. Spe-
cifically, we develop six different variations for comparison:
(1)NoPath is the variation that removes the RPAmodule from
the network; (2)Add is the variation that replaces RPAmodule
with element-wise add layer in the network; (3) RNN, (4)
LSTM and (5) GRU are variations that replace RPA module
with different recurrent unit.

The shape completion results are shown in Table 7,
in which we report the results of both PMP-Net and PMP-
Net++ for a comprehensive comparison. From Table 7, we
can find that two baseline variations (which uses the RPA
module) achieve the best performance on two backbones,
respectively, which justifies the effectiveness of the pro-
posed RPA module across different network structure. The
worst result across different kinds of unit is yielded by Add
variation under the PMP-Net backbone, while under the
PMP-Net++ backbone, the worst result is yielded by the
RNN unit. The different performance of Add variation and
GRU variation cross different backbones indicates that,
recurrent network structures cannot provide a robust aggre-
gation of sequential information, which is generated during
the path searching process of PMP-Net++ framework.
Moreover, since the RPA module is originated from the
GRU unit, the comparisons between RPA baseline and GRU
variation on two backbones justify the effectiveness of our
designation of RPA module, which can give more consider-
ation to the information from current step than GRU unit,
and help the network to make more precise decision for
point moving.

The effectiveness of newly added transformer unit can be
fully justified by the comparison between the backbones of
PMP-Net and PMP-Net++, where the best performance
with the PMP-Net backbones is still worse than the worst
performance of PMP-Net++, no matter which kind of varia-
tion they use.

4.5.2 Effect of Multi-Step Path Searching

In Table 8, we analyze the effect of different steps for point
cloud deformation, and we also compare the performance

between PMP-Net and PMP-Net++. Specifically, the ratio of
searching radius between each step is fixed to 10, and then,
the number of steps to deform the point clouds is set to 1, 2
and 4, respectively. For example, when the step is set to 4,
the corresponding searching radius is f1:0; 10�1; 10�2; 10�3g.
And the searching radius for step=2 is set to f1:0; 10�1g. By
comparing the results of step 1, 2 and 3 from Table 8, we
can find that under both backbones, deforming point cloud
by multiple steps effectively improves the completion per-
formance. On the other hand, the comparison between step
3 and step 4 shows that the performance of multi-step path
searching will reach its limitation, because too many steps
may cause information redundancy in path searching. It
can also be noticed that the gap between 1 step versus 2
step for PMP-Net++ (9.45 versus 8.36) is much larger than
PMP-Net (12.26 versus 11.90). This can be dedicated to the
point transformer enhanced module, which enables PMP-
Net++ to predict more accurate shape completion than
PMP-Net. Therefore, based on the output of step 1, where
PMP-Net++ yields a CD of 9.45 and PMP-Net is 12.26
according to Table 8, at step 2, the point transformer
enhanced module of PMP-Net++ can learn more efficient
geometric information, which achieves better performance
(9.45 versus 8.36) than PMP-Net (12.26 versus 11.90).

4.5.3 Visual Analysis of Multi-Step Searching

We visualize the point deformation process under different
searching step sittings in Fig. 15. Comparing the 3-step
searching in the top-row with the other two sittings, the
empty space on the chair back is shaped cleaner as
highlighted by rectangles, which justifies the effectiveness
of multi-step searching to consistently refine the shape.

Moreover, from the visualization of Fig. 15, we also find
that the network can actually use some edge information to
infer the destination of moving point cloud. Take the chair
in Fig. 15b as an example, we can draw two conclusions as
follows.

� In Region 1 of Fig. 15b, the network moves the points
on the chair back to complete the missing upper part,
where the points on the edge of chair back are
moved above, because they are geometrically closer
to the missing part. Such point moving pattern uti-
lizes the edge information of incomplete shape.

� In Region 2 of Fig. 15b, the network moves the point
from another chair legs to complete the missing legs.

TABLE 7
Analysis of RPA and PMP Loss (Baseline Marked by “*”)

Backbone Unit. avg. plane chair car table

PMP-Net NoPath 11.95 3.55 8.30 16.15 19.79
Add 12.23 3.32 16.47 8.10 21.05
RNN 12.12 3.55 16.19 8.14 20.58
LSTM 11.99 3.79 15.37 8.09 20.72
GRU 11.87 3.44 15.44 7.85 20.72
baseline* 11.58 3.42 15.88 7.87 19.15

PMP-Net++ NoPath 8.09 2.47 10.80 6.65 12.31
Add 8.07 2.39 10.90 6.54 12.40
RNN 8.54 2.46 11.70 6.86 13.00
LSTM 8.30 2.47 10.92 6.69 13.10
GRU 8.27 2.40 11.31 6.63 12.62
baseline* 8.03 2.58 10.70 6.44 12.30

TABLE 8
The Effect of Different Steps (Baseline Marked by “*”)

Backbone Steps. avg. plane chair car table

PMP-Net 1 12.26 3.71 15.59 8.27 21.48
2 11.90 3.47 15.66 7.95 20.53
3* 11.58 3.42 15.88 7.87 19.15
4 11.67 3.39 15.89 7.91 19.48

PMP-Net++ 1 9.45 2.64 12.90 7.26 14.90
2 8.36 2.61 11.63 6.66 12.50
3* 8.03 2.58 10.70 6.44 12.30
4 8.05 2.32 10.61 6.51 12.60
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We can find that the point moving paths are almost
parallel to each other, where each point on one leg is
moved to the same place on the other leg. The point
moving pattern in Region 2 clearly follows the one-
to-one geometric correspondence between the points
on two legs.

In all, the network not only learns the one-to-one geomet-
ric correspondence between the points, but also takes the
geometric distance between the border of incomplete shape
and its missing part into account during completion. Con-
sidering that the PMD loss focuses on regularizing the geo-
metric correspondence, and there is no constraints for
learning the border information, the improvements of PMP-
Net++ mainly comes from the geometric correspondence.

4.5.4 The Shape to Apply Deformation

Deforming shapes from incomplete point cloud is not the
only choice for PMP-Net++. Therefore, we provide and dis-
cuss one more possible choice of shape deformation, which
is to deform 512 grid points (aranged as 8� 8� 8 cubic)
into a complete shape. Specifically, we use one-step version
of PMP-Net++ for convenience, and use trilinear interpola-
tion to propagate point cloud features onto these grid
points. In order to generate 2048 points, we duplicate each
grid point 4 times and concatenate each duplication with a
random noise. Thus, each grid point will be encouraged to

be split into 4 sub-points, and the all 512 grid points will
finally output 2048 points. The performance and visualiza-
tion are given in Table 9 and Fig. 16, respectively.

Table 9 shows that grid points yield 9.98 of the average CD,
which is lower but relatively comparable to PMP-Net++. We
believe the effectiveness of grid points comes from the ordered
data predictions, and the better performance of PMP-Net++
comes from utilizing more geometric information, which is
provided by the deformation process from the incomplete
point cloud.

4.5.5 Analysis of Searching Radius

By default, we decrease the searching radius for each step by
the ratio of 10. In Table 10, we analyze different sittings of
searching radius and evaluate their influence to the perfor-
mance of PMP-Net++ framework.We additionally test two dif-
ferent strategies to perform point moving path searching, i.e.,
the strategy without decreasing searching radius ([1.0,1.0,1.0]
for each step), and the strategy with smaller decreasing ratio
([1.0,0.5,0.25]). The baseline result is the default setting of PMP-
Net++ ([1.0,0.1,0.01] for each step). Table 10 shows that both
PMP-Net and PMP-Net++ achieve the worst performance at
[1.0,1.0,1.0]. This is a non-decrease strategywhere the searching
radius in each step weighs the same to the network, and the
better experimental results achieved by the other two varia-
tions justify the effectiveness of the strategy to decrease search-
ing radius. And when comparing strategy of [1.0,0.5,0.25] with
[1.0,0.1,0.01], we can find that decreasing searching radius with
larger ratio can improve the model performance, because
larger ratio can better prevent the network from overturning
the decisions in previous steps. We also note that when the
decreasing ratio becomes large, the PMP-Net++ will

Fig. 15. Illustration of multi-step searching under different searching steps. The first row is 3-step completion, and the second row is 2-step comple-
tion, and so on. The 4-step completion have the similar visual effects as 3-step completion. Due to very short searching radius for visualizing the dis-
placement at 4th step, we only illustrate step 1, 2 and 3 in this figure.

TABLE 9
Comparison With Deformation From Grid Points

Methods. avg. plane chair car table

PMP-Net++(one step) 9.45 2.64 12.90 7.26 14.90
Grid 9.98 3.34 13.71 7.45 15.42

Fig. 16. Illustration of deformation from grid point of size 8� 8� 8.

TABLE 10
The Effect of Searching Radius (Baseline Marked by “*”)

Backbone Radius. Avg. Plane Chair Car Table

PMP-Net [1.0,1.0,1.0] 12.01 3.61 16.44 8.22 19.79
[1.0,0.5,0.25] 11.77 3.36 15.92 8.01 19.79
[1.0,0.1,0.01]* 11.58 3.42 15.88 7.87 19.15

PMP-Net [1.0,1.0,1.0] 8.69 2.58 12.38 6.86 12.90
[1.0,0.5,0.25] 8.54 2.33 11.33 6.66 13.79
[1.0,0.1,0.01]* 8.03 2.58 10.70 6.44 12.30
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approximate the behavior of network with step=1 in Table 8,
which can in return be harmful to the performance of shape
completion.

4.5.6 Visual Analysis of Point Moving Path Under

Different Radius

In Fig. 17, we visualize the searching process under different
strategies of searching radius in Table 8. By analyzing the defor-
mation output in step 1, we can find that PMP-Net++ with a
coarse-to-fine searching strategy can learn to predict a better
shape at early step,where the output of step 1 in Fig. 17a ismore
complete and tidy than the ones in Figs. 17b and 17c. Moreover,
a better overall shape predicted in the early stagewill enable the
network focus on refining a better detailed structure of point
cloud, which can be concluded from the comparison of step 3 in
Fig. 17, where the region highlighted by red rectangles in
Fig. 17a ismuch better than the other two subfigures.

4.5.7 Dimension of Noise Vector

The noise vector in Eq. (1) in our paper is used to push the
points to leave their original place. In this section, we ana-
lyze the dimension and the standard deviation of the noise,
which may potentially decide the influence of the noise to
the points. Because either the dimension or the standard
deviation of the noise vector decreases to 0, there will be
no disturbance in the network. On the other hand, larger
vector dimension or standard deviation will cause larger
disturbance in the network. In Table 11, we first analyze the
influence of dimension of noise vector. By comparing 0-
dimension result with others, we can draw conclusion that
the disturbance caused by noise vector is important to learn
the point deformation. And by analyzing the performance

of different length of noise vector, we can find that the influ-
ence of vector length is relatively small, compared with the
existence of noise vector.

4.5.8 Standard Deviation of Noise Distribution

In Table 12, we show the completion results of PMP-Net++
under different standard deviations of noise vector. Similar
to the analysis of vector dimension, we can draw conclusion
that larger disturbance caused by bigger standard deviation
will help the network achieve better completion perfor-
mance. The influence of noise vector becomes weak when
the standard deviation reaches certain threshold (around
10�1 according to Table 12).

4.5.9 Efficiency Analysis

The efficiency analysis on Completion3D dataset is given in
Table 13 We can find that PMP-Net++ is more efficient than
GRNet in terms of both parameters and FLOPs, which
proves our opinion that voxel-aided methods may suffer
from the computational inefficiency problem. Moreover, the
efficiency of PMP-Net++ is also comparable with PCN.
Since PCN adopts a linear layer to generate coarse point
cloud in its network designation, it still requires lots of
computational resources even in single-step point cloud
completion

Fig. 17. Illustration of deformation process in each step under different strategies of searching radius.

TABLE 11
The Effect of Noise Dimension (Baseline Marked by “*”)

Backbone Dim. Avg. Plane Car Chair Table

PMP-Net 0 14.56 4.39 10.48 19.01 24.33
8 11.85 3.28 7.95 15.65 20.50
16 11.68 3.44 7.86 15.22 20.19
32* 11.58 3.42 7.87 15.88 19.15
64 11.58 3.14 7.96 16.01 19.17

PMP-Net++ 0 11.10 3.33 8.66 14.63 17.68
8 8.20 2.23 6.53 10.80 13.10
16 8.24 2.46 6.66 10.72 13.13
32* 8.03 2.58 6.44 10.70 12.30
64 8.11 2.39 6.50 10.80 12.69

TABLE 12
The Effect of Standard Deviation (Baseline Marked by “*”)

Backbone Stddev. Avg. Plane Car Chair Table

PMP-Net 10�2 11.89 3.32 8.15 16.42 19.58
10�1 11.56 3.58 7.78 15.47 19.41
1.0* 11.58 3.42 7.87 15.88 19.15
10 11.62 3.35 7.88 15.29 19.95

PMP-Net++ 10�2 8.08 2.74 6.54 10.60 12.31
10�1 8.43 2.35 6.56 10.81 13.89
1.0* 8.03 2.58 6.44 10.70 12.30
10 8.25 2.27 6.49 11.30 12.82

TABLE 13
Comparison With Deformation From Grid Points

Methods PCN GRNet PMP-Net++(3 steps)

Params(M) 5.29 76.7 5.89
FLOPs(G) 3.31 18.6 4.48
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5 CONCLUSION

In this paper, we propose a novel PMP-Net++ for point
cloud completion by multi-step shape deformation. By
moving points from the source to the target point clouds
with multiple steps, PMP-Net++ can consistently refine the
detailed structure and topology of the predicted shape, and
establish the point-level shape correspondence between the
incomplete and the complete shape. In experiments, we
show the superiority of PMP-Net++ by comparing with
other methods on the Completion3D benchmark and PCN
dataset, and also demonstrate its good performance in the
point cloud up-sampling task.

In all, the research of PMP-Net++ is somewhat limited by
the lack of effective constraints to the deformation process.
In this paper, although the PMD loss has been proposed to
regularize the moving distances of all points in 3D space,
the results may not be satisfactory in some examples due to
the lack of supervision like point moving directions or final
destinations. Therefore, the network may have difficulty to
learn the optimal solution during the training process. In
our opinion, a potential solution to this problem is to further
explore the PMD loss, which we plan to try in our future
work. This solution not only constrains the total moving dis-
tance, but also can guide the network to learn the directions
of each move.
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